Defining parameters
| Level: | \( N \) | = | \( 2890 = 2 \cdot 5 \cdot 17^{2} \) |
| Weight: | \( k \) | = | \( 2 \) |
| Nonzero newspaces: | \( 20 \) | ||
| Sturm bound: | \(998784\) | ||
| Trace bound: | \(10\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2890))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 252896 | 75767 | 177129 |
| Cusp forms | 246497 | 75767 | 170730 |
| Eisenstein series | 6399 | 0 | 6399 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2890))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2890))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(2890)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(170))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(289))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(578))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1445))\)\(^{\oplus 2}\)