Properties

Label 2890.2.b.k.2311.3
Level $2890$
Weight $2$
Character 2890.2311
Analytic conductor $23.077$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2890,2,Mod(2311,2890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2890, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2890.2311"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2890 = 2 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2890.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,0,0,0,4,8,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.0767661842\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2311.3
Root \(2.17945 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2890.2311
Dual form 2890.2.b.k.2311.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000i q^{3} +1.00000 q^{4} +1.00000i q^{5} +1.00000i q^{6} -4.35890i q^{7} +1.00000 q^{8} +2.00000 q^{9} +1.00000i q^{10} +5.35890i q^{11} +1.00000i q^{12} -3.35890 q^{13} -4.35890i q^{14} -1.00000 q^{15} +1.00000 q^{16} +2.00000 q^{18} -1.35890 q^{19} +1.00000i q^{20} +4.35890 q^{21} +5.35890i q^{22} +8.35890i q^{23} +1.00000i q^{24} -1.00000 q^{25} -3.35890 q^{26} +5.00000i q^{27} -4.35890i q^{28} -1.00000 q^{30} +1.35890i q^{31} +1.00000 q^{32} -5.35890 q^{33} +4.35890 q^{35} +2.00000 q^{36} -3.35890i q^{37} -1.35890 q^{38} -3.35890i q^{39} +1.00000i q^{40} +7.71780i q^{41} +4.35890 q^{42} +10.0000 q^{43} +5.35890i q^{44} +2.00000i q^{45} +8.35890i q^{46} +10.7178 q^{47} +1.00000i q^{48} -12.0000 q^{49} -1.00000 q^{50} -3.35890 q^{52} +10.7178 q^{53} +5.00000i q^{54} -5.35890 q^{55} -4.35890i q^{56} -1.35890i q^{57} +6.00000 q^{59} -1.00000 q^{60} +10.0000i q^{61} +1.35890i q^{62} -8.71780i q^{63} +1.00000 q^{64} -3.35890i q^{65} -5.35890 q^{66} -7.00000 q^{67} -8.35890 q^{69} +4.35890 q^{70} -0.641101i q^{71} +2.00000 q^{72} +7.35890i q^{73} -3.35890i q^{74} -1.00000i q^{75} -1.35890 q^{76} +23.3589 q^{77} -3.35890i q^{78} -13.3589i q^{79} +1.00000i q^{80} +1.00000 q^{81} +7.71780i q^{82} +1.71780 q^{83} +4.35890 q^{84} +10.0000 q^{86} +5.35890i q^{88} -9.00000 q^{89} +2.00000i q^{90} +14.6411i q^{91} +8.35890i q^{92} -1.35890 q^{93} +10.7178 q^{94} -1.35890i q^{95} +1.00000i q^{96} +13.3589i q^{97} -12.0000 q^{98} +10.7178i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} + 8 q^{9} + 4 q^{13} - 4 q^{15} + 4 q^{16} + 8 q^{18} + 12 q^{19} - 4 q^{25} + 4 q^{26} - 4 q^{30} + 4 q^{32} - 4 q^{33} + 8 q^{36} + 12 q^{38} + 40 q^{43} + 8 q^{47} - 48 q^{49}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2890\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000i 0.447214i
\(6\) 1.00000i 0.408248i
\(7\) − 4.35890i − 1.64751i −0.566947 0.823754i \(-0.691875\pi\)
0.566947 0.823754i \(-0.308125\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.00000 0.666667
\(10\) 1.00000i 0.316228i
\(11\) 5.35890i 1.61577i 0.589341 + 0.807884i \(0.299387\pi\)
−0.589341 + 0.807884i \(0.700613\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −3.35890 −0.931591 −0.465795 0.884892i \(-0.654232\pi\)
−0.465795 + 0.884892i \(0.654232\pi\)
\(14\) − 4.35890i − 1.16496i
\(15\) −1.00000 −0.258199
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) 2.00000 0.471405
\(19\) −1.35890 −0.311753 −0.155876 0.987777i \(-0.549820\pi\)
−0.155876 + 0.987777i \(0.549820\pi\)
\(20\) 1.00000i 0.223607i
\(21\) 4.35890 0.951190
\(22\) 5.35890i 1.14252i
\(23\) 8.35890i 1.74295i 0.490439 + 0.871475i \(0.336836\pi\)
−0.490439 + 0.871475i \(0.663164\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −1.00000 −0.200000
\(26\) −3.35890 −0.658734
\(27\) 5.00000i 0.962250i
\(28\) − 4.35890i − 0.823754i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −1.00000 −0.182574
\(31\) 1.35890i 0.244065i 0.992526 + 0.122033i \(0.0389413\pi\)
−0.992526 + 0.122033i \(0.961059\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.35890 −0.932865
\(34\) 0 0
\(35\) 4.35890 0.736788
\(36\) 2.00000 0.333333
\(37\) − 3.35890i − 0.552200i −0.961129 0.276100i \(-0.910958\pi\)
0.961129 0.276100i \(-0.0890420\pi\)
\(38\) −1.35890 −0.220443
\(39\) − 3.35890i − 0.537854i
\(40\) 1.00000i 0.158114i
\(41\) 7.71780i 1.20532i 0.797999 + 0.602659i \(0.205892\pi\)
−0.797999 + 0.602659i \(0.794108\pi\)
\(42\) 4.35890 0.672593
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 5.35890i 0.807884i
\(45\) 2.00000i 0.298142i
\(46\) 8.35890i 1.23245i
\(47\) 10.7178 1.56335 0.781676 0.623685i \(-0.214365\pi\)
0.781676 + 0.623685i \(0.214365\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −12.0000 −1.71429
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) −3.35890 −0.465795
\(53\) 10.7178 1.47220 0.736101 0.676871i \(-0.236665\pi\)
0.736101 + 0.676871i \(0.236665\pi\)
\(54\) 5.00000i 0.680414i
\(55\) −5.35890 −0.722594
\(56\) − 4.35890i − 0.582482i
\(57\) − 1.35890i − 0.179991i
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) −1.00000 −0.129099
\(61\) 10.0000i 1.28037i 0.768221 + 0.640184i \(0.221142\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 1.35890i 0.172580i
\(63\) − 8.71780i − 1.09834i
\(64\) 1.00000 0.125000
\(65\) − 3.35890i − 0.416620i
