Properties

Label 289.2.d.f.155.3
Level $289$
Weight $2$
Character 289.155
Analytic conductor $2.308$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,2,Mod(110,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.110"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 289.d (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.30767661842\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 155.3
Character \(\chi\) \(=\) 289.155
Dual form 289.2.d.f.179.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.245576 + 0.245576i) q^{2} +(-0.812446 + 0.336526i) q^{3} -1.87939i q^{4} +(-0.898271 - 2.16862i) q^{5} +(-0.282160 - 0.116874i) q^{6} +(-0.719210 + 1.73633i) q^{7} +(0.952682 - 0.952682i) q^{8} +(-1.57450 + 1.57450i) q^{9} +(0.311966 - 0.753153i) q^{10} +(-4.67869 - 1.93798i) q^{11} +(0.632462 + 1.52690i) q^{12} -4.71688i q^{13} +(-0.603020 + 0.249779i) q^{14} +(1.45959 + 1.45959i) q^{15} -3.29086 q^{16} -0.773318 q^{18} +(0.245576 + 0.245576i) q^{19} +(-4.07567 + 1.68820i) q^{20} -1.65270i q^{21} +(-0.673052 - 1.62489i) q^{22} +(1.63833 + 0.678620i) q^{23} +(-0.453400 + 1.09461i) q^{24} +(-0.360483 + 0.360483i) q^{25} +(1.15835 - 1.15835i) q^{26} +(1.75892 - 4.24640i) q^{27} +(3.26322 + 1.35167i) q^{28} +(-0.852114 - 2.05719i) q^{29} +0.716881i q^{30} +(1.79562 - 0.743769i) q^{31} +(-2.71352 - 2.71352i) q^{32} +4.45336 q^{33} +4.41147 q^{35} +(2.95910 + 2.95910i) q^{36} +(5.70056 - 2.36125i) q^{37} +0.120615i q^{38} +(1.58735 + 3.83221i) q^{39} +(-2.92177 - 1.21024i) q^{40} +(1.97857 - 4.77668i) q^{41} +(0.405864 - 0.405864i) q^{42} +(-1.04344 + 1.04344i) q^{43} +(-3.64221 + 8.79306i) q^{44} +(4.82882 + 2.00016i) q^{45} +(0.235682 + 0.568987i) q^{46} +8.53209i q^{47} +(2.67365 - 1.10746i) q^{48} +(2.45218 + 2.45218i) q^{49} -0.177052 q^{50} -8.86484 q^{52} +(-7.39164 - 7.39164i) q^{53} +(1.47476 - 0.610865i) q^{54} +11.8871i q^{55} +(0.968988 + 2.33935i) q^{56} +(-0.282160 - 0.116874i) q^{57} +(0.295936 - 0.714453i) q^{58} +(-3.54101 + 3.54101i) q^{59} +(2.74314 - 2.74314i) q^{60} +(0.0707170 - 0.170726i) q^{61} +(0.623612 + 0.258308i) q^{62} +(-1.60145 - 3.86624i) q^{63} +5.24897i q^{64} +(-10.2291 + 4.23704i) q^{65} +(1.09364 + 1.09364i) q^{66} +2.44831 q^{67} -1.55943 q^{69} +(1.08335 + 1.08335i) q^{70} +(9.16606 - 3.79671i) q^{71} +3.00000i q^{72} +(4.17189 + 10.0718i) q^{73} +(1.97978 + 0.820054i) q^{74} +(0.171561 - 0.414185i) q^{75} +(0.461531 - 0.461531i) q^{76} +(6.72992 - 6.72992i) q^{77} +(-0.551282 + 1.33091i) q^{78} +(4.09626 + 1.69673i) q^{79} +(2.95608 + 7.13662i) q^{80} -2.63816i q^{81} +(1.65892 - 0.687149i) q^{82} +(-9.60373 - 9.60373i) q^{83} -3.10607 q^{84} -0.512489 q^{86} +(1.38459 + 1.38459i) q^{87} +(-6.30358 + 2.61103i) q^{88} -6.32770i