Properties

Label 2890.2.b.k
Level $2890$
Weight $2$
Character orbit 2890.b
Analytic conductor $23.077$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2890,2,Mod(2311,2890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2890, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2890.2311"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2890 = 2 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2890.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,0,0,0,4,8,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.0767661842\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta_1 q^{3} + q^{4} - \beta_1 q^{5} - \beta_1 q^{6} + \beta_{3} q^{7} + q^{8} + 2 q^{9} - \beta_1 q^{10} + ( - \beta_{3} - \beta_1) q^{11} - \beta_1 q^{12} + ( - \beta_{2} + 1) q^{13}+ \cdots + ( - 2 \beta_{3} - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} + 8 q^{9} + 4 q^{13} - 4 q^{15} + 4 q^{16} + 8 q^{18} + 12 q^{19} - 4 q^{25} + 4 q^{26} - 4 q^{30} + 4 q^{32} - 4 q^{33} + 8 q^{36} + 12 q^{38} + 40 q^{43} + 8 q^{47} - 48 q^{49}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 9x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 4\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 14\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} + 7\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2890\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2311.1
−2.17945 + 0.500000i
2.17945 + 0.500000i
2.17945 0.500000i
−2.17945 0.500000i
1.00000 1.00000i 1.00000 1.00000i 1.00000i 4.35890i 1.00000 2.00000 1.00000i
2311.2 1.00000 1.00000i 1.00000 1.00000i 1.00000i 4.35890i 1.00000 2.00000 1.00000i
2311.3 1.00000 1.00000i 1.00000 1.00000i 1.00000i 4.35890i 1.00000 2.00000 1.00000i
2311.4 1.00000 1.00000i 1.00000 1.00000i 1.00000i 4.35890i 1.00000 2.00000 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2890.2.b.k 4
17.b even 2 1 inner 2890.2.b.k 4
17.c even 4 1 2890.2.a.r 2
17.c even 4 1 2890.2.a.s yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2890.2.a.r 2 17.c even 4 1
2890.2.a.s yes 2 17.c even 4 1
2890.2.b.k 4 1.a even 1 1 trivial
2890.2.b.k 4 17.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2890, [\chi])\):

\( T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} + 19 \) Copy content Toggle raw display
\( T_{11}^{4} + 40T_{11}^{2} + 324 \) Copy content Toggle raw display
\( T_{13}^{2} - 2T_{13} - 18 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 19)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 40T^{2} + 324 \) Copy content Toggle raw display
$13$ \( (T^{2} - 2 T - 18)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 6 T - 10)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 70T^{2} + 9 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 56T^{2} + 100 \) Copy content Toggle raw display
$37$ \( T^{4} + 40T^{2} + 324 \) Copy content Toggle raw display
$41$ \( T^{4} + 154T^{2} + 5625 \) Copy content Toggle raw display
$43$ \( (T - 10)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 4 T - 72)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 4 T - 72)^{2} \) Copy content Toggle raw display
$59$ \( (T - 6)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$67$ \( (T + 7)^{4} \) Copy content Toggle raw display
$71$ \( T^{4} + 88T^{2} + 36 \) Copy content Toggle raw display
$73$ \( T^{4} + 56T^{2} + 100 \) Copy content Toggle raw display
$79$ \( T^{4} + 200T^{2} + 3844 \) Copy content Toggle raw display
$83$ \( (T^{2} + 14 T - 27)^{2} \) Copy content Toggle raw display
$89$ \( (T + 9)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + 200T^{2} + 3844 \) Copy content Toggle raw display
show more
show less