\(66\) −5.35890 −0.659635
\(67\) −7.00000 −0.855186 −0.427593 0.903971i \(-0.640638\pi\)
−0.427593 + 0.903971i \(0.640638\pi\)
\(68\) 0 0
\(69\) −8.35890 −1.00629
\(70\) 4.35890 0.520988
\(71\) − 0.641101i − 0.0760847i −0.999276 0.0380423i \(-0.987888\pi\)
0.999276 0.0380423i \(-0.0121122\pi\)
\(72\) 2.00000 0.235702
\(73\) 7.35890i 0.861294i 0.902520 + 0.430647i \(0.141715\pi\)
−0.902520 + 0.430647i \(0.858285\pi\)
\(74\) − 3.35890i − 0.390464i
\(75\) − 1.00000i − 0.115470i
\(76\) −1.35890 −0.155876
\(77\) 23.3589 2.66199
\(78\) − 3.35890i − 0.380320i
\(79\) − 13.3589i − 1.50299i −0.659737 0.751497i \(-0.729332\pi\)
0.659737 0.751497i \(-0.270668\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 1.00000 0.111111
\(82\) 7.71780i 0.852288i
\(83\) 1.71780 0.188553 0.0942764 0.995546i \(-0.469946\pi\)
0.0942764 + 0.995546i \(0.469946\pi\)
\(84\) 4.35890 0.475595
\(85\) 0 0
\(86\) 10.0000 1.07833
\(87\) 0 0
\(88\) 5.35890i 0.571261i
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 2.00000i 0.210819i
\(91\) 14.6411i 1.53480i
\(92\) 8.35890i 0.871475i
\(93\) −1.35890 −0.140911
\(94\) 10.7178 1.10546
\(95\) − 1.35890i − 0.139420i
\(96\) 1.00000i 0.102062i
\(97\) 13.3589i 1.35639i 0.734882 + 0.678195i \(0.237238\pi\)
−0.734882 + 0.678195i \(0.762762\pi\)
\(98\) −12.0000 −1.21218
\(99\) 10.7178i 1.07718i
\(100\) −1.00000 −0.100000
\(101\) 7.07670 0.704158 0.352079 0.935970i \(-0.385475\pi\)
0.352079 + 0.935970i \(0.385475\pi\)
\(102\) 0 0
\(103\) 4.35890 0.429495 0.214748 0.976670i \(-0.431107\pi\)
0.214748 + 0.976670i \(0.431107\pi\)
\(104\) −3.35890 −0.329367
\(105\) 4.35890i 0.425385i
\(106\) 10.7178 1.04100
\(107\) − 16.7178i − 1.61617i −0.589066 0.808085i \(-0.700504\pi\)
0.589066 0.808085i \(-0.299496\pi\)
\(108\) 5.00000i 0.481125i
\(109\) 1.64110i 0.157189i 0.996907 + 0.0785945i \(0.0250432\pi\)
−0.996907 + 0.0785945i \(0.974957\pi\)
\(110\) −5.35890 −0.510951
\(111\) 3.35890 0.318813
\(112\) − 4.35890i − 0.411877i
\(113\) − 16.0767i − 1.51237i −0.654359 0.756184i \(-0.727061\pi\)
0.654359 0.756184i \(-0.272939\pi\)
\(114\) − 1.35890i − 0.127273i
\(115\) −8.35890 −0.779471
\(116\) 0 0
\(117\) −6.71780 −0.621061
\(118\) 6.00000 0.552345
\(119\) 0 0
\(120\) −1.00000 −0.0912871
\(121\) −17.7178 −1.61071
\(122\) 10.0000i 0.905357i
\(123\) −7.71780 −0.695890
\(124\) 1.35890i 0.122033i
\(125\) − 1.00000i − 0.0894427i
\(126\) − 8.71780i − 0.776643i
\(127\) −4.35890 −0.386790 −0.193395 0.981121i \(-0.561950\pi\)
−0.193395 + 0.981121i \(0.561950\pi\)
\(128\) 1.00000 0.0883883
\(129\) 10.0000i 0.880451i
\(130\) − 3.35890i − 0.294595i
\(131\) 22.0767i 1.92885i 0.264357 + 0.964425i \(0.414840\pi\)
−0.264357 + 0.964425i \(0.585160\pi\)
\(132\) −5.35890 −0.466432
\(133\) 5.92330i 0.513616i
\(134\) −7.00000 −0.604708
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) −8.35890 −0.711557
\(139\) − 10.0000i − 0.848189i −0.905618 0.424094i \(-0.860592\pi\)
0.905618 0.424094i \(-0.139408\pi\)
\(140\) 4.35890 0.368394
\(141\) 10.7178i 0.902601i
\(142\) − 0.641101i − 0.0538000i
\(143\) − 18.0000i − 1.50524i
\(144\) 2.00000 0.166667
\(145\) 0 0
\(146\) 7.35890i 0.609027i
\(147\) − 12.0000i − 0.989743i
\(148\) − 3.35890i − 0.276100i
\(149\) 2.35890 0.193249 0.0966243 0.995321i \(-0.469195\pi\)
0.0966243 + 0.995321i \(0.469195\pi\)
\(150\) − 1.00000i − 0.0816497i
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) −1.35890 −0.110221
\(153\) 0 0
\(154\) 23.3589 1.88231
\(155\) −1.35890 −0.109149
\(156\) − 3.35890i − 0.268927i
\(157\) 0.717798 0.0572865 0.0286433 0.999590i \(-0.490881\pi\)
0.0286433 + 0.999590i \(0.490881\pi\)
\(158\) − 13.3589i − 1.06278i
\(159\) 10.7178i 0.849977i
\(160\) 1.00000i 0.0790569i
\(161\) 36.4356 2.87153
\(162\) 1.00000 0.0785674
\(163\) − 11.0000i − 0.861586i −0.902451 0.430793i \(-0.858234\pi\)
0.902451 0.430793i \(-0.141766\pi\)
\(164\) 7.71780i 0.602659i
\(165\) − 5.35890i − 0.417190i
\(166\) 1.71780 0.133327
\(167\) − 4.71780i − 0.365074i −0.983199 0.182537i \(-0.941569\pi\)
0.983199 0.182537i \(-0.0584310\pi\)
\(168\) 4.35890 0.336296
\(169\) −1.71780 −0.132138
\(170\) 0 0
\(171\) −2.71780 −0.207835
\(172\) 10.0000 0.762493
\(173\) − 4.71780i − 0.358688i −0.983786 0.179344i \(-0.942603\pi\)
0.983786 0.179344i \(-0.0573974\pi\)
\(174\) 0 0
\(175\) 4.35890i 0.329502i
\(176\) 5.35890i 0.403942i
\(177\) 6.00000i 0.450988i
\(178\) −9.00000 −0.674579
\(179\) −15.4356 −1.15371 −0.576855 0.816846i \(-0.695720\pi\)
−0.576855 + 0.816846i \(0.695720\pi\)
\(180\) 2.00000i 0.149071i
\(181\) 17.0767i 1.26930i 0.772799 + 0.634650i \(0.218856\pi\)
−0.772799 + 0.634650i \(0.781144\pi\)
\(182\) 14.6411i 1.08527i
\(183\) −10.0000 −0.739221
\(184\) 8.35890i 0.616226i
\(185\) 3.35890 0.246951
\(186\) −1.35890 −0.0996393
\(187\) 0 0
\(188\) 10.7178 0.781676
\(189\) 21.7945 1.58532
\(190\) − 1.35890i − 0.0985849i
\(191\) −17.3589 −1.25605 −0.628023 0.778195i \(-0.716136\pi\)
−0.628023 + 0.778195i \(0.716136\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 4.64110i 0.334074i 0.985951 + 0.167037i \(0.0534199\pi\)
−0.985951 + 0.167037i \(0.946580\pi\)
