Properties

Label 2890.2.b.k.2311.4
Level $2890$
Weight $2$
Character 2890.2311
Analytic conductor $23.077$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2890,2,Mod(2311,2890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2890, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2890.2311"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2890 = 2 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2890.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,0,0,0,4,8,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.0767661842\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2311.4
Root \(-2.17945 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2890.2311
Dual form 2890.2.b.k.2311.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000i q^{3} +1.00000 q^{4} +1.00000i q^{5} +1.00000i q^{6} +4.35890i q^{7} +1.00000 q^{8} +2.00000 q^{9} +1.00000i q^{10} -3.35890i q^{11} +1.00000i q^{12} +5.35890 q^{13} +4.35890i q^{14} -1.00000 q^{15} +1.00000 q^{16} +2.00000 q^{18} +7.35890 q^{19} +1.00000i q^{20} -4.35890 q^{21} -3.35890i q^{22} -0.358899i q^{23} +1.00000i q^{24} -1.00000 q^{25} +5.35890 q^{26} +5.00000i q^{27} +4.35890i q^{28} -1.00000 q^{30} -7.35890i q^{31} +1.00000 q^{32} +3.35890 q^{33} -4.35890 q^{35} +2.00000 q^{36} +5.35890i q^{37} +7.35890 q^{38} +5.35890i q^{39} +1.00000i q^{40} -9.71780i q^{41} -4.35890 q^{42} +10.0000 q^{43} -3.35890i q^{44} +2.00000i q^{45} -0.358899i q^{46} -6.71780 q^{47} +1.00000i q^{48} -12.0000 q^{49} -1.00000 q^{50} +5.35890 q^{52} -6.71780 q^{53} +5.00000i q^{54} +3.35890 q^{55} +4.35890i q^{56} +7.35890i q^{57} +6.00000 q^{59} -1.00000 q^{60} +10.0000i q^{61} -7.35890i q^{62} +8.71780i q^{63} +1.00000 q^{64} +5.35890i q^{65} +3.35890 q^{66} -7.00000 q^{67} +0.358899 q^{69} -4.35890 q^{70} -9.35890i q^{71} +2.00000 q^{72} -1.35890i q^{73} +5.35890i q^{74} -1.00000i q^{75} +7.35890 q^{76} +14.6411 q^{77} +5.35890i q^{78} -4.64110i q^{79} +1.00000i q^{80} +1.00000 q^{81} -9.71780i q^{82} -15.7178 q^{83} -4.35890 q^{84} +10.0000 q^{86} -3.35890i q^{88} -9.00000 q^{89} +2.00000i q^{90} +23.3589i q^{91} -0.358899i q^{92} +7.35890 q^{93} -6.71780 q^{94} +7.35890i q^{95} +1.00000i q^{96} +4.64110i q^{97} -12.0000 q^{98} -6.71780i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} + 8 q^{9} + 4 q^{13} - 4 q^{15} + 4 q^{16} + 8 q^{18} + 12 q^{19} - 4 q^{25} + 4 q^{26} - 4 q^{30} + 4 q^{32} - 4 q^{33} + 8 q^{36} + 12 q^{38} + 40 q^{43} + 8 q^{47} - 48 q^{49}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2890\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000i 0.447214i
\(6\) 1.00000i 0.408248i
\(7\) 4.35890i 1.64751i 0.566947 + 0.823754i \(0.308125\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.00000 0.666667
\(10\) 1.00000i 0.316228i
\(11\) − 3.35890i − 1.01275i −0.862315 0.506373i \(-0.830986\pi\)
0.862315 0.506373i \(-0.169014\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 5.35890 1.48629 0.743146 0.669130i \(-0.233333\pi\)
0.743146 + 0.669130i \(0.233333\pi\)
\(14\) 4.35890i 1.16496i
\(15\) −1.00000 −0.258199
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) 2.00000 0.471405
\(19\) 7.35890 1.68825 0.844124 0.536149i \(-0.180121\pi\)
0.844124 + 0.536149i \(0.180121\pi\)
\(20\) 1.00000i 0.223607i
\(21\) −4.35890 −0.951190
\(22\) − 3.35890i − 0.716120i
\(23\) − 0.358899i − 0.0748356i −0.999300 0.0374178i \(-0.988087\pi\)
0.999300 0.0374178i \(-0.0119132\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −1.00000 −0.200000
\(26\) 5.35890 1.05097
\(27\) 5.00000i 0.962250i
\(28\) 4.35890i 0.823754i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −1.00000 −0.182574
\(31\) − 7.35890i − 1.32170i −0.750519 0.660849i \(-0.770197\pi\)
0.750519 0.660849i \(-0.229803\pi\)
\(32\) 1.00000 0.176777
\(33\) 3.35890 0.584709
\(34\) 0 0
\(35\) −4.35890 −0.736788
\(36\) 2.00000 0.333333
\(37\) 5.35890i 0.880998i 0.897753 + 0.440499i \(0.145198\pi\)
−0.897753 + 0.440499i \(0.854802\pi\)
\(38\) 7.35890 1.19377
\(39\) 5.35890i 0.858111i
\(40\) 1.00000i 0.158114i
\(41\) − 9.71780i − 1.51767i −0.651286 0.758833i \(-0.725770\pi\)
0.651286 0.758833i \(-0.274230\pi\)
\(42\) −4.35890 −0.672593
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) − 3.35890i − 0.506373i
\(45\) 2.00000i 0.298142i
\(46\) − 0.358899i − 0.0529168i
\(47\) −6.71780 −0.979892 −0.489946 0.871753i \(-0.662983\pi\)
−0.489946 + 0.871753i \(0.662983\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −12.0000 −1.71429
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 5.35890 0.743146
\(53\) −6.71780 −0.922761 −0.461380 0.887202i \(-0.652646\pi\)
−0.461380 + 0.887202i \(0.652646\pi\)
\(54\) 5.00000i 0.680414i
\(55\) 3.35890 0.452914
\(56\) 4.35890i 0.582482i
\(57\) 7.35890i 0.974710i
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) −1.00000 −0.129099
\(61\) 10.0000i 1.28037i 0.768221 + 0.640184i \(0.221142\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) − 7.35890i − 0.934581i
\(63\) 8.71780i 1.09834i
\(64\) 1.00000 0.125000
\(65\) 5.35890i 0.664690i
\(66\) 3.35890 0.413452
