Properties

Label 2-2900-145.144-c1-0-39
Degree $2$
Conductor $2900$
Sign $-0.961 - 0.273i$
Analytic cond. $23.1566$
Root an. cond. $4.81213$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·7-s − 3·9-s − 5.29i·11-s + 2i·13-s + 5.29i·19-s − 6i·23-s + (1 + 5.29i)29-s − 5.29i·31-s − 10.5·43-s − 10.5·47-s + 3·49-s + 2i·53-s + 10.5i·61-s + 6i·63-s + 10i·67-s + ⋯
L(s)  = 1  − 0.755i·7-s − 9-s − 1.59i·11-s + 0.554i·13-s + 1.21i·19-s − 1.25i·23-s + (0.185 + 0.982i)29-s − 0.950i·31-s − 1.61·43-s − 1.54·47-s + 0.428·49-s + 0.274i·53-s + 1.35i·61-s + 0.755i·63-s + 1.22i·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.961 - 0.273i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.961 - 0.273i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2900\)    =    \(2^{2} \cdot 5^{2} \cdot 29\)
Sign: $-0.961 - 0.273i$
Analytic conductor: \(23.1566\)
Root analytic conductor: \(4.81213\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2900} (1449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2900,\ (\ :1/2),\ -0.961 - 0.273i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2055272496\)
\(L(\frac12)\) \(\approx\) \(0.2055272496\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 + (-1 - 5.29i)T \)
good3 \( 1 + 3T^{2} \)
7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 + 5.29iT - 11T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 5.29iT - 19T^{2} \)
23 \( 1 + 6iT - 23T^{2} \)
31 \( 1 + 5.29iT - 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 + 10.5T + 43T^{2} \)
47 \( 1 + 10.5T + 47T^{2} \)
53 \( 1 - 2iT - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 10.5iT - 61T^{2} \)
67 \( 1 - 10iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 10.5T + 73T^{2} \)
79 \( 1 - 5.29iT - 79T^{2} \)
83 \( 1 + 2iT - 83T^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 + 10.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.539814525314577797112340331736, −7.72477934555918858659334270161, −6.72473956160134338454146786962, −6.07455479071190180493695527544, −5.40066971698413015609284899917, −4.30915572308539315346766286731, −3.49820118871128597957381202540, −2.73165813297041686320480685229, −1.32580939648423843555364605560, −0.06421872792595876817780059628, 1.73180742308726177443244139453, 2.64257527391498410904923987564, 3.44143151704029813485736118225, 4.78593197816589960468296934106, 5.17986085176006247368094666872, 6.13053619662874370377258252697, 6.90492772780020432886819229047, 7.72437624985030391934944423878, 8.439266612387759537273848991842, 9.203680114007339817675403989684

Graph of the $Z$-function along the critical line