\(194\) 13.3589i 0.959113i
\(195\) 3.35890 0.240536
\(196\) −12.0000 −0.857143
\(197\) 10.0767i 0.717935i 0.933350 + 0.358967i \(0.116871\pi\)
−0.933350 + 0.358967i \(0.883129\pi\)
\(198\) 10.7178i 0.761681i
\(199\) 7.35890i 0.521659i 0.965385 + 0.260829i \(0.0839960\pi\)
−0.965385 + 0.260829i \(0.916004\pi\)
\(200\) −1.00000 −0.0707107
\(201\) − 7.00000i − 0.493742i
\(202\) 7.07670 0.497915
\(203\) 0 0
\(204\) 0 0
\(205\) −7.71780 −0.539034
\(206\) 4.35890 0.303699
\(207\) 16.7178i 1.16197i
\(208\) −3.35890 −0.232898
\(209\) − 7.28220i − 0.503720i
\(210\) 4.35890i 0.300793i
\(211\) − 25.3589i − 1.74578i −0.487918 0.872889i \(-0.662244\pi\)
0.487918 0.872889i \(-0.337756\pi\)
\(212\) 10.7178 0.736101
\(213\) 0.641101 0.0439275
\(214\) − 16.7178i − 1.14281i
\(215\) 10.0000i 0.681994i
\(216\) 5.00000i 0.340207i
\(217\) 5.92330 0.402100
\(218\) 1.64110i 0.111149i
\(219\) −7.35890 −0.497268
\(220\) −5.35890 −0.361297
\(221\) 0 0
\(222\) 3.35890 0.225435
\(223\) −4.35890 −0.291893 −0.145947 0.989292i \(-0.546623\pi\)
−0.145947 + 0.989292i \(0.546623\pi\)
\(224\) − 4.35890i − 0.291241i
\(225\) −2.00000 −0.133333
\(226\) − 16.0767i − 1.06941i
\(227\) − 9.00000i − 0.597351i −0.954355 0.298675i \(-0.903455\pi\)
0.954355 0.298675i \(-0.0965448\pi\)
\(228\) − 1.35890i − 0.0899953i
\(229\) 7.64110 0.504938 0.252469 0.967605i \(-0.418757\pi\)
0.252469 + 0.967605i \(0.418757\pi\)
\(230\) −8.35890 −0.551169
\(231\) 23.3589i 1.53690i
\(232\) 0 0
\(233\) 10.7178i 0.702146i 0.936348 + 0.351073i \(0.114183\pi\)
−0.936348 + 0.351073i \(0.885817\pi\)
\(234\) −6.71780 −0.439156
\(235\) 10.7178i 0.699152i
\(236\) 6.00000 0.390567
\(237\) 13.3589 0.867754
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) −1.00000 −0.0645497
\(241\) − 29.7178i − 1.91429i −0.289606 0.957146i \(-0.593524\pi\)
0.289606 0.957146i \(-0.406476\pi\)
\(242\) −17.7178 −1.13894
\(243\) 16.0000i 1.02640i
\(244\) 10.0000i 0.640184i
\(245\) − 12.0000i − 0.766652i
\(246\) −7.71780 −0.492069
\(247\) 4.56440 0.290426
\(248\) 1.35890i 0.0862902i
\(249\) 1.71780i 0.108861i
\(250\) − 1.00000i − 0.0632456i
\(251\) −17.3589 −1.09568 −0.547842 0.836582i \(-0.684551\pi\)
−0.547842 + 0.836582i \(0.684551\pi\)
\(252\) − 8.71780i − 0.549170i
\(253\) −44.7945 −2.81621
\(254\) −4.35890 −0.273502
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 1.92330 0.119972 0.0599862 0.998199i \(-0.480894\pi\)
0.0599862 + 0.998199i \(0.480894\pi\)
\(258\) 10.0000i 0.622573i
\(259\) −14.6411 −0.909754
\(260\) − 3.35890i − 0.208310i
\(261\) 0 0
\(262\) 22.0767i 1.36390i
\(263\) 2.35890 0.145456 0.0727280 0.997352i \(-0.476830\pi\)
0.0727280 + 0.997352i \(0.476830\pi\)
\(264\) −5.35890 −0.329817
\(265\) 10.7178i 0.658389i
\(266\) 5.92330i 0.363181i
\(267\) − 9.00000i − 0.550791i
\(268\) −7.00000 −0.427593
\(269\) 9.64110i 0.587828i 0.955832 + 0.293914i \(0.0949580\pi\)
−0.955832 + 0.293914i \(0.905042\pi\)
\(270\) −5.00000 −0.304290
\(271\) −30.7945 −1.87063 −0.935316 0.353813i \(-0.884885\pi\)
−0.935316 + 0.353813i \(0.884885\pi\)
\(272\) 0 0
\(273\) −14.6411 −0.886120
\(274\) −6.00000 −0.362473
\(275\) − 5.35890i − 0.323154i
\(276\) −8.35890 −0.503147
\(277\) − 21.3589i − 1.28333i −0.766984 0.641666i \(-0.778244\pi\)
0.766984 0.641666i \(-0.221756\pi\)
\(278\) − 10.0000i − 0.599760i
\(279\) 2.71780i 0.162710i
\(280\) 4.35890 0.260494
\(281\) −4.28220 −0.255455 −0.127727 0.991809i \(-0.540768\pi\)
−0.127727 + 0.991809i \(0.540768\pi\)
\(282\) 10.7178i 0.638236i
\(283\) 4.43560i 0.263669i 0.991272 + 0.131834i \(0.0420867\pi\)
−0.991272 + 0.131834i \(0.957913\pi\)
\(284\) − 0.641101i − 0.0380423i
\(285\) 1.35890 0.0804942
\(286\) − 18.0000i − 1.06436i
\(287\) 33.6411 1.98577
\(288\) 2.00000 0.117851
\(289\) 0 0
\(290\) 0 0
\(291\) −13.3589 −0.783113
\(292\) 7.35890i 0.430647i
\(293\) 16.0767 0.939211 0.469605 0.882876i \(-0.344396\pi\)
0.469605 + 0.882876i \(0.344396\pi\)
\(294\) − 12.0000i − 0.699854i
\(295\) 6.00000i 0.349334i
\(296\) − 3.35890i − 0.195232i
\(297\) −26.7945 −1.55477
\(298\) 2.35890 0.136647
\(299\) − 28.0767i − 1.62372i
\(300\) − 1.00000i − 0.0577350i
\(301\) − 43.5890i − 2.51243i
\(302\) −2.00000 −0.115087
\(303\) 7.07670i 0.406546i
\(304\) −1.35890 −0.0779382
\(305\) −10.0000 −0.572598
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 23.3589 1.33100
\(309\) 4.35890i 0.247969i
\(310\) −1.35890 −0.0771803
\(311\) 4.71780i 0.267522i 0.991014 + 0.133761i \(0.0427054\pi\)
−0.991014 + 0.133761i \(0.957295\pi\)
\(312\) − 3.35890i − 0.190160i
\(313\) − 19.3589i − 1.09423i −0.837058 0.547115i \(-0.815726\pi\)
0.837058 0.547115i \(-0.184274\pi\)
\(314\) 0.717798 0.0405077
\(315\) 8.71780 0.491192
\(316\) − 13.3589i − 0.751497i
\(317\) − 4.07670i − 0.228970i −0.993425 0.114485i \(-0.963478\pi\)
0.993425 0.114485i \(-0.0365218\pi\)
\(318\) 10.7178i 0.601024i
\(319\) 0 0
\(320\) 1.00000i 0.0559017i
\(321\) 16.7178 0.933096
\(322\) 36.4356 2.03048
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 3.35890 0.186318
\(326\) − 11.0000i − 0.609234i
\(327\) −1.64110 −0.0907531
\(328\) 7.71780i 0.426144i