\(67\) −7.00000 −0.855186 −0.427593 0.903971i \(-0.640638\pi\)
−0.427593 + 0.903971i \(0.640638\pi\)
\(68\) 0 0
\(69\) 0.358899 0.0432064
\(70\) −4.35890 −0.520988
\(71\) − 9.35890i − 1.11070i −0.831618 0.555348i \(-0.812585\pi\)
0.831618 0.555348i \(-0.187415\pi\)
\(72\) 2.00000 0.235702
\(73\) − 1.35890i − 0.159047i −0.996833 0.0795235i \(-0.974660\pi\)
0.996833 0.0795235i \(-0.0253399\pi\)
\(74\) 5.35890i 0.622959i
\(75\) − 1.00000i − 0.115470i
\(76\) 7.35890 0.844124
\(77\) 14.6411 1.66851
\(78\) 5.35890i 0.606776i
\(79\) − 4.64110i − 0.522165i −0.965317 0.261082i \(-0.915921\pi\)
0.965317 0.261082i \(-0.0840794\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 1.00000 0.111111
\(82\) − 9.71780i − 1.07315i
\(83\) −15.7178 −1.72525 −0.862626 0.505842i \(-0.831182\pi\)
−0.862626 + 0.505842i \(0.831182\pi\)
\(84\) −4.35890 −0.475595
\(85\) 0 0
\(86\) 10.0000 1.07833
\(87\) 0 0
\(88\) − 3.35890i − 0.358060i
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 2.00000i 0.210819i
\(91\) 23.3589i 2.44868i
\(92\) − 0.358899i − 0.0374178i
\(93\) 7.35890 0.763082
\(94\) −6.71780 −0.692888
\(95\) 7.35890i 0.755007i
\(96\) 1.00000i 0.102062i
\(97\) 4.64110i 0.471232i 0.971846 + 0.235616i \(0.0757108\pi\)
−0.971846 + 0.235616i \(0.924289\pi\)
\(98\) −12.0000 −1.21218
\(99\) − 6.71780i − 0.675164i
\(100\) −1.00000 −0.100000
\(101\) −19.0767 −1.89820 −0.949101 0.314971i \(-0.898005\pi\)
−0.949101 + 0.314971i \(0.898005\pi\)
\(102\) 0 0
\(103\) −4.35890 −0.429495 −0.214748 0.976670i \(-0.568893\pi\)
−0.214748 + 0.976670i \(0.568893\pi\)
\(104\) 5.35890 0.525483
\(105\) − 4.35890i − 0.425385i
\(106\) −6.71780 −0.652490
\(107\) 0.717798i 0.0693921i 0.999398 + 0.0346961i \(0.0110463\pi\)
−0.999398 + 0.0346961i \(0.988954\pi\)
\(108\) 5.00000i 0.481125i
\(109\) 10.3589i 0.992203i 0.868265 + 0.496101i \(0.165236\pi\)
−0.868265 + 0.496101i \(0.834764\pi\)
\(110\) 3.35890 0.320258
\(111\) −5.35890 −0.508644
\(112\) 4.35890i 0.411877i
\(113\) 10.0767i 0.947936i 0.880542 + 0.473968i \(0.157179\pi\)
−0.880542 + 0.473968i \(0.842821\pi\)
\(114\) 7.35890i 0.689224i
\(115\) 0.358899 0.0334675
\(116\) 0 0
\(117\) 10.7178 0.990861
\(118\) 6.00000 0.552345
\(119\) 0 0
\(120\) −1.00000 −0.0912871
\(121\) −0.282202 −0.0256547
\(122\) 10.0000i 0.905357i
\(123\) 9.71780 0.876224
\(124\) − 7.35890i − 0.660849i
\(125\) − 1.00000i − 0.0894427i
\(126\) 8.71780i 0.776643i
\(127\) 4.35890 0.386790 0.193395 0.981121i \(-0.438050\pi\)
0.193395 + 0.981121i \(0.438050\pi\)
\(128\) 1.00000 0.0883883
\(129\) 10.0000i 0.880451i
\(130\) 5.35890i 0.470007i
\(131\) − 4.07670i − 0.356183i −0.984014 0.178091i \(-0.943008\pi\)
0.984014 0.178091i \(-0.0569922\pi\)
\(132\) 3.35890 0.292355
\(133\) 32.0767i 2.78140i
\(134\) −7.00000 −0.604708
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0.358899 0.0305515
\(139\) − 10.0000i − 0.848189i −0.905618 0.424094i \(-0.860592\pi\)
0.905618 0.424094i \(-0.139408\pi\)
\(140\) −4.35890 −0.368394
\(141\) − 6.71780i − 0.565741i
\(142\) − 9.35890i − 0.785381i
\(143\) − 18.0000i − 1.50524i
\(144\) 2.00000 0.166667
\(145\) 0 0
\(146\) − 1.35890i − 0.112463i
\(147\) − 12.0000i − 0.989743i
\(148\) 5.35890i 0.440499i
\(149\) −6.35890 −0.520941 −0.260471 0.965482i \(-0.583878\pi\)
−0.260471 + 0.965482i \(0.583878\pi\)
\(150\) − 1.00000i − 0.0816497i
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 7.35890 0.596886
\(153\) 0 0
\(154\) 14.6411 1.17981
\(155\) 7.35890 0.591081
\(156\) 5.35890i 0.429055i
\(157\) −16.7178 −1.33423 −0.667113 0.744957i \(-0.732470\pi\)
−0.667113 + 0.744957i \(0.732470\pi\)
\(158\) − 4.64110i − 0.369226i
\(159\) − 6.71780i − 0.532756i
\(160\) 1.00000i 0.0790569i
\(161\) 1.56440 0.123292
\(162\) 1.00000 0.0785674
\(163\) − 11.0000i − 0.861586i −0.902451 0.430793i \(-0.858234\pi\)
0.902451 0.430793i \(-0.141766\pi\)
\(164\) − 9.71780i − 0.758833i
\(165\) 3.35890i 0.261490i
\(166\) −15.7178 −1.21994
\(167\) 12.7178i 0.984133i 0.870558 + 0.492066i \(0.163758\pi\)
−0.870558 + 0.492066i \(0.836242\pi\)
\(168\) −4.35890 −0.336296
\(169\) 15.7178 1.20906
\(170\) 0 0
\(171\) 14.7178 1.12550
\(172\) 10.0000 0.762493
\(173\) 12.7178i 0.966916i 0.875367 + 0.483458i \(0.160619\pi\)
−0.875367 + 0.483458i \(0.839381\pi\)
\(174\) 0 0
\(175\) − 4.35890i − 0.329502i
\(176\) − 3.35890i − 0.253187i
\(177\) 6.00000i 0.450988i
\(178\) −9.00000 −0.674579
\(179\) 19.4356 1.45268 0.726342 0.687333i \(-0.241219\pi\)
0.726342 + 0.687333i \(0.241219\pi\)
\(180\) 2.00000i 0.149071i
\(181\) − 9.07670i − 0.674666i −0.941385 0.337333i \(-0.890475\pi\)
0.941385 0.337333i \(-0.109525\pi\)
\(182\) 23.3589i 1.73148i
\(183\) −10.0000 −0.739221
\(184\) − 0.358899i − 0.0264584i
\(185\) −5.35890 −0.393994
\(186\) 7.35890 0.539581
\(187\) 0 0
\(188\) −6.71780 −0.489946
\(189\) −21.7945 −1.58532
\(190\) 7.35890i 0.533871i
\(191\) −8.64110 −0.625248 −0.312624 0.949877i \(-0.601208\pi\)
−0.312624 + 0.949877i \(0.601208\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 13.3589i 0.961595i 0.876832 + 0.480797i \(0.159653\pi\)
−0.876832 + 0.480797i \(0.840347\pi\)
\(194\) 4.64110i 0.333212i
\(195\) −5.35890 −0.383759
