Properties

Label 2900.2.f
Level $2900$
Weight $2$
Character orbit 2900.f
Rep. character $\chi_{2900}(1449,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $5$
Sturm bound $900$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 145 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(900\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2900, [\chi])\).

Total New Old
Modular forms 468 44 424
Cusp forms 432 44 388
Eisenstein series 36 0 36

Trace form

\( 44 q + 24 q^{9} - 4 q^{29} - 76 q^{49} - 36 q^{51} + 20 q^{59} + 12 q^{71} - 20 q^{81} - 12 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2900, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2900.2.f.a 2900.f 145.d $4$ $23.157$ \(\Q(i, \sqrt{7})\) None 580.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{7}-3q^{9}-\beta _{3}q^{11}-\beta _{1}q^{13}+\cdots\)
2900.2.f.b 2900.f 145.d $4$ $23.157$ \(\Q(i, \sqrt{7})\) None 116.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}-2\beta _{1}q^{7}+4q^{9}-\beta _{3}q^{11}+\cdots\)
2900.2.f.c 2900.f 145.d $8$ $23.157$ 8.0.959512576.1 None 580.2.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{3}+(-\beta _{2}+\beta _{3})q^{7}-q^{9}-\beta _{1}q^{11}+\cdots\)
2900.2.f.d 2900.f 145.d $8$ $23.157$ 8.0.205520896.4 None 580.2.d.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{7}q^{3}+(-\beta _{1}+\beta _{2})q^{7}+(3-2\beta _{3}+\cdots)q^{9}+\cdots\)
2900.2.f.e 2900.f 145.d $20$ $23.157$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 2900.2.d.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}+\beta _{14}q^{7}-\beta _{4}q^{9}+(\beta _{10}-\beta _{13}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2900, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(725, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1450, [\chi])\)\(^{\oplus 2}\)