\(329\) − 46.7178i − 2.57564i
\(330\) − 5.35890i − 0.294998i
\(331\) 17.2822 0.949916 0.474958 0.880009i \(-0.342463\pi\)
0.474958 + 0.880009i \(0.342463\pi\)
\(332\) 1.71780 0.0942764
\(333\) − 6.71780i − 0.368133i
\(334\) − 4.71780i − 0.258146i
\(335\) − 7.00000i − 0.382451i
\(336\) 4.35890 0.237797
\(337\) 30.0767i 1.63838i 0.573521 + 0.819191i \(0.305577\pi\)
−0.573521 + 0.819191i \(0.694423\pi\)
\(338\) −1.71780 −0.0934359
\(339\) 16.0767 0.873166
\(340\) 0 0
\(341\) −7.28220 −0.394353
\(342\) −2.71780 −0.146962
\(343\) 21.7945i 1.17679i
\(344\) 10.0000 0.539164
\(345\) − 8.35890i − 0.450028i
\(346\) − 4.71780i − 0.253630i
\(347\) − 16.7178i − 0.897458i −0.893668 0.448729i \(-0.851877\pi\)
0.893668 0.448729i \(-0.148123\pi\)
\(348\) 0 0
\(349\) 27.7945 1.48781 0.743903 0.668288i \(-0.232973\pi\)
0.743903 + 0.668288i \(0.232973\pi\)
\(350\) 4.35890i 0.232993i
\(351\) − 16.7945i − 0.896424i
\(352\) 5.35890i 0.285630i
\(353\) 10.0767 0.536328 0.268164 0.963373i \(-0.413583\pi\)
0.268164 + 0.963373i \(0.413583\pi\)
\(354\) 6.00000i 0.318896i
\(355\) 0.641101 0.0340261
\(356\) −9.00000 −0.476999
\(357\) 0 0
\(358\) −15.4356 −0.815797
\(359\) 6.64110 0.350504 0.175252 0.984524i \(-0.443926\pi\)
0.175252 + 0.984524i \(0.443926\pi\)
\(360\) 2.00000i 0.105409i
\(361\) −17.1534 −0.902810
\(362\) 17.0767i 0.897531i
\(363\) − 17.7178i − 0.929943i
\(364\) 14.6411i 0.767402i
\(365\) −7.35890 −0.385182
\(366\) −10.0000 −0.522708
\(367\) − 17.4356i − 0.910131i −0.890458 0.455065i \(-0.849616\pi\)
0.890458 0.455065i \(-0.150384\pi\)
\(368\) 8.35890i 0.435738i
\(369\) 15.4356i 0.803545i
\(370\) 3.35890 0.174621
\(371\) − 46.7178i − 2.42547i
\(372\) −1.35890 −0.0704556
\(373\) 22.7945 1.18025 0.590127 0.807310i \(-0.299078\pi\)
0.590127 + 0.807310i \(0.299078\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 10.7178 0.552728
\(377\) 0 0
\(378\) 21.7945 1.12099
\(379\) − 8.07670i − 0.414872i −0.978249 0.207436i \(-0.933488\pi\)
0.978249 0.207436i \(-0.0665119\pi\)
\(380\) − 1.35890i − 0.0697100i
\(381\) − 4.35890i − 0.223313i
\(382\) −17.3589 −0.888159
\(383\) 17.7945 0.909256 0.454628 0.890681i \(-0.349772\pi\)
0.454628 + 0.890681i \(0.349772\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 23.3589i 1.19048i
\(386\) 4.64110i 0.236226i
\(387\) 20.0000 1.01666
\(388\) 13.3589i 0.678195i
\(389\) 38.1534 1.93445 0.967227 0.253914i \(-0.0817179\pi\)
0.967227 + 0.253914i \(0.0817179\pi\)
\(390\) 3.35890 0.170084
\(391\) 0 0
\(392\) −12.0000 −0.606092
\(393\) −22.0767 −1.11362
\(394\) 10.0767i 0.507657i
\(395\) 13.3589 0.672159
\(396\) 10.7178i 0.538590i
\(397\) 6.79449i 0.341006i 0.985357 + 0.170503i \(0.0545392\pi\)
−0.985357 + 0.170503i \(0.945461\pi\)
\(398\) 7.35890i 0.368868i
\(399\) −5.92330 −0.296536
\(400\) −1.00000 −0.0500000
\(401\) − 6.43560i − 0.321378i −0.987005 0.160689i \(-0.948628\pi\)
0.987005 0.160689i \(-0.0513717\pi\)
\(402\) − 7.00000i − 0.349128i
\(403\) − 4.56440i − 0.227369i
\(404\) 7.07670 0.352079
\(405\) 1.00000i 0.0496904i
\(406\) 0 0
\(407\) 18.0000 0.892227
\(408\) 0 0
\(409\) 14.4356 0.713794 0.356897 0.934144i \(-0.383835\pi\)
0.356897 + 0.934144i \(0.383835\pi\)
\(410\) −7.71780 −0.381155
\(411\) − 6.00000i − 0.295958i
\(412\) 4.35890 0.214748
\(413\) − 26.1534i − 1.28692i
\(414\) 16.7178i 0.821635i
\(415\) 1.71780i 0.0843234i
\(416\) −3.35890 −0.164684
\(417\) 10.0000 0.489702
\(418\) − 7.28220i − 0.356184i
\(419\) − 27.4356i − 1.34032i −0.742218 0.670158i \(-0.766226\pi\)
0.742218 0.670158i \(-0.233774\pi\)
\(420\) 4.35890i 0.212692i
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) − 25.3589i − 1.23445i
\(423\) 21.4356 1.04223
\(424\) 10.7178 0.520502
\(425\) 0 0
\(426\) 0.641101 0.0310614
\(427\) 43.5890 2.10942
\(428\) − 16.7178i − 0.808085i
\(429\) 18.0000 0.869048
\(430\) 10.0000i 0.482243i
\(431\) 5.35890i 0.258129i 0.991636 + 0.129065i \(0.0411974\pi\)
−0.991636 + 0.129065i \(0.958803\pi\)
\(432\) 5.00000i 0.240563i
\(433\) −8.64110 −0.415265 −0.207632 0.978207i \(-0.566576\pi\)
−0.207632 + 0.978207i \(0.566576\pi\)
\(434\) 5.92330 0.284328
\(435\) 0 0
\(436\) 1.64110i 0.0785945i
\(437\) − 11.3589i − 0.543370i
\(438\) −7.35890 −0.351622
\(439\) − 30.1534i − 1.43914i −0.694418 0.719571i \(-0.744338\pi\)
0.694418 0.719571i \(-0.255662\pi\)
\(440\) −5.35890 −0.255475
\(441\) −24.0000 −1.14286
\(442\) 0 0
\(443\) −35.1534 −1.67019 −0.835094 0.550107i \(-0.814587\pi\)
−0.835094 + 0.550107i \(0.814587\pi\)
\(444\) 3.35890 0.159406
\(445\) − 9.00000i − 0.426641i
\(446\) −4.35890 −0.206400
\(447\) 2.35890i 0.111572i
\(448\) − 4.35890i − 0.205939i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −2.00000 −0.0942809
\(451\) −41.3589 −1.94751
\(452\) − 16.0767i − 0.756184i
\(453\) − 2.00000i − 0.0939682i
\(454\) − 9.00000i − 0.422391i
\(455\) −14.6411 −0.686385
\(456\) − 1.35890i − 0.0636363i
\(457\) 29.5123 1.38053 0.690263 0.723558i \(-0.257495\pi\)
0.690263 + 0.723558i \(0.257495\pi\)
\(458\) 7.64110 0.357045
\(459\) 0 0
\(460\) −8.35890 −0.389736
\(461\) 1.07670 0.0501468 0.0250734 0.999686i \(-0.492018\pi\)
