Newspace parameters
Level: | \( N \) | = | \( 116 = 2^{2} \cdot 29 \) |
Weight: | \( k \) | = | \( 2 \) |
Character orbit: | \([\chi]\) | = | 116.c (of order \(2\) and degree \(1\)) |
Newform invariants
Self dual: | No |
Analytic conductor: | \(0.926264663447\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-7}) \) |
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2 \) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-7}\). We also show the integral \(q\)-expansion of the trace form.
Character Values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/116\mathbb{Z}\right)^\times\).
\(n\) | \(59\) | \(89\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
57.1 |
|
0 | − | 2.64575i | 0 | 1.00000 | 0 | −2.00000 | 0 | −4.00000 | 0 | |||||||||||||||||||||||
57.2 | 0 | 2.64575i | 0 | 1.00000 | 0 | −2.00000 | 0 | −4.00000 | 0 |
Inner twists
Char. orbit | Parity | Mult. | Self Twist | Proved |
---|---|---|---|---|
1.a | Even | 1 | trivial | yes |
29.b | Even | 1 | yes |
Hecke kernels
There are no other newforms in \(S_{2}^{\mathrm{new}}(116, [\chi])\).