Defining parameters
Level: | \( N \) | \(=\) | \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2900.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 145 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(900\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2900, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 468 | 44 | 424 |
Cusp forms | 432 | 44 | 388 |
Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2900, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
2900.2.f.a | $4$ | $23.157$ | \(\Q(i, \sqrt{7})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{7}-3q^{9}-\beta _{3}q^{11}-\beta _{1}q^{13}+\cdots\) |
2900.2.f.b | $4$ | $23.157$ | \(\Q(i, \sqrt{7})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{3}-2\beta _{1}q^{7}+4q^{9}-\beta _{3}q^{11}+\cdots\) |
2900.2.f.c | $8$ | $23.157$ | 8.0.959512576.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{4}q^{3}+(-\beta _{2}+\beta _{3})q^{7}-q^{9}-\beta _{1}q^{11}+\cdots\) |
2900.2.f.d | $8$ | $23.157$ | 8.0.205520896.4 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{7}q^{3}+(-\beta _{1}+\beta _{2})q^{7}+(3-2\beta _{3}+\cdots)q^{9}+\cdots\) |
2900.2.f.e | $20$ | $23.157$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}+\beta _{14}q^{7}-\beta _{4}q^{9}+(\beta _{10}-\beta _{13}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(2900, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(725, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1450, [\chi])\)\(^{\oplus 2}\)