0.0250734 + 0.999686i \(0.492018\pi\)
\(462\) 23.3589i 1.08675i
\(463\) 15.0767 0.700674 0.350337 0.936624i \(-0.386067\pi\)
0.350337 + 0.936624i \(0.386067\pi\)
\(464\) 0 0
\(465\) − 1.35890i − 0.0630174i
\(466\) 10.7178i 0.496492i
\(467\) 1.71780 0.0794902 0.0397451 0.999210i \(-0.487345\pi\)
0.0397451 + 0.999210i \(0.487345\pi\)
\(468\) −6.71780 −0.310530
\(469\) 30.5123i 1.40893i
\(470\) 10.7178i 0.494375i
\(471\) 0.717798i 0.0330744i
\(472\) 6.00000 0.276172
\(473\) 53.5890i 2.46402i
\(474\) 13.3589 0.613595
\(475\) 1.35890 0.0623506
\(476\) 0 0
\(477\) 21.4356 0.981469
\(478\) −12.0000 −0.548867
\(479\) − 32.1534i − 1.46913i −0.678540 0.734563i \(-0.737387\pi\)
0.678540 0.734563i \(-0.262613\pi\)
\(480\) −1.00000 −0.0456435
\(481\) 11.2822i 0.514424i
\(482\) − 29.7178i − 1.35361i
\(483\) 36.4356i 1.65788i
\(484\) −17.7178 −0.805354
\(485\) −13.3589 −0.606596
\(486\) 16.0000i 0.725775i
\(487\) − 29.6411i − 1.34317i −0.740929 0.671583i \(-0.765615\pi\)
0.740929 0.671583i \(-0.234385\pi\)
\(488\) 10.0000i 0.452679i
\(489\) 11.0000 0.497437
\(490\) − 12.0000i − 0.542105i
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) −7.71780 −0.347945
\(493\) 0 0
\(494\) 4.56440 0.205362
\(495\) −10.7178 −0.481729
\(496\) 1.35890i 0.0610164i
\(497\) −2.79449 −0.125350
\(498\) 1.71780i 0.0769764i
\(499\) − 18.7178i − 0.837924i −0.908004 0.418962i \(-0.862394\pi\)
0.908004 0.418962i \(-0.137606\pi\)
\(500\) − 1.00000i − 0.0447214i
\(501\) 4.71780 0.210776
\(502\) −17.3589 −0.774766
\(503\) 29.7945i 1.32847i 0.747523 + 0.664235i \(0.231243\pi\)
−0.747523 + 0.664235i \(0.768757\pi\)
\(504\) − 8.71780i − 0.388322i
\(505\) 7.07670i 0.314909i
\(506\) −44.7945 −1.99136
\(507\) − 1.71780i − 0.0762901i
\(508\) −4.35890 −0.193395
\(509\) 10.9233 0.484167 0.242083 0.970255i \(-0.422169\pi\)
0.242083 + 0.970255i \(0.422169\pi\)
\(510\) 0 0
\(511\) 32.0767 1.41899
\(512\) 1.00000 0.0441942
\(513\) − 6.79449i − 0.299984i
\(514\) 1.92330 0.0848333
\(515\) 4.35890i 0.192076i
\(516\) 10.0000i 0.440225i
\(517\) 57.4356i 2.52601i
\(518\) −14.6411 −0.643293
\(519\) 4.71780 0.207088
\(520\) − 3.35890i − 0.147297i
\(521\) 39.0000i 1.70862i 0.519763 + 0.854311i \(0.326020\pi\)
−0.519763 + 0.854311i \(0.673980\pi\)
\(522\) 0 0
\(523\) 3.71780 0.162568 0.0812840 0.996691i \(-0.474098\pi\)
0.0812840 + 0.996691i \(0.474098\pi\)
\(524\) 22.0767i 0.964425i
\(525\) −4.35890 −0.190238
\(526\) 2.35890 0.102853
\(527\) 0 0
\(528\) −5.35890 −0.233216
\(529\) −46.8712 −2.03788
\(530\) 10.7178i 0.465551i
\(531\) 12.0000 0.520756
\(532\) 5.92330i 0.256808i
\(533\) − 25.9233i − 1.12286i
\(534\) − 9.00000i − 0.389468i
\(535\) 16.7178 0.722773
\(536\) −7.00000 −0.302354
\(537\) − 15.4356i − 0.666095i
\(538\) 9.64110i 0.415657i
\(539\) − 64.3068i − 2.76989i
\(540\) −5.00000 −0.215166
\(541\) − 30.3589i − 1.30523i −0.757689 0.652616i \(-0.773672\pi\)
0.757689 0.652616i \(-0.226328\pi\)
\(542\) −30.7945 −1.32274
\(543\) −17.0767 −0.732831
\(544\) 0 0
\(545\) −1.64110 −0.0702970
\(546\) −14.6411 −0.626581
\(547\) − 22.4356i − 0.959277i −0.877466 0.479638i \(-0.840768\pi\)
0.877466 0.479638i \(-0.159232\pi\)
\(548\) −6.00000 −0.256307
\(549\) 20.0000i 0.853579i
\(550\) − 5.35890i − 0.228504i
\(551\) 0 0
\(552\) −8.35890 −0.355778
\(553\) −58.2301 −2.47620
\(554\) − 21.3589i − 0.907453i
\(555\) 3.35890i 0.142577i
\(556\) − 10.0000i − 0.424094i
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 2.71780i 0.115054i
\(559\) −33.5890 −1.42066
\(560\) 4.35890 0.184197
\(561\) 0 0
\(562\) −4.28220 −0.180634
\(563\) 7.28220 0.306908 0.153454 0.988156i \(-0.450960\pi\)
0.153454 + 0.988156i \(0.450960\pi\)
\(564\) 10.7178i 0.451301i
\(565\) 16.0767 0.676352
\(566\) 4.43560i 0.186442i
\(567\) − 4.35890i − 0.183057i
\(568\) − 0.641101i − 0.0269000i
\(569\) −39.8712 −1.67149 −0.835744 0.549120i \(-0.814963\pi\)
−0.835744 + 0.549120i \(0.814963\pi\)
\(570\) 1.35890 0.0569180
\(571\) − 9.92330i − 0.415277i −0.978206 0.207639i \(-0.933422\pi\)
0.978206 0.207639i \(-0.0665778\pi\)
\(572\) − 18.0000i − 0.752618i
\(573\) − 17.3589i − 0.725178i
\(574\) 33.6411 1.40415
\(575\) − 8.35890i − 0.348590i
\(576\) 2.00000 0.0833333
\(577\) −34.2301 −1.42502 −0.712509 0.701663i \(-0.752441\pi\)
−0.712509 + 0.701663i \(0.752441\pi\)
\(578\) 0 0
\(579\) −4.64110 −0.192878
\(580\) 0 0
\(581\) − 7.48771i − 0.310642i
\(582\) −13.3589 −0.553744
\(583\) 57.4356i 2.37874i
\(584\) 7.35890i 0.304513i
\(585\) − 6.71780i − 0.277747i
\(586\) 16.0767 0.664122
\(587\) 36.4356 1.50386 0.751929 0.659244i \(-0.229124\pi\)
0.751929 + 0.659244i \(0.229124\pi\)
\(588\) − 12.0000i − 0.494872i
\(589\) − 1.84661i − 0.0760881i
\(590\) 6.00000i 0.247016i
\(591\) −10.0767 −0.414500
\(592\) − 3.35890i − 0.138050i
\(593\) −20.7945 −0.853928 −0.426964 0.904269i \(-0.640417\pi\)
−0.426964 + 0.904269i \(0.640417\pi\)
\(594\) −26.7945 −1.09939
\(595\) 0 0
\(596\) 2.35890 0.0966243
\(597\) −7.35890 −0.301180
\(598\) − 28.0767i − 1.14814i
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) − 1.00000i − 0.0408248i
\(601\) 33.1534i 1.35236i 0.736739 + 0.676178i \(0.236365\pi\)