q^{89} +(0.694650 + 1.67703i) q^{90} +(8.19004 + 3.39243i) q^{91} +(1.27539 - 3.07906i) q^{92} +(-1.20854 + 1.20854i) q^{93} +(-2.09527 + 2.09527i) q^{94} +(0.311966 - 0.753153i) q^{95} +(3.11776 + 1.29142i) q^{96} +(-3.54989 - 8.57019i) q^{97} +1.20439i q^{98} +(10.4180 - 4.31526i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 48 q^{16} - 72 q^{18} + 24 q^{35} - 168 q^{50} - 24 q^{52} + 72 q^{67} + 168 q^{69} + 24 q^{84} + 48 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.245576 + 0.245576i 0.173648 + 0.173648i 0.788580 0.614932i \(-0.210817\pi\)
−0.614932 + 0.788580i \(0.710817\pi\)
\(3\) −0.812446 + 0.336526i −0.469066 + 0.194293i −0.604680 0.796468i \(-0.706699\pi\)
0.135614 + 0.990762i \(0.456699\pi\)
\(4\) 1.87939i 0.939693i
\(5\) −0.898271 2.16862i −0.401719 0.969836i −0.987249 0.159185i \(-0.949113\pi\)
0.585530 0.810651i \(-0.300887\pi\)
\(6\) −0.282160 0.116874i −0.115191 0.0477137i
\(7\) −0.719210 + 1.73633i −0.271836 + 0.656269i −0.999562 0.0295984i \(-0.990577\pi\)
0.727726 + 0.685868i \(0.240577\pi\)
\(8\) 0.952682 0.952682i 0.336824 0.336824i
\(9\) −1.57450 + 1.57450i −0.524834 + 0.524834i
\(10\) 0.311966 0.753153i 0.0986524 0.238168i
\(11\) −4.67869 1.93798i −1.41068 0.584322i −0.458178 0.888860i \(-0.651498\pi\)
−0.952500 + 0.304538i \(0.901498\pi\)
\(12\) 0.632462 + 1.52690i 0.182576 + 0.440778i
\(13\) 4.71688i 1.30823i −0.756396 0.654114i \(-0.773042\pi\)
0.756396 0.654114i \(-0.226958\pi\)
\(14\) −0.603020 + 0.249779i −0.161164 + 0.0667562i
\(15\) 1.45959 + 1.45959i 0.376866 + 0.376866i
\(16\) −3.29086 −0.822715
\(17\) 0 0
\(18\) −0.773318 −0.182273
\(19\) 0.245576 + 0.245576i 0.0563389 + 0.0563389i 0.734715 0.678376i \(-0.237316\pi\)
−0.678376 + 0.734715i \(0.737316\pi\)
\(20\) −4.07567 + 1.68820i −0.911348 + 0.377493i
\(21\) 1.65270i 0.360650i
\(22\) −0.673052 1.62489i −0.143495 0.346428i
\(23\) 1.63833 + 0.678620i 0.341616 + 0.141502i 0.546894 0.837202i \(-0.315810\pi\)
−0.205278 + 0.978704i \(0.565810\pi\)
\(24\) −0.453400 + 1.09461i −0.0925500 + 0.223435i
\(25\) −0.360483 + 0.360483i −0.0720966 + 0.0720966i
\(26\) 1.15835 1.15835i 0.227171 0.227171i
\(27\) 1.75892 4.24640i 0.338503 0.817219i
\(28\) 3.26322 + 1.35167i 0.616691 + 0.255442i
\(29\) −0.852114 2.05719i −0.158234 0.382010i 0.824803 0.565421i \(-0.191286\pi\)
−0.983036 + 0.183411i \(0.941286\pi\)
\(30\) 0.716881i 0.130884i
\(31\) 1.79562 0.743769i 0.322503 0.133585i −0.215558 0.976491i \(-0.569157\pi\)
0.538061 + 0.842906i \(0.319157\pi\)
\(32\) −2.71352 2.71352i −0.479687 0.479687i
\(33\) 4.45336 0.775231
\(34\) 0 0
\(35\) 4.41147 0.745675
\(36\) 2.95910 + 2.95910i 0.493183 + 0.493183i
\(37\) 5.70056 2.36125i 0.937167 0.388187i 0.138774 0.990324i \(-0.455684\pi\)