\(196\) −12.0000 −0.857143
\(197\) − 16.0767i − 1.14542i −0.819759 0.572709i \(-0.805893\pi\)
0.819759 0.572709i \(-0.194107\pi\)
\(198\) − 6.71780i − 0.477413i
\(199\) − 1.35890i − 0.0963298i −0.998839 0.0481649i \(-0.984663\pi\)
0.998839 0.0481649i \(-0.0153373\pi\)
\(200\) −1.00000 −0.0707107
\(201\) − 7.00000i − 0.493742i
\(202\) −19.0767 −1.34223
\(203\) 0 0
\(204\) 0 0
\(205\) 9.71780 0.678720
\(206\) −4.35890 −0.303699
\(207\) − 0.717798i − 0.0498904i
\(208\) 5.35890 0.371573
\(209\) − 24.7178i − 1.70977i
\(210\) − 4.35890i − 0.300793i
\(211\) − 16.6411i − 1.14562i −0.819688 0.572810i \(-0.805853\pi\)
0.819688 0.572810i \(-0.194147\pi\)
\(212\) −6.71780 −0.461380
\(213\) 9.35890 0.641261
\(214\) 0.717798i 0.0490677i
\(215\) 10.0000i 0.681994i
\(216\) 5.00000i 0.340207i
\(217\) 32.0767 2.17751
\(218\) 10.3589i 0.701593i
\(219\) 1.35890 0.0918259
\(220\) 3.35890 0.226457
\(221\) 0 0
\(222\) −5.35890 −0.359666
\(223\) 4.35890 0.291893 0.145947 0.989292i \(-0.453377\pi\)
0.145947 + 0.989292i \(0.453377\pi\)
\(224\) 4.35890i 0.291241i
\(225\) −2.00000 −0.133333
\(226\) 10.0767i 0.670292i
\(227\) − 9.00000i − 0.597351i −0.954355 0.298675i \(-0.903455\pi\)
0.954355 0.298675i \(-0.0965448\pi\)
\(228\) 7.35890i 0.487355i
\(229\) 16.3589 1.08103 0.540513 0.841336i \(-0.318230\pi\)
0.540513 + 0.841336i \(0.318230\pi\)
\(230\) 0.358899 0.0236651
\(231\) 14.6411i 0.963314i
\(232\) 0 0
\(233\) − 6.71780i − 0.440098i −0.975489 0.220049i \(-0.929378\pi\)
0.975489 0.220049i \(-0.0706217\pi\)
\(234\) 10.7178 0.700644
\(235\) − 6.71780i − 0.438221i
\(236\) 6.00000 0.390567
\(237\) 4.64110 0.301472
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) −1.00000 −0.0645497
\(241\) − 12.2822i − 0.791166i −0.918430 0.395583i \(-0.870543\pi\)
0.918430 0.395583i \(-0.129457\pi\)
\(242\) −0.282202 −0.0181406
\(243\) 16.0000i 1.02640i
\(244\) 10.0000i 0.640184i
\(245\) − 12.0000i − 0.766652i
\(246\) 9.71780 0.619584
\(247\) 39.4356 2.50923
\(248\) − 7.35890i − 0.467291i
\(249\) − 15.7178i − 0.996075i
\(250\) − 1.00000i − 0.0632456i
\(251\) −8.64110 −0.545421 −0.272711 0.962096i \(-0.587920\pi\)
−0.272711 + 0.962096i \(0.587920\pi\)
\(252\) 8.71780i 0.549170i
\(253\) −1.20551 −0.0757895
\(254\) 4.35890 0.273502
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 28.0767 1.75138 0.875688 0.482877i \(-0.160408\pi\)
0.875688 + 0.482877i \(0.160408\pi\)
\(258\) 10.0000i 0.622573i
\(259\) −23.3589 −1.45145
\(260\) 5.35890i 0.332345i
\(261\) 0 0
\(262\) − 4.07670i − 0.251859i
\(263\) −6.35890 −0.392107 −0.196053 0.980593i \(-0.562813\pi\)
−0.196053 + 0.980593i \(0.562813\pi\)
\(264\) 3.35890 0.206726
\(265\) − 6.71780i − 0.412671i
\(266\) 32.0767i 1.96675i
\(267\) − 9.00000i − 0.550791i
\(268\) −7.00000 −0.427593
\(269\) 18.3589i 1.11936i 0.828708 + 0.559681i \(0.189076\pi\)
−0.828708 + 0.559681i \(0.810924\pi\)
\(270\) −5.00000 −0.304290
\(271\) 12.7945 0.777210 0.388605 0.921404i \(-0.372957\pi\)
0.388605 + 0.921404i \(0.372957\pi\)
\(272\) 0 0
\(273\) −23.3589 −1.41374
\(274\) −6.00000 −0.362473
\(275\) 3.35890i 0.202549i
\(276\) 0.358899 0.0216032
\(277\) − 12.6411i − 0.759530i −0.925083 0.379765i \(-0.876005\pi\)
0.925083 0.379765i \(-0.123995\pi\)
\(278\) − 10.0000i − 0.599760i
\(279\) − 14.7178i − 0.881132i
\(280\) −4.35890 −0.260494
\(281\) −21.7178 −1.29558 −0.647788 0.761821i \(-0.724306\pi\)
−0.647788 + 0.761821i \(0.724306\pi\)
\(282\) − 6.71780i − 0.400039i
\(283\) − 30.4356i − 1.80921i −0.426253 0.904604i \(-0.640167\pi\)
0.426253 0.904604i \(-0.359833\pi\)
\(284\) − 9.35890i − 0.555348i
\(285\) −7.35890 −0.435904
\(286\) − 18.0000i − 1.06436i
\(287\) 42.3589 2.50037
\(288\) 2.00000 0.117851
\(289\) 0 0
\(290\) 0 0
\(291\) −4.64110 −0.272066
\(292\) − 1.35890i − 0.0795235i
\(293\) −10.0767 −0.588687 −0.294343 0.955700i \(-0.595101\pi\)
−0.294343 + 0.955700i \(0.595101\pi\)
\(294\) − 12.0000i − 0.699854i
\(295\) 6.00000i 0.349334i
\(296\) 5.35890i 0.311480i
\(297\) 16.7945 0.974515
\(298\) −6.35890 −0.368361
\(299\) − 1.92330i − 0.111227i
\(300\) − 1.00000i − 0.0577350i
\(301\) 43.5890i 2.51243i
\(302\) −2.00000 −0.115087
\(303\) − 19.0767i − 1.09593i
\(304\) 7.35890 0.422062
\(305\) −10.0000 −0.572598
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 14.6411 0.834254
\(309\) − 4.35890i − 0.247969i
\(310\) 7.35890 0.417957
\(311\) − 12.7178i − 0.721160i −0.932728 0.360580i \(-0.882579\pi\)
0.932728 0.360580i \(-0.117421\pi\)
\(312\) 5.35890i 0.303388i
\(313\) − 10.6411i − 0.601471i −0.953708 0.300735i \(-0.902768\pi\)
0.953708 0.300735i \(-0.0972321\pi\)
\(314\) −16.7178 −0.943440
\(315\) −8.71780 −0.491192
\(316\) − 4.64110i − 0.261082i
\(317\) 22.0767i 1.23995i 0.784621 + 0.619975i \(0.212857\pi\)
−0.784621 + 0.619975i \(0.787143\pi\)
\(318\) − 6.71780i − 0.376715i
\(319\) 0 0
\(320\) 1.00000i 0.0559017i
\(321\) −0.717798 −0.0400636
\(322\) 1.56440 0.0871808
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −5.35890 −0.297258
\(326\) − 11.0000i − 0.609234i
\(327\) −10.3589 −0.572848
\(328\) − 9.71780i − 0.536576i
\(329\) − 29.2822i − 1.61438i