−0.736739 + 0.676178i \(0.763635\pi\)
\(602\) − 43.5890i − 1.77655i
\(603\) −14.0000 −0.570124
\(604\) −2.00000 −0.0813788
\(605\) − 17.7178i − 0.720331i
\(606\) 7.07670i 0.287471i
\(607\) − 38.7178i − 1.57151i −0.618540 0.785753i \(-0.712275\pi\)
0.618540 0.785753i \(-0.287725\pi\)
\(608\) −1.35890 −0.0551106
\(609\) 0 0
\(610\) −10.0000 −0.404888
\(611\) −36.0000 −1.45640
\(612\) 0 0
\(613\) −3.35890 −0.135665 −0.0678323 0.997697i \(-0.521608\pi\)
−0.0678323 + 0.997697i \(0.521608\pi\)
\(614\) 2.00000 0.0807134
\(615\) − 7.71780i − 0.311212i
\(616\) 23.3589 0.941157
\(617\) − 2.56440i − 0.103239i −0.998667 0.0516195i \(-0.983562\pi\)
0.998667 0.0516195i \(-0.0164383\pi\)
\(618\) 4.35890i 0.175341i
\(619\) − 16.7945i − 0.675028i −0.941321 0.337514i \(-0.890414\pi\)
0.941321 0.337514i \(-0.109586\pi\)
\(620\) −1.35890 −0.0545747
\(621\) −41.7945 −1.67716
\(622\) 4.71780i 0.189166i
\(623\) 39.2301i 1.57172i
\(624\) − 3.35890i − 0.134464i
\(625\) 1.00000 0.0400000
\(626\) − 19.3589i − 0.773737i
\(627\) 7.28220 0.290823
\(628\) 0.717798 0.0286433
\(629\) 0 0
\(630\) 8.71780 0.347325
\(631\) 13.4356 0.534863 0.267431 0.963577i \(-0.413825\pi\)
0.267431 + 0.963577i \(0.413825\pi\)
\(632\) − 13.3589i − 0.531388i
\(633\) 25.3589 1.00793
\(634\) − 4.07670i − 0.161906i
\(635\) − 4.35890i − 0.172978i
\(636\) 10.7178i 0.424988i
\(637\) 40.3068 1.59701
\(638\) 0 0
\(639\) − 1.28220i − 0.0507231i
\(640\) 1.00000i 0.0395285i
\(641\) 27.8712i 1.10085i 0.834886 + 0.550423i \(0.185534\pi\)
−0.834886 + 0.550423i \(0.814466\pi\)
\(642\) 16.7178 0.659799
\(643\) − 31.8712i − 1.25688i −0.777859 0.628439i \(-0.783694\pi\)
0.777859 0.628439i \(-0.216306\pi\)
\(644\) 36.4356 1.43576
\(645\) −10.0000 −0.393750
\(646\) 0 0
\(647\) −7.07670 −0.278214 −0.139107 0.990277i \(-0.544423\pi\)
−0.139107 + 0.990277i \(0.544423\pi\)
\(648\) 1.00000 0.0392837
\(649\) 32.1534i 1.26213i
\(650\) 3.35890 0.131747
\(651\) 5.92330i 0.232153i
\(652\) − 11.0000i − 0.430793i
\(653\) − 9.43560i − 0.369243i −0.982810 0.184622i \(-0.940894\pi\)
0.982810 0.184622i \(-0.0591060\pi\)
\(654\) −1.64110 −0.0641721
\(655\) −22.0767 −0.862608
\(656\) 7.71780i 0.301329i
\(657\) 14.7178i 0.574196i
\(658\) − 46.7178i − 1.82125i
\(659\) −20.1534 −0.785065 −0.392532 0.919738i \(-0.628401\pi\)
−0.392532 + 0.919738i \(0.628401\pi\)
\(660\) − 5.35890i − 0.208595i
\(661\) −35.6411 −1.38628 −0.693139 0.720804i \(-0.743773\pi\)
−0.693139 + 0.720804i \(0.743773\pi\)
\(662\) 17.2822 0.671692
\(663\) 0 0
\(664\) 1.71780 0.0666635
\(665\) −5.92330 −0.229696
\(666\) − 6.71780i − 0.260309i
\(667\) 0 0
\(668\) − 4.71780i − 0.182537i
\(669\) − 4.35890i − 0.168525i
\(670\) − 7.00000i − 0.270434i
\(671\) −53.5890 −2.06878
\(672\) 4.35890 0.168148
\(673\) − 18.7178i − 0.721518i −0.932659 0.360759i \(-0.882518\pi\)
0.932659 0.360759i \(-0.117482\pi\)
\(674\) 30.0767i 1.15851i
\(675\) − 5.00000i − 0.192450i
\(676\) −1.71780 −0.0660691
\(677\) 30.0000i 1.15299i 0.817099 + 0.576497i \(0.195581\pi\)
−0.817099 + 0.576497i \(0.804419\pi\)
\(678\) 16.0767 0.617422
\(679\) 58.2301 2.23467
\(680\) 0 0
\(681\) 9.00000 0.344881
\(682\) −7.28220 −0.278850
\(683\) 18.4356i 0.705418i 0.935733 + 0.352709i \(0.114740\pi\)
−0.935733 + 0.352709i \(0.885260\pi\)
\(684\) −2.71780 −0.103918
\(685\) − 6.00000i − 0.229248i
\(686\) 21.7945i 0.832118i
\(687\) 7.64110i 0.291526i
\(688\) 10.0000 0.381246
\(689\) −36.0000 −1.37149
\(690\) − 8.35890i − 0.318218i
\(691\) 0.564404i 0.0214709i 0.999942 + 0.0107355i \(0.00341727\pi\)
−0.999942 + 0.0107355i \(0.996583\pi\)
\(692\) − 4.71780i − 0.179344i
\(693\) 46.7178 1.77466
\(694\) − 16.7178i − 0.634599i
\(695\) 10.0000 0.379322
\(696\) 0 0
\(697\) 0 0
\(698\) 27.7945 1.05204
\(699\) −10.7178 −0.405384
\(700\) 4.35890i 0.164751i
\(701\) 41.7945 1.57856 0.789278 0.614036i \(-0.210455\pi\)
0.789278 + 0.614036i \(0.210455\pi\)
\(702\) − 16.7945i − 0.633867i
\(703\) 4.56440i 0.172150i
\(704\) 5.35890i 0.201971i
\(705\) −10.7178 −0.403656
\(706\) 10.0767 0.379241
\(707\) − 30.8466i − 1.16011i
\(708\) 6.00000i 0.225494i
\(709\) 45.0767i 1.69289i 0.532475 + 0.846445i \(0.321262\pi\)
−0.532475 + 0.846445i \(0.678738\pi\)
\(710\) 0.641101 0.0240601
\(711\) − 26.7178i − 1.00200i
\(712\) −9.00000 −0.337289
\(713\) −11.3589 −0.425394
\(714\) 0 0
\(715\) 18.0000 0.673162
\(716\) −15.4356 −0.576855
\(717\) − 12.0000i − 0.448148i
\(718\) 6.64110 0.247844
\(719\) 39.4356i 1.47070i 0.677688 + 0.735350i \(0.262982\pi\)
−0.677688 + 0.735350i \(0.737018\pi\)
\(720\) 2.00000i 0.0745356i
\(721\) − 19.0000i − 0.707597i
\(722\) −17.1534 −0.638383
\(723\) 29.7178 1.10522
\(724\) 17.0767i 0.634650i
\(725\) 0 0
\(726\) − 17.7178i − 0.657569i
\(727\) 41.4356 1.53676 0.768381 0.639993i \(-0.221063\pi\)
0.768381 + 0.639993i \(0.221063\pi\)
\(728\) 14.6411i 0.542635i
\(729\) −13.0000 −0.481481
\(730\) −7.35890 −0.272365
\(731\) 0 0
\(732\) −10.0000 −0.369611
\(733\) −41.4356 −1.53046 −0.765229 0.643758i \(-0.777374\pi\)
−0.765229 + 0.643758i \(0.777374\pi\)
\(734\) − 17.4356i − 0.643560i
\(735\) 12.0000 0.442627