\(330\) 3.35890i 0.184901i
\(331\) 34.7178 1.90826 0.954131 0.299388i \(-0.0967826\pi\)
0.954131 + 0.299388i \(0.0967826\pi\)
\(332\) −15.7178 −0.862626
\(333\) 10.7178i 0.587332i
\(334\) 12.7178i 0.695887i
\(335\) − 7.00000i − 0.382451i
\(336\) −4.35890 −0.237797
\(337\) 3.92330i 0.213716i 0.994274 + 0.106858i \(0.0340790\pi\)
−0.994274 + 0.106858i \(0.965921\pi\)
\(338\) 15.7178 0.854935
\(339\) −10.0767 −0.547291
\(340\) 0 0
\(341\) −24.7178 −1.33854
\(342\) 14.7178 0.795847
\(343\) − 21.7945i − 1.17679i
\(344\) 10.0000 0.539164
\(345\) 0.358899i 0.0193225i
\(346\) 12.7178i 0.683713i
\(347\) 0.717798i 0.0385334i 0.999814 + 0.0192667i \(0.00613316\pi\)
−0.999814 + 0.0192667i \(0.993867\pi\)
\(348\) 0 0
\(349\) −15.7945 −0.845460 −0.422730 0.906256i \(-0.638928\pi\)
−0.422730 + 0.906256i \(0.638928\pi\)
\(350\) − 4.35890i − 0.232993i
\(351\) 26.7945i 1.43018i
\(352\) − 3.35890i − 0.179030i
\(353\) −16.0767 −0.855676 −0.427838 0.903855i \(-0.640725\pi\)
−0.427838 + 0.903855i \(0.640725\pi\)
\(354\) 6.00000i 0.318896i
\(355\) 9.35890 0.496719
\(356\) −9.00000 −0.476999
\(357\) 0 0
\(358\) 19.4356 1.02720
\(359\) 15.3589 0.810612 0.405306 0.914181i \(-0.367165\pi\)
0.405306 + 0.914181i \(0.367165\pi\)
\(360\) 2.00000i 0.105409i
\(361\) 35.1534 1.85018
\(362\) − 9.07670i − 0.477061i
\(363\) − 0.282202i − 0.0148118i
\(364\) 23.3589i 1.22434i
\(365\) 1.35890 0.0711280
\(366\) −10.0000 −0.522708
\(367\) 17.4356i 0.910131i 0.890458 + 0.455065i \(0.150384\pi\)
−0.890458 + 0.455065i \(0.849616\pi\)
\(368\) − 0.358899i − 0.0187089i
\(369\) − 19.4356i − 1.01178i
\(370\) −5.35890 −0.278596
\(371\) − 29.2822i − 1.52026i
\(372\) 7.35890 0.381541
\(373\) −20.7945 −1.07670 −0.538349 0.842722i \(-0.680952\pi\)
−0.538349 + 0.842722i \(0.680952\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) −6.71780 −0.346444
\(377\) 0 0
\(378\) −21.7945 −1.12099
\(379\) 18.0767i 0.928538i 0.885694 + 0.464269i \(0.153683\pi\)
−0.885694 + 0.464269i \(0.846317\pi\)
\(380\) 7.35890i 0.377504i
\(381\) 4.35890i 0.223313i
\(382\) −8.64110 −0.442117
\(383\) −25.7945 −1.31804 −0.659019 0.752127i \(-0.729028\pi\)
−0.659019 + 0.752127i \(0.729028\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 14.6411i 0.746180i
\(386\) 13.3589i 0.679950i
\(387\) 20.0000 1.01666
\(388\) 4.64110i 0.235616i
\(389\) −14.1534 −0.717606 −0.358803 0.933413i \(-0.616815\pi\)
−0.358803 + 0.933413i \(0.616815\pi\)
\(390\) −5.35890 −0.271358
\(391\) 0 0
\(392\) −12.0000 −0.606092
\(393\) 4.07670 0.205642
\(394\) − 16.0767i − 0.809932i
\(395\) 4.64110 0.233519
\(396\) − 6.71780i − 0.337582i
\(397\) − 36.7945i − 1.84666i −0.384004 0.923331i \(-0.625455\pi\)
0.384004 0.923331i \(-0.374545\pi\)
\(398\) − 1.35890i − 0.0681154i
\(399\) −32.0767 −1.60584
\(400\) −1.00000 −0.0500000
\(401\) 28.4356i 1.42001i 0.704199 + 0.710003i \(0.251306\pi\)
−0.704199 + 0.710003i \(0.748694\pi\)
\(402\) − 7.00000i − 0.349128i
\(403\) − 39.4356i − 1.96443i
\(404\) −19.0767 −0.949101
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 18.0000 0.892227
\(408\) 0 0
\(409\) −20.4356 −1.01048 −0.505238 0.862980i \(-0.668595\pi\)
−0.505238 + 0.862980i \(0.668595\pi\)
\(410\) 9.71780 0.479928
\(411\) − 6.00000i − 0.295958i
\(412\) −4.35890 −0.214748
\(413\) 26.1534i 1.28692i
\(414\) − 0.717798i − 0.0352778i
\(415\) − 15.7178i − 0.771556i
\(416\) 5.35890 0.262742
\(417\) 10.0000 0.489702
\(418\) − 24.7178i − 1.20899i
\(419\) 7.43560i 0.363253i 0.983368 + 0.181626i \(0.0581361\pi\)
−0.983368 + 0.181626i \(0.941864\pi\)
\(420\) − 4.35890i − 0.212692i
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) − 16.6411i − 0.810076i
\(423\) −13.4356 −0.653261
\(424\) −6.71780 −0.326245
\(425\) 0 0
\(426\) 9.35890 0.453440
\(427\) −43.5890 −2.10942
\(428\) 0.717798i 0.0346961i
\(429\) 18.0000 0.869048
\(430\) 10.0000i 0.482243i
\(431\) − 3.35890i − 0.161792i −0.996723 0.0808962i \(-0.974222\pi\)
0.996723 0.0808962i \(-0.0257782\pi\)
\(432\) 5.00000i 0.240563i
\(433\) −17.3589 −0.834215 −0.417108 0.908857i \(-0.636956\pi\)
−0.417108 + 0.908857i \(0.636956\pi\)
\(434\) 32.0767 1.53973
\(435\) 0 0
\(436\) 10.3589i 0.496101i
\(437\) − 2.64110i − 0.126341i
\(438\) 1.35890 0.0649307
\(439\) 22.1534i 1.05732i 0.848832 + 0.528662i \(0.177306\pi\)
−0.848832 + 0.528662i \(0.822694\pi\)
\(440\) 3.35890 0.160129
\(441\) −24.0000 −1.14286
\(442\) 0 0
\(443\) 17.1534 0.814982 0.407491 0.913209i \(-0.366404\pi\)
0.407491 + 0.913209i \(0.366404\pi\)
\(444\) −5.35890 −0.254322
\(445\) − 9.00000i − 0.426641i
\(446\) 4.35890 0.206400
\(447\) − 6.35890i − 0.300766i
\(448\) 4.35890i 0.205939i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −2.00000 −0.0942809
\(451\) −32.6411 −1.53701
\(452\) 10.0767i 0.473968i
\(453\) − 2.00000i − 0.0939682i
\(454\) − 9.00000i − 0.422391i
\(455\) −23.3589 −1.09508
\(456\) 7.35890i 0.344612i
\(457\) −31.5123 −1.47408 −0.737041 0.675848i \(-0.763778\pi\)
−0.737041 + 0.675848i \(0.763778\pi\)
\(458\) 16.3589 0.764401
\(459\) 0 0
\(460\) 0.358899 0.0167337
\(461\) −25.0767 −1.16794 −0.583969 0.811776i \(-0.698501\pi\)
−0.583969 + 0.811776i \(0.698501\pi\)
\(462\) 14.6411i 0.681166i
\(463\) −11.0767 −0.514778 −0.257389 0.966308i \(-0.582862\pi\)
−0.257389 + 0.966308i \(0.582862\pi\)
\(464\) 0 0
\(465\) 7.35890i 0.341261i
\(466\) − 6.71780i − 0.311196i
\(467\) −15.7178 −0.727333 −0.363666 0.931529i \(-0.618475\pi\)
−0.363666 + 0.931529i \(0.618475\pi\)
\(468\) 10.7178 0.495430
\(469\) − 30.5123i − 1.40893i
\(470\) − 6.71780i − 0.309869i
\(471\) − 16.7178i − 0.770315i
\(472\) 6.00000 0.276172
\(473\) − 33.5890i − 1.54442i
\(474\) 4.64110 0.213173
\(475\) −7.35890 −0.337649
\(476\) 0 0
\(477\) −13.4356 −0.615174
\(478\) −12.0000 −0.548867
\(479\) 20.1534i 0.920832i 0.887703 + 0.460416i \(0.152300\pi\)
−0.887703 + 0.460416i \(0.847700\pi\)
\(480\) −1.00000 −0.0456435
\(481\) 28.7178i 1.30942i
\(482\) − 12.2822i − 0.559439i
\(483\) 1.56440i 0.0711829i
\(484\) −0.282202 −0.0128274
\(485\) −4.64110 −0.210742
\(486\) 16.0000i 0.725775i
\(487\) − 38.3589i − 1.73821i −0.494630 0.869104i \(-0.664696\pi\)
0.494630 0.869104i \(-0.335304\pi\)
\(488\) 10.0000i 0.452679i
\(489\) 11.0000 0.497437
\(490\) − 12.0000i − 0.542105i
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 9.71780 0.438112
\(493\) 0 0
\(494\) 39.4356 1.77429
\(495\) 6.71780 0.301943
\(496\) − 7.35890i − 0.330424i
\(497\) 40.7945 1.82988
\(498\) − 15.7178i − 0.704331i
\(499\) − 1.28220i − 0.0573992i −0.999588 0.0286996i \(-0.990863\pi\)
0.999588 0.0286996i \(-0.00913663\pi\)
\(500\) − 1.00000i − 0.0447214i
\(501\) −12.7178 −0.568189
\(502\) −8.64110 −0.385671
\(503\) − 13.7945i − 0.615066i −0.951537 0.307533i \(-0.900497\pi\)
0.951537 0.307533i \(-0.0995035\pi\)
\(504\) 8.71780i 0.388322i
\(505\) − 19.0767i − 0.848902i
\(506\) −1.20551 −0.0535912
\(507\) 15.7178i 0.698052i
\(508\) 4.35890 0.193395
\(509\) 37.0767 1.64340 0.821698 0.569923i \(-0.193027\pi\)
0.821698 + 0.569923i \(0.193027\pi\)
\(510\) 0 0
\(511\) 5.92330 0.262032
\(512\) 1.00000 0.0441942
\(513\) 36.7945i 1.62452i
\(514\) 28.0767 1.23841
\(515\) − 4.35890i − 0.192076i
\(516\) 10.0000i 0.440225i
\(517\) 22.5644i 0.992381i
\(518\) −23.3589 −1.02633
\(519\) −12.7178 −0.558249
\(520\) 5.35890i 0.235003i
\(521\) 39.0000i 1.70862i 0.519763 + 0.854311i \(0.326020\pi\)
−0.519763 + 0.854311i \(0.673980\pi\)
\(522\) 0 0
\(523\) −13.7178 −0.599837 −0.299919 0.953965i \(-0.596960\pi\)
−0.299919 + 0.953965i \(0.596960\pi\)
\(524\) − 4.07670i − 0.178091i
\(525\) 4.35890 0.190238
\(526\) −6.35890 −0.277261
\(527\) 0 0
\(528\) 3.35890 0.146177
\(529\) 22.8712 0.994400
\(530\) − 6.71780i − 0.291802i
\(531\) 12.0000 0.520756
\(532\) 32.0767i 1.39070i
\(533\) − 52.0767i − 2.25569i
\(534\) − 9.00000i − 0.389468i
\(535\) −0.717798 −0.0310331
\(536\) −7.00000 −0.302354
\(537\) 19.4356i 0.838708i
\(538\) 18.3589i 0.791508i
\(539\) 40.3068i 1.73614i
\(540\) −5.00000 −0.215166
\(541\) − 21.6411i − 0.930424i −0.885199 0.465212i \(-0.845978\pi\)
0.885199 0.465212i \(-0.154022\pi\)
\(542\) 12.7945 0.549571
\(543\) 9.07670 0.389518
\(544\) 0 0
\(545\) −10.3589 −0.443726
\(546\) −23.3589 −0.999669
\(547\) 12.4356i 0.531708i 0.964013 + 0.265854i \(0.0856539\pi\)
−0.964013 + 0.265854i \(0.914346\pi\)
\(548\) −6.00000 −0.256307
\(549\) 20.0000i 0.853579i
\(550\) 3.35890i 0.143224i
\(551\) 0 0
\(552\) 0.358899 0.0152758
\(553\) 20.2301 0.860271
\(554\) − 12.6411i − 0.537069i
\(555\) − 5.35890i − 0.227473i
\(556\) − 10.0000i − 0.424094i
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) − 14.7178i − 0.623054i
\(559\) 53.5890 2.26657
\(560\) −4.35890 −0.184197
\(561\) 0 0
\(562\) −21.7178 −0.916110
\(563\) 24.7178 1.04173 0.520865 0.853639i \(-0.325609\pi\)
0.520865 + 0.853639i \(0.325609\pi\)
\(564\) − 6.71780i − 0.282870i
\(565\) −10.0767 −0.423930
\(566\) − 30.4356i − 1.27930i
\(567\) 4.35890i 0.183057i
\(568\) − 9.35890i − 0.392691i
\(569\) 29.8712 1.25227 0.626133 0.779716i \(-0.284637\pi\)
0.626133 + 0.779716i \(0.284637\pi\)
\(570\) −7.35890 −0.308230
\(571\) − 36.0767i − 1.50976i −0.655861 0.754881i \(-0.727694\pi\)
0.655861 0.754881i \(-0.272306\pi\)
\(572\) − 18.0000i − 0.752618i
\(573\) − 8.64110i − 0.360987i
\(574\) 42.3589 1.76803
\(575\) 0.358899i 0.0149671i
\(576\) 2.00000 0.0833333
\(577\) 44.2301 1.84132 0.920661 0.390362i \(-0.127650\pi\)
0.920661 + 0.390362i \(0.127650\pi\)
\(578\) 0 0
\(579\) −13.3589 −0.555177
\(580\) 0 0
\(581\) − 68.5123i − 2.84237i
\(582\) −4.64110 −0.192380
\(583\) 22.5644i 0.934522i
\(584\) − 1.35890i − 0.0562316i
\(585\) 10.7178i 0.443126i
\(586\) −10.0767 −0.416265
\(587\) 1.56440 0.0645699 0.0322849 0.999479i \(-0.489722\pi\)
0.0322849 + 0.999479i \(0.489722\pi\)
\(588\) − 12.0000i − 0.494872i
\(589\) − 54.1534i − 2.23135i
\(590\) 6.00000i 0.247016i
\(591\) 16.0767 0.661307
\(592\) 5.35890i 0.220249i
\(593\) 22.7945 0.936058 0.468029 0.883713i \(-0.344964\pi\)
0.468029 + 0.883713i \(0.344964\pi\)
\(594\) 16.7945 0.689086
\(595\) 0 0
\(596\) −6.35890 −0.260471
\(597\) 1.35890 0.0556160
\(598\) − 1.92330i − 0.0786497i
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) − 1.00000i − 0.0408248i
\(601\) − 19.1534i − 0.781283i −0.920543 0.390642i \(-0.872253\pi\)