\(736\) 8.35890i 0.308113i
\(737\) − 37.5123i − 1.38178i
\(738\) 15.4356i 0.568192i
\(739\) 20.7178 0.762117 0.381058 0.924551i \(-0.375560\pi\)
0.381058 + 0.924551i \(0.375560\pi\)
\(740\) 3.35890 0.123476
\(741\) 4.56440i 0.167678i
\(742\) − 46.7178i − 1.71506i
\(743\) − 21.6411i − 0.793935i −0.917833 0.396967i \(-0.870063\pi\)
0.917833 0.396967i \(-0.129937\pi\)
\(744\) −1.35890 −0.0498197
\(745\) 2.35890i 0.0864234i
\(746\) 22.7945 0.834566
\(747\) 3.43560 0.125702
\(748\) 0 0
\(749\) −72.8712 −2.66266
\(750\) 1.00000 0.0365148
\(751\) 10.5644i 0.385501i 0.981248 + 0.192750i \(0.0617407\pi\)
−0.981248 + 0.192750i \(0.938259\pi\)
\(752\) 10.7178 0.390838
\(753\) − 17.3589i − 0.632593i
\(754\) 0 0
\(755\) − 2.00000i − 0.0727875i
\(756\) 21.7945 0.792658
\(757\) 16.0000 0.581530 0.290765 0.956795i \(-0.406090\pi\)
0.290765 + 0.956795i \(0.406090\pi\)
\(758\) − 8.07670i − 0.293359i
\(759\) − 44.7945i − 1.62594i
\(760\) − 1.35890i − 0.0492924i
\(761\) −22.7178 −0.823520 −0.411760 0.911292i \(-0.635086\pi\)
−0.411760 + 0.911292i \(0.635086\pi\)
\(762\) − 4.35890i − 0.157906i
\(763\) 7.15339 0.258970
\(764\) −17.3589 −0.628023
\(765\) 0 0
\(766\) 17.7945 0.642941
\(767\) −20.1534 −0.727697
\(768\) 1.00000i 0.0360844i
\(769\) 12.2822 0.442908 0.221454 0.975171i \(-0.428920\pi\)
0.221454 + 0.975171i \(0.428920\pi\)
\(770\) 23.3589i 0.841796i
\(771\) 1.92330i 0.0692661i
\(772\) 4.64110i 0.167037i
\(773\) 4.71780 0.169687 0.0848437 0.996394i \(-0.472961\pi\)
0.0848437 + 0.996394i \(0.472961\pi\)
\(774\) 20.0000 0.718885
\(775\) − 1.35890i − 0.0488131i
\(776\) 13.3589i 0.479557i
\(777\) − 14.6411i − 0.525247i
\(778\) 38.1534 1.36787
\(779\) − 10.4877i − 0.375761i
\(780\) 3.35890 0.120268
\(781\) 3.43560 0.122935
\(782\) 0 0
\(783\) 0 0
\(784\) −12.0000 −0.428571
\(785\) 0.717798i 0.0256193i
\(786\) −22.0767 −0.787450
\(787\) 13.1534i 0.468868i 0.972132 + 0.234434i \(0.0753236\pi\)
−0.972132 + 0.234434i \(0.924676\pi\)
\(788\) 10.0767i 0.358967i
\(789\) 2.35890i 0.0839790i
\(790\) 13.3589 0.475288
\(791\) −70.0767 −2.49164
\(792\) 10.7178i 0.380840i
\(793\) − 33.5890i − 1.19278i
\(794\) 6.79449i 0.241128i
\(795\) −10.7178 −0.380121
\(796\) 7.35890i 0.260829i
\(797\) 1.92330 0.0681269 0.0340634 0.999420i \(-0.489155\pi\)
0.0340634 + 0.999420i \(0.489155\pi\)
\(798\) −5.92330 −0.209683
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) −18.0000 −0.635999
\(802\) − 6.43560i − 0.227249i
\(803\) −39.4356 −1.39165
\(804\) − 7.00000i − 0.246871i
\(805\) 36.4356i 1.28419i
\(806\) − 4.56440i − 0.160774i
\(807\) −9.64110 −0.339383
\(808\) 7.07670 0.248957
\(809\) − 29.1534i − 1.02498i −0.858694 0.512489i \(-0.828723\pi\)
0.858694 0.512489i \(-0.171277\pi\)
\(810\) 1.00000i 0.0351364i
\(811\) 0.0766968i 0.00269319i 0.999999 + 0.00134659i \(0.000428635\pi\)
−0.999999 + 0.00134659i \(0.999571\pi\)
\(812\) 0 0
\(813\) − 30.7945i − 1.08001i
\(814\) 18.0000 0.630900
\(815\) 11.0000 0.385313
\(816\) 0 0
\(817\) −13.5890 −0.475419
\(818\) 14.4356 0.504729
\(819\) 29.2822i 1.02320i
\(820\) −7.71780 −0.269517
\(821\) − 19.0767i − 0.665781i −0.942965 0.332891i \(-0.891976\pi\)
0.942965 0.332891i \(-0.108024\pi\)
\(822\) − 6.00000i − 0.209274i
\(823\) 19.6411i 0.684646i 0.939582 + 0.342323i \(0.111214\pi\)
−0.939582 + 0.342323i \(0.888786\pi\)
\(824\) 4.35890 0.151849
\(825\) 5.35890 0.186573
\(826\) − 26.1534i − 0.909993i
\(827\) − 27.0000i − 0.938882i −0.882964 0.469441i \(-0.844455\pi\)
0.882964 0.469441i \(-0.155545\pi\)
\(828\) 16.7178i 0.580984i
\(829\) 28.3589 0.984945 0.492473 0.870328i \(-0.336093\pi\)
0.492473 + 0.870328i \(0.336093\pi\)
\(830\) 1.71780i 0.0596256i
\(831\) 21.3589 0.740932
\(832\) −3.35890 −0.116449
\(833\) 0 0
\(834\) 10.0000 0.346272
\(835\) 4.71780 0.163266
\(836\) − 7.28220i − 0.251860i
\(837\) −6.79449 −0.234852
\(838\) − 27.4356i − 0.947747i
\(839\) − 7.92330i − 0.273543i −0.990603 0.136771i \(-0.956327\pi\)
0.990603 0.136771i \(-0.0436726\pi\)
\(840\) 4.35890i 0.150396i
\(841\) 29.0000 1.00000
\(842\) 8.00000 0.275698
\(843\) − 4.28220i − 0.147487i
\(844\) − 25.3589i − 0.872889i
\(845\) − 1.71780i − 0.0590940i
\(846\) 21.4356 0.736971
\(847\) 77.2301i 2.65366i
\(848\) 10.7178 0.368051
\(849\) −4.43560 −0.152229
\(850\) 0 0
\(851\) 28.0767 0.962457
\(852\) 0.641101 0.0219638
\(853\) 44.6411i 1.52848i 0.644931 + 0.764241i \(0.276886\pi\)
−0.644931 + 0.764241i \(0.723114\pi\)
\(854\) 43.5890 1.49158
\(855\) − 2.71780i − 0.0929467i
\(856\) − 16.7178i − 0.571403i
\(857\) 16.7178i 0.571069i 0.958368 + 0.285535i \(0.0921711\pi\)
−0.958368 + 0.285535i \(0.907829\pi\)
\(858\) 18.0000 0.614510
\(859\) 20.7178 0.706882 0.353441 0.935457i \(-0.385011\pi\)
0.353441 + 0.935457i \(0.385011\pi\)
\(860\) 10.0000i 0.340997i
\(861\) 33.6411i 1.14649i
\(862\) 5.35890i 0.182525i
\(863\) −30.8712 −1.05087 −0.525434 0.850834i \(-0.676097\pi\)
−0.525434 + 0.850834i \(0.676097\pi\)
\(864\) 5.00000i 0.170103i
\(865\) 4.71780 0.160410
\(866\) −8.64110 −0.293637
\(867\) 0 0
\(868\) 5.92330 0.201050
\(869\) 71.5890 2.42849
\(870\) 0 0
\(871\) 23.5123 0.796684