0.920543 0.390642i \(-0.127747\pi\)
\(602\) 43.5890i 1.77655i
\(603\) −14.0000 −0.570124
\(604\) −2.00000 −0.0813788
\(605\) − 0.282202i − 0.0114731i
\(606\) − 19.0767i − 0.774938i
\(607\) − 21.2822i − 0.863818i −0.901917 0.431909i \(-0.857840\pi\)
0.901917 0.431909i \(-0.142160\pi\)
\(608\) 7.35890 0.298443
\(609\) 0 0
\(610\) −10.0000 −0.404888
\(611\) −36.0000 −1.45640
\(612\) 0 0
\(613\) 5.35890 0.216444 0.108222 0.994127i \(-0.465484\pi\)
0.108222 + 0.994127i \(0.465484\pi\)
\(614\) 2.00000 0.0807134
\(615\) 9.71780i 0.391859i
\(616\) 14.6411 0.589907
\(617\) − 37.4356i − 1.50710i −0.657390 0.753550i \(-0.728340\pi\)
0.657390 0.753550i \(-0.271660\pi\)
\(618\) − 4.35890i − 0.175341i
\(619\) 26.7945i 1.07696i 0.842638 + 0.538481i \(0.181002\pi\)
−0.842638 + 0.538481i \(0.818998\pi\)
\(620\) 7.35890 0.295540
\(621\) 1.79449 0.0720106
\(622\) − 12.7178i − 0.509937i
\(623\) − 39.2301i − 1.57172i
\(624\) 5.35890i 0.214528i
\(625\) 1.00000 0.0400000
\(626\) − 10.6411i − 0.425304i
\(627\) 24.7178 0.987134
\(628\) −16.7178 −0.667113
\(629\) 0 0
\(630\) −8.71780 −0.347325
\(631\) −21.4356 −0.853338 −0.426669 0.904408i \(-0.640313\pi\)
−0.426669 + 0.904408i \(0.640313\pi\)
\(632\) − 4.64110i − 0.184613i
\(633\) 16.6411 0.661424
\(634\) 22.0767i 0.876778i
\(635\) 4.35890i 0.172978i
\(636\) − 6.71780i − 0.266378i
\(637\) −64.3068 −2.54793
\(638\) 0 0
\(639\) − 18.7178i − 0.740465i
\(640\) 1.00000i 0.0395285i
\(641\) − 41.8712i − 1.65381i −0.562340 0.826906i \(-0.690099\pi\)
0.562340 0.826906i \(-0.309901\pi\)
\(642\) −0.717798 −0.0283292
\(643\) 37.8712i 1.49349i 0.665108 + 0.746747i \(0.268385\pi\)
−0.665108 + 0.746747i \(0.731615\pi\)
\(644\) 1.56440 0.0616462
\(645\) −10.0000 −0.393750
\(646\) 0 0
\(647\) 19.0767 0.749982 0.374991 0.927028i \(-0.377646\pi\)
0.374991 + 0.927028i \(0.377646\pi\)
\(648\) 1.00000 0.0392837
\(649\) − 20.1534i − 0.791090i
\(650\) −5.35890 −0.210193
\(651\) 32.0767i 1.25718i
\(652\) − 11.0000i − 0.430793i
\(653\) 25.4356i 0.995372i 0.867357 + 0.497686i \(0.165817\pi\)
−0.867357 + 0.497686i \(0.834183\pi\)
\(654\) −10.3589 −0.405065
\(655\) 4.07670 0.159290
\(656\) − 9.71780i − 0.379416i
\(657\) − 2.71780i − 0.106031i
\(658\) − 29.2822i − 1.14154i
\(659\) 32.1534 1.25252 0.626259 0.779615i \(-0.284585\pi\)
0.626259 + 0.779615i \(0.284585\pi\)
\(660\) 3.35890i 0.130745i
\(661\) −44.3589 −1.72536 −0.862681 0.505749i \(-0.831216\pi\)
−0.862681 + 0.505749i \(0.831216\pi\)
\(662\) 34.7178 1.34935
\(663\) 0 0
\(664\) −15.7178 −0.609969
\(665\) −32.0767 −1.24388
\(666\) 10.7178i 0.415306i
\(667\) 0 0
\(668\) 12.7178i 0.492066i
\(669\) 4.35890i 0.168525i
\(670\) − 7.00000i − 0.270434i
\(671\) 33.5890 1.29669
\(672\) −4.35890 −0.168148
\(673\) − 1.28220i − 0.0494253i −0.999695 0.0247126i \(-0.992133\pi\)
0.999695 0.0247126i \(-0.00786708\pi\)
\(674\) 3.92330i 0.151120i
\(675\) − 5.00000i − 0.192450i
\(676\) 15.7178 0.604531
\(677\) 30.0000i 1.15299i 0.817099 + 0.576497i \(0.195581\pi\)
−0.817099 + 0.576497i \(0.804419\pi\)
\(678\) −10.0767 −0.386993
\(679\) −20.2301 −0.776360
\(680\) 0 0
\(681\) 9.00000 0.344881
\(682\) −24.7178 −0.946493
\(683\) − 16.4356i − 0.628891i −0.949276 0.314445i \(-0.898181\pi\)
0.949276 0.314445i \(-0.101819\pi\)
\(684\) 14.7178 0.562749
\(685\) − 6.00000i − 0.229248i
\(686\) − 21.7945i − 0.832118i
\(687\) 16.3589i 0.624131i
\(688\) 10.0000 0.381246
\(689\) −36.0000 −1.37149
\(690\) 0.358899i 0.0136630i
\(691\) 35.4356i 1.34803i 0.738716 + 0.674017i \(0.235432\pi\)
−0.738716 + 0.674017i \(0.764568\pi\)
\(692\) 12.7178i 0.483458i
\(693\) 29.2822 1.11234
\(694\) 0.717798i 0.0272472i
\(695\) 10.0000 0.379322
\(696\) 0 0
\(697\) 0 0
\(698\) −15.7945 −0.597830
\(699\) 6.71780 0.254090
\(700\) − 4.35890i − 0.164751i
\(701\) −1.79449 −0.0677771 −0.0338886 0.999426i \(-0.510789\pi\)
−0.0338886 + 0.999426i \(0.510789\pi\)
\(702\) 26.7945i 1.01129i
\(703\) 39.4356i 1.48734i
\(704\) − 3.35890i − 0.126593i
\(705\) 6.71780 0.253007
\(706\) −16.0767 −0.605054
\(707\) − 83.1534i − 3.12731i
\(708\) 6.00000i 0.225494i
\(709\) 18.9233i 0.710680i 0.934737 + 0.355340i \(0.115635\pi\)
−0.934737 + 0.355340i \(0.884365\pi\)
\(710\) 9.35890 0.351233
\(711\) − 9.28220i − 0.348110i
\(712\) −9.00000 −0.337289
\(713\) −2.64110 −0.0989100
\(714\) 0 0
\(715\) 18.0000 0.673162
\(716\) 19.4356 0.726342
\(717\) − 12.0000i − 0.448148i
\(718\) 15.3589 0.573189
\(719\) 4.56440i 0.170224i 0.996371 + 0.0851118i \(0.0271247\pi\)
−0.996371 + 0.0851118i \(0.972875\pi\)
\(720\) 2.00000i 0.0745356i
\(721\) − 19.0000i − 0.707597i
\(722\) 35.1534 1.30827
\(723\) 12.2822 0.456780
\(724\) − 9.07670i − 0.337333i
\(725\) 0 0
\(726\) − 0.282202i − 0.0104735i
\(727\) 6.56440 0.243460 0.121730 0.992563i \(-0.461156\pi\)
0.121730 + 0.992563i \(0.461156\pi\)
\(728\) 23.3589i 0.865738i
\(729\) −13.0000 −0.481481
\(730\) 1.35890 0.0502951
\(731\) 0 0
\(732\) −10.0000 −0.369611
\(733\) −6.56440 −0.242462 −0.121231 0.992624i \(-0.538684\pi\)
−0.121231 + 0.992624i \(0.538684\pi\)
\(734\) 17.4356i 0.643560i
\(735\) 12.0000 0.442627
\(736\) − 0.358899i − 0.0132292i
\(737\) 23.5123i 0.866086i
\(738\) − 19.4356i − 0.715434i
\(739\) 3.28220 0.120738 0.0603689 0.998176i \(-0.480772\pi\)
0.0603689 + 0.998176i \(0.480772\pi\)
\(740\) −5.35890 −0.196997
\(741\) 39.4356i 1.44870i
\(742\) − 29.2822i − 1.07498i
\(743\) − 30.3589i − 1.11376i −0.830593 0.556880i \(-0.811998\pi\)
0.830593 0.556880i \(-0.188002\pi\)
\(744\) 7.35890 0.269790
\(745\) − 6.35890i − 0.232972i
\(746\) −20.7945 −0.761341
\(747\) −31.4356 −1.15017
\(748\) 0 0
\(749\) −3.12881 −0.114324
\(750\) 1.00000 0.0365148
\(751\) 45.4356i 1.65797i 0.559272 + 0.828984i \(0.311081\pi\)
−0.559272 + 0.828984i \(0.688919\pi\)
\(752\) −6.71780 −0.244973
\(753\) − 8.64110i − 0.314899i
\(754\) 0 0
\(755\) − 2.00000i − 0.0727875i
\(756\) −21.7945 −0.792658
\(757\) 16.0000 0.581530 0.290765 0.956795i \(-0.406090\pi\)
0.290765 + 0.956795i \(0.406090\pi\)
\(758\) 18.0767i 0.656575i
\(759\) − 1.20551i − 0.0437571i
\(760\) 7.35890i 0.266935i
\(761\) −5.28220 −0.191480 −0.0957398 0.995406i \(-0.530522\pi\)
−0.0957398 + 0.995406i \(0.530522\pi\)
\(762\) 4.35890i 0.157906i
\(763\) −45.1534 −1.63466
\(764\) −8.64110 −0.312624
\(765\) 0 0
\(766\) −25.7945 −0.931993
\(767\) 32.1534 1.16099
\(768\) 1.00000i 0.0360844i
\(769\) 29.7178 1.07165 0.535826 0.844329i \(-0.320000\pi\)
0.535826 + 0.844329i \(0.320000\pi\)
\(770\) 14.6411i 0.527629i
\(771\) 28.0767i 1.01116i
\(772\) 13.3589i 0.480797i
\(773\) −12.7178 −0.457427 −0.228714 0.973494i \(-0.573452\pi\)
−0.228714 + 0.973494i \(0.573452\pi\)
\(774\) 20.0000 0.718885
\(775\) 7.35890i 0.264339i
\(776\) 4.64110i 0.166606i
\(777\) − 23.3589i − 0.837996i
\(778\) −14.1534 −0.507424
\(779\) − 71.5123i − 2.56219i
\(780\) −5.35890 −0.191879
\(781\) −31.4356 −1.12485
\(782\) 0 0
\(783\) 0 0
\(784\) −12.0000 −0.428571
\(785\) − 16.7178i − 0.596684i
\(786\) 4.07670 0.145411
\(787\) − 39.1534i − 1.39567i −0.716260 0.697834i \(-0.754147\pi\)
0.716260 0.697834i \(-0.245853\pi\)
\(788\) − 16.0767i − 0.572709i
\(789\) − 6.35890i − 0.226383i
\(790\) 4.64110 0.165123
\(791\) −43.9233 −1.56173
\(792\) − 6.71780i − 0.238707i
\(793\) 53.5890i 1.90300i
\(794\) − 36.7945i − 1.30579i
\(795\) 6.71780 0.238256
\(796\) − 1.35890i − 0.0481649i
\(797\) 28.0767 0.994528 0.497264 0.867599i \(-0.334338\pi\)
0.497264 + 0.867599i \(0.334338\pi\)
\(798\) −32.0767 −1.13550
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) −18.0000 −0.635999
\(802\) 28.4356i 1.00410i
\(803\) −4.56440 −0.161074
\(804\) − 7.00000i − 0.246871i
\(805\) 1.56440i 0.0551380i
\(806\) − 39.4356i − 1.38906i
\(807\) −18.3589 −0.646264
\(808\) −19.0767 −0.671116
\(809\) 23.1534i 0.814030i 0.913421 + 0.407015i \(0.133430\pi\)
−0.913421 + 0.407015i \(0.866570\pi\)
\(810\) 1.00000i 0.0351364i
\(811\) − 26.0767i − 0.915677i −0.889035 0.457838i \(-0.848624\pi\)
0.889035 0.457838i \(-0.151376\pi\)
\(812\) 0 0
\(813\) 12.7945i 0.448723i
\(814\) 18.0000 0.630900
\(815\) 11.0000 0.385313
\(816\) 0 0
\(817\) 73.5890 2.57455
\(818\) −20.4356 −0.714514
\(819\) 46.7178i 1.63245i
\(820\) 9.71780 0.339360
\(821\) 7.07670i 0.246978i 0.992346 + 0.123489i \(0.0394084\pi\)
−0.992346 + 0.123489i \(0.960592\pi\)
\(822\) − 6.00000i − 0.209274i
\(823\) 28.3589i 0.988529i 0.869312 + 0.494265i \(0.164563\pi\)
−0.869312 + 0.494265i \(0.835437\pi\)
\(824\) −4.35890 −0.151849
\(825\) −3.35890 −0.116942
\(826\) 26.1534i 0.909993i
\(827\) − 27.0000i − 0.938882i −0.882964 0.469441i \(-0.844455\pi\)
0.882964 0.469441i \(-0.155545\pi\)
\(828\) − 0.717798i − 0.0249452i
\(829\) 19.6411 0.682164 0.341082 0.940034i \(-0.389207\pi\)
0.341082 + 0.940034i \(0.389207\pi\)
\(830\) − 15.7178i − 0.545573i
\(831\) 12.6411 0.438515
\(832\) 5.35890 0.185786
\(833\) 0 0
\(834\) 10.0000 0.346272
\(835\) −12.7178 −0.440118
\(836\) − 24.7178i − 0.854883i
\(837\) 36.7945 1.27180
\(838\) 7.43560i 0.256858i
\(839\) − 34.0767i − 1.17646i −0.808694 0.588229i \(-0.799825\pi\)
0.808694 0.588229i \(-0.200175\pi\)
\(840\) − 4.35890i − 0.150396i
\(841\) 29.0000 1.00000
\(842\) 8.00000 0.275698
\(843\) − 21.7178i − 0.748001i
\(844\) − 16.6411i − 0.572810i
\(845\) 15.7178i 0.540709i
\(846\) −13.4356 −0.461925
\(847\) − 1.23009i − 0.0422664i
\(848\) −6.71780 −0.230690
\(849\) 30.4356 1.04455
\(850\) 0 0
\(851\) 1.92330 0.0659300
\(852\) 9.35890 0.320631
\(853\) 53.3589i 1.82697i 0.406868 + 0.913487i \(0.366621\pi\)
−0.406868 + 0.913487i \(0.633379\pi\)
\(854\) −43.5890 −1.49158
\(855\) 14.7178i 0.503338i
\(856\) 0.717798i 0.0245338i
\(857\) − 0.717798i − 0.0245195i −0.999925 0.0122598i \(-0.996098\pi\)
0.999925 0.0122598i \(-0.00390250\pi\)
\(858\) 18.0000 0.614510
\(859\) 3.28220 0.111987 0.0559936 0.998431i \(-0.482167\pi\)
0.0559936 + 0.998431i \(0.482167\pi\)
\(860\) 10.0000i 0.340997i
\(861\) 42.3589i 1.44359i
\(862\) − 3.35890i − 0.114405i
\(863\) 38.8712 1.32319 0.661595 0.749861i \(-0.269880\pi\)
0.661595 + 0.749861i \(0.269880\pi\)
\(864\) 5.00000i 0.170103i
\(865\) −12.7178 −0.432418
\(866\) −17.3589 −0.589879
\(867\) 0 0
\(868\) 32.0767 1.08875
\(869\) −15.5890 −0.528820
\(870\) 0 0
\(871\) −37.5123 −1.27106
\(872\) 10.3589i 0.350797i