\(872\) 1.64110i 0.0555747i
\(873\) 26.7178i 0.904260i
\(874\) − 11.3589i − 0.384220i
\(875\) −4.35890 −0.147358
\(876\) −7.35890 −0.248634
\(877\) − 42.7178i − 1.44248i −0.692687 0.721239i \(-0.743573\pi\)
0.692687 0.721239i \(-0.256427\pi\)
\(878\) − 30.1534i − 1.01763i
\(879\) 16.0767i 0.542254i
\(880\) −5.35890 −0.180648
\(881\) 15.4356i 0.520038i 0.965603 + 0.260019i \(0.0837289\pi\)
−0.965603 + 0.260019i \(0.916271\pi\)
\(882\) −24.0000 −0.808122
\(883\) −8.71780 −0.293377 −0.146689 0.989183i \(-0.546862\pi\)
−0.146689 + 0.989183i \(0.546862\pi\)
\(884\) 0 0
\(885\) −6.00000 −0.201688
\(886\) −35.1534 −1.18100
\(887\) 19.0767i 0.640533i 0.947328 + 0.320266i \(0.103772\pi\)
−0.947328 + 0.320266i \(0.896228\pi\)
\(888\) 3.35890 0.112717
\(889\) 19.0000i 0.637240i
\(890\) − 9.00000i − 0.301681i
\(891\) 5.35890i 0.179530i
\(892\) −4.35890 −0.145947
\(893\) −14.5644 −0.487379
\(894\) 2.35890i 0.0788934i
\(895\) − 15.4356i − 0.515955i
\(896\) − 4.35890i − 0.145621i
\(897\) 28.0767 0.937454
\(898\) 0 0
\(899\) 0 0
\(900\) −2.00000 −0.0666667
\(901\) 0 0
\(902\) −41.3589 −1.37710
\(903\) 43.5890 1.45055
\(904\) − 16.0767i − 0.534703i
\(905\) −17.0767 −0.567649
\(906\) − 2.00000i − 0.0664455i
\(907\) 30.1534i 1.00123i 0.865671 + 0.500614i \(0.166892\pi\)
−0.865671 + 0.500614i \(0.833108\pi\)
\(908\) − 9.00000i − 0.298675i
\(909\) 14.1534 0.469438
\(910\) −14.6411 −0.485348
\(911\) − 7.28220i − 0.241270i −0.992697 0.120635i \(-0.961507\pi\)
0.992697 0.120635i \(-0.0384931\pi\)
\(912\) − 1.35890i − 0.0449976i
\(913\) 9.20551i 0.304658i
\(914\) 29.5123 0.976180
\(915\) − 10.0000i − 0.330590i
\(916\) 7.64110 0.252469
\(917\) 96.2301 3.17780
\(918\) 0 0
\(919\) 5.43560 0.179304 0.0896519 0.995973i \(-0.471425\pi\)
0.0896519 + 0.995973i \(0.471425\pi\)
\(920\) −8.35890 −0.275585
\(921\) 2.00000i 0.0659022i
\(922\) 1.07670 0.0354591
\(923\) 2.15339i 0.0708798i
\(924\) 23.3589i 0.768451i
\(925\) 3.35890i 0.110440i
\(926\) 15.0767 0.495451
\(927\) 8.71780 0.286330
\(928\) 0 0
\(929\) 34.2822i 1.12476i 0.826878 + 0.562381i \(0.190115\pi\)
−0.826878 + 0.562381i \(0.809885\pi\)
\(930\) − 1.35890i − 0.0445601i
\(931\) 16.3068 0.534433
\(932\) 10.7178i 0.351073i
\(933\) −4.71780 −0.154454
\(934\) 1.71780 0.0562081
\(935\) 0 0
\(936\) −6.71780 −0.219578
\(937\) −37.3589 −1.22046 −0.610231 0.792224i \(-0.708923\pi\)
−0.610231 + 0.792224i \(0.708923\pi\)
\(938\) 30.5123i 0.996262i
\(939\) 19.3589 0.631754
\(940\) 10.7178i 0.349576i
\(941\) − 39.2301i − 1.27886i −0.768847 0.639432i \(-0.779169\pi\)
0.768847 0.639432i \(-0.220831\pi\)
\(942\) 0.717798i 0.0233871i
\(943\) −64.5123 −2.10081
\(944\) 6.00000 0.195283
\(945\) 21.7945i 0.708975i
\(946\) 53.5890i 1.74233i
\(947\) 3.00000i 0.0974869i 0.998811 + 0.0487435i \(0.0155217\pi\)
−0.998811 + 0.0487435i \(0.984478\pi\)
\(948\) 13.3589 0.433877
\(949\) − 24.7178i − 0.802374i
\(950\) 1.35890 0.0440885
\(951\) 4.07670 0.132196
\(952\) 0 0
\(953\) 30.2301 0.979249 0.489624 0.871933i \(-0.337134\pi\)
0.489624 + 0.871933i \(0.337134\pi\)
\(954\) 21.4356 0.694003
\(955\) − 17.3589i − 0.561721i
\(956\) −12.0000 −0.388108
\(957\) 0 0
\(958\) − 32.1534i − 1.03883i
\(959\) 26.1534i 0.844537i
\(960\) −1.00000 −0.0322749
\(961\) 29.1534 0.940432
\(962\) 11.2822i 0.363753i
\(963\) − 33.4356i − 1.07745i
\(964\) − 29.7178i − 0.957146i
\(965\) −4.64110 −0.149402
\(966\) 36.4356i 1.17230i
\(967\) 3.79449 0.122023 0.0610114 0.998137i \(-0.480567\pi\)
0.0610114 + 0.998137i \(0.480567\pi\)
\(968\) −17.7178 −0.569472
\(969\) 0 0
\(970\) −13.3589 −0.428928
\(971\) 16.7178 0.536500 0.268250 0.963349i \(-0.413555\pi\)
0.268250 + 0.963349i \(0.413555\pi\)
\(972\) 16.0000i 0.513200i
\(973\) −43.5890 −1.39740
\(974\) − 29.6411i − 0.949762i
\(975\) 3.35890i 0.107571i
\(976\) 10.0000i 0.320092i
\(977\) −56.1534 −1.79651 −0.898253 0.439478i \(-0.855163\pi\)
−0.898253 + 0.439478i \(0.855163\pi\)
\(978\) 11.0000 0.351741
\(979\) − 48.2301i − 1.54144i
\(980\) − 12.0000i − 0.383326i
\(981\) 3.28220i 0.104793i
\(982\) 12.0000 0.382935
\(983\) − 43.0767i − 1.37393i −0.726689 0.686967i \(-0.758942\pi\)
0.726689 0.686967i \(-0.241058\pi\)
\(984\) −7.71780 −0.246034
\(985\) −10.0767 −0.321070
\(986\) 0 0
\(987\) 46.7178 1.48704
\(988\) 4.56440 0.145213
\(989\) 83.5890i 2.65798i
\(990\) −10.7178 −0.340634
\(991\) − 19.4356i − 0.617392i −0.951161 0.308696i \(-0.900107\pi\)
0.951161 0.308696i \(-0.0998926\pi\)
\(992\) 1.35890i 0.0431451i
\(993\) 17.2822i 0.548434i
\(994\) −2.79449 −0.0886360
\(995\) −7.35890 −0.233293
\(996\) 1.71780i 0.0544305i
\(997\) − 1.35890i − 0.0430368i −0.999768 0.0215184i \(-0.993150\pi\)
0.999768 0.0215184i \(-0.00685004\pi\)
\(998\) − 18.7178i − 0.592502i
\(999\) 16.7945 0.531354
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2890.2.b.k.2311.3 4
17.4 even 4 2890.2.a.s.1.2 yes 2
17.13 even 4 2890.2.a.r.1.1 2
17.16 even 2 inner 2890.2.b.k.2311.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2890.2.a.r.1.1 2 17.13 even 4
2890.2.a.s.1.2 yes 2 17.4 even 4
2890.2.b.k.2311.2 4 17.16 even 2 inner
2890.2.b.k.2311.3 4 1.1 even 1 trivial