\(873\) 9.28220i 0.314155i
\(874\) − 2.64110i − 0.0893366i
\(875\) 4.35890 0.147358
\(876\) 1.35890 0.0459129
\(877\) − 25.2822i − 0.853719i −0.904318 0.426860i \(-0.859620\pi\)
0.904318 0.426860i \(-0.140380\pi\)
\(878\) 22.1534i 0.747641i
\(879\) − 10.0767i − 0.339879i
\(880\) 3.35890 0.113228
\(881\) − 19.4356i − 0.654802i −0.944886 0.327401i \(-0.893827\pi\)
0.944886 0.327401i \(-0.106173\pi\)
\(882\) −24.0000 −0.808122
\(883\) 8.71780 0.293377 0.146689 0.989183i \(-0.453138\pi\)
0.146689 + 0.989183i \(0.453138\pi\)
\(884\) 0 0
\(885\) −6.00000 −0.201688
\(886\) 17.1534 0.576280
\(887\) − 7.07670i − 0.237612i −0.992917 0.118806i \(-0.962093\pi\)
0.992917 0.118806i \(-0.0379067\pi\)
\(888\) −5.35890 −0.179833
\(889\) 19.0000i 0.637240i
\(890\) − 9.00000i − 0.301681i
\(891\) − 3.35890i − 0.112527i
\(892\) 4.35890 0.145947
\(893\) −49.4356 −1.65430
\(894\) − 6.35890i − 0.212673i
\(895\) 19.4356i 0.649660i
\(896\) 4.35890i 0.145621i
\(897\) 1.92330 0.0642172
\(898\) 0 0
\(899\) 0 0
\(900\) −2.00000 −0.0666667
\(901\) 0 0
\(902\) −32.6411 −1.08683
\(903\) −43.5890 −1.45055
\(904\) 10.0767i 0.335146i
\(905\) 9.07670 0.301720
\(906\) − 2.00000i − 0.0664455i
\(907\) − 22.1534i − 0.735591i −0.929907 0.367796i \(-0.880113\pi\)
0.929907 0.367796i \(-0.119887\pi\)
\(908\) − 9.00000i − 0.298675i
\(909\) −38.1534 −1.26547
\(910\) −23.3589 −0.774340
\(911\) − 24.7178i − 0.818937i −0.912324 0.409469i \(-0.865714\pi\)
0.912324 0.409469i \(-0.134286\pi\)
\(912\) 7.35890i 0.243677i
\(913\) 52.7945i 1.74724i
\(914\) −31.5123 −1.04233
\(915\) − 10.0000i − 0.330590i
\(916\) 16.3589 0.540513
\(917\) 17.7699 0.586814
\(918\) 0 0
\(919\) −29.4356 −0.970991 −0.485495 0.874239i \(-0.661361\pi\)
−0.485495 + 0.874239i \(0.661361\pi\)
\(920\) 0.358899 0.0118325
\(921\) 2.00000i 0.0659022i
\(922\) −25.0767 −0.825857
\(923\) − 50.1534i − 1.65082i
\(924\) 14.6411i 0.481657i
\(925\) − 5.35890i − 0.176200i
\(926\) −11.0767 −0.364003
\(927\) −8.71780 −0.286330
\(928\) 0 0
\(929\) 51.7178i 1.69681i 0.529351 + 0.848403i \(0.322435\pi\)
−0.529351 + 0.848403i \(0.677565\pi\)
\(930\) 7.35890i 0.241308i
\(931\) −88.3068 −2.89414
\(932\) − 6.71780i − 0.220049i
\(933\) 12.7178 0.416362
\(934\) −15.7178 −0.514302
\(935\) 0 0
\(936\) 10.7178 0.350322
\(937\) −28.6411 −0.935664 −0.467832 0.883817i \(-0.654965\pi\)
−0.467832 + 0.883817i \(0.654965\pi\)
\(938\) − 30.5123i − 0.996262i
\(939\) 10.6411 0.347259
\(940\) − 6.71780i − 0.219110i
\(941\) 39.2301i 1.27886i 0.768847 + 0.639432i \(0.220831\pi\)
−0.768847 + 0.639432i \(0.779169\pi\)
\(942\) − 16.7178i − 0.544695i
\(943\) −3.48771 −0.113575
\(944\) 6.00000 0.195283
\(945\) − 21.7945i − 0.708975i
\(946\) − 33.5890i − 1.09207i
\(947\) 3.00000i 0.0974869i 0.998811 + 0.0487435i \(0.0155217\pi\)
−0.998811 + 0.0487435i \(0.984478\pi\)
\(948\) 4.64110 0.150736
\(949\) − 7.28220i − 0.236390i
\(950\) −7.35890 −0.238754
\(951\) −22.0767 −0.715886
\(952\) 0 0
\(953\) −48.2301 −1.56233 −0.781163 0.624327i \(-0.785373\pi\)
−0.781163 + 0.624327i \(0.785373\pi\)
\(954\) −13.4356 −0.434993
\(955\) − 8.64110i − 0.279619i
\(956\) −12.0000 −0.388108
\(957\) 0 0
\(958\) 20.1534i 0.651127i
\(959\) − 26.1534i − 0.844537i
\(960\) −1.00000 −0.0322749
\(961\) −23.1534 −0.746884
\(962\) 28.7178i 0.925899i
\(963\) 1.43560i 0.0462614i
\(964\) − 12.2822i − 0.395583i
\(965\) −13.3589 −0.430038
\(966\) 1.56440i 0.0503339i
\(967\) −39.7945 −1.27970 −0.639852 0.768498i \(-0.721004\pi\)
−0.639852 + 0.768498i \(0.721004\pi\)
\(968\) −0.282202 −0.00907032
\(969\) 0 0
\(970\) −4.64110 −0.149017
\(971\) −0.717798 −0.0230352 −0.0115176 0.999934i \(-0.503666\pi\)
−0.0115176 + 0.999934i \(0.503666\pi\)
\(972\) 16.0000i 0.513200i
\(973\) 43.5890 1.39740
\(974\) − 38.3589i − 1.22910i
\(975\) − 5.35890i − 0.171622i
\(976\) 10.0000i 0.320092i
\(977\) −3.84661 −0.123064 −0.0615319 0.998105i \(-0.519599\pi\)
−0.0615319 + 0.998105i \(0.519599\pi\)
\(978\) 11.0000 0.351741
\(979\) 30.2301i 0.966158i
\(980\) − 12.0000i − 0.383326i
\(981\) 20.7178i 0.661468i
\(982\) 12.0000 0.382935
\(983\) − 16.9233i − 0.539770i −0.962893 0.269885i \(-0.913014\pi\)
0.962893 0.269885i \(-0.0869856\pi\)
\(984\) 9.71780 0.309792
\(985\) 16.0767 0.512246
\(986\) 0 0
\(987\) 29.2822 0.932063
\(988\) 39.4356 1.25461
\(989\) − 3.58899i − 0.114123i
\(990\) 6.71780 0.213506
\(991\) 15.4356i 0.490328i 0.969482 + 0.245164i \(0.0788418\pi\)
−0.969482 + 0.245164i \(0.921158\pi\)
\(992\) − 7.35890i − 0.233645i
\(993\) 34.7178i 1.10174i
\(994\) 40.7945 1.29392
\(995\) 1.35890 0.0430800
\(996\) − 15.7178i − 0.498037i
\(997\) 7.35890i 0.233059i 0.993187 + 0.116529i \(0.0371769\pi\)
−0.993187 + 0.116529i \(0.962823\pi\)
\(998\) − 1.28220i − 0.0405874i
\(999\) −26.7945 −0.847740
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2890.2.b.k.2311.4 4
17.4 even 4 2890.2.a.s.1.1 yes 2
17.13 even 4 2890.2.a.r.1.2 2
17.16 even 2 inner 2890.2.b.k.2311.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2890.2.a.r.1.2 2 17.13 even 4
2890.2.a.s.1.1 yes 2 17.4 even 4
2890.2.b.k.2311.1 4 17.16 even 2 inner
2890.2.b.k.2311.4 4 1.1 even 1 trivial