0.798393 + 0.602137i \(0.205684\pi\)
\(38\) 0.120615i 0.0195663i
\(39\) 1.58735 + 3.83221i 0.254180 + 0.613645i
\(40\) −2.92177 1.21024i −0.461973 0.191355i
\(41\) 1.97857 4.77668i 0.309000 0.745993i −0.690738 0.723105i \(-0.742714\pi\)
0.999738 0.0228873i \(-0.00728588\pi\)
\(42\) 0.405864 0.405864i 0.0626261 0.0626261i
\(43\) −1.04344 + 1.04344i −0.159124 + 0.159124i −0.782178 0.623055i \(-0.785891\pi\)
0.623055 + 0.782178i \(0.285891\pi\)
\(44\) −3.64221 + 8.79306i −0.549083 + 1.32560i
\(45\) 4.82882 + 2.00016i 0.719839 + 0.298167i
\(46\) 0.235682 + 0.568987i 0.0347494 + 0.0838925i
\(47\) 8.53209i 1.24453i 0.782805 + 0.622267i \(0.213788\pi\)
−0.782805 + 0.622267i \(0.786212\pi\)
\(48\) 2.67365 1.10746i 0.385908 0.159848i
\(49\) 2.45218 + 2.45218i 0.350312 + 0.350312i
\(50\) −0.177052 −0.0250389
\(51\) 0 0
\(52\) −8.86484 −1.22933
\(53\) −7.39164 7.39164i −1.01532 1.01532i −0.999881 0.0154396i \(-0.995085\pi\)
−0.0154396 0.999881i \(-0.504915\pi\)
\(54\) 1.47476 0.610865i 0.200689 0.0831282i
\(55\) 11.8871i 1.60286i
\(56\) 0.968988 + 2.33935i 0.129487 + 0.312608i
\(57\) −0.282160 0.116874i −0.0373729 0.0154804i
\(58\) 0.295936 0.714453i 0.0388583 0.0938123i
\(59\) −3.54101 + 3.54101i −0.461000 + 0.461000i −0.898983 0.437983i \(-0.855693\pi\)
0.437983 + 0.898983i \(0.355693\pi\)
\(60\) 2.74314 2.74314i 0.354138 0.354138i
\(61\) 0.0707170 0.170726i 0.00905439 0.0218592i −0.919288 0.393586i \(-0.871234\pi\)
0.928342 + 0.371727i \(0.121234\pi\)
\(62\) 0.623612 + 0.258308i 0.0791988 + 0.0328052i
\(63\) −1.60145 3.86624i −0.201764 0.487101i
\(64\) 5.24897i 0.656121i
\(65\) −10.2291 + 4.23704i −1.26877 + 0.525540i
\(66\) 1.09364 + 1.09364i 0.134617 + 0.134617i
\(67\) 2.44831 0.299109 0.149554 0.988754i \(-0.452216\pi\)
0.149554 + 0.988754i \(0.452216\pi\)
\(68\) 0 0
\(69\) −1.55943 −0.187733
\(70\) 1.08335 + 1.08335i 0.129485 + 0.129485i
\(71\) 9.16606 3.79671i 1.08781 0.450586i 0.234568 0.972100i \(-0.424632\pi\)
0.853243 + 0.521513i \(0.174632\pi\)
\(72\) 3.00000i 0.353553i
\(73\) 4.17189 + 10.0718i 0.488283 + 1.17882i 0.955584 + 0.294721i \(0.0952265\pi\)
−0.467301 + 0.884098i \(0.654773\pi\)
\(74\) 1.97978 + 0.820054i 0.230145 + 0.0953293i
\(75\) 0.171561 0.414185i 0.0198102 0.0478260i
\(76\) 0.461531 0.461531i 0.0529413 0.0529413i
\(77\) 6.72992 6.72992i 0.766945 0.766945i
\(78\) −0.551282 + 1.33091i −0.0624204 + 0.150696i
\(79\) 4.09626 + 1.69673i 0.460866 + 0.190897i 0.601022 0.799233i \(-0.294760\pi\)
−0.140156 + 0.990129i \(0.544760\pi\)
\(80\) 2.95608 + 7.13662i 0.330500 + 0.797898i
\(81\) 2.63816i 0.293128i
\(82\) 1.65892 0.687149i 0.183198 0.0758829i
\(83\) −9.60373 9.60373i −1.05415 1.05415i −0.998448 0.0556982i \(-0.982262\pi\)
−0.0556982 0.998448i \(-0.517738\pi\)
\(84\) −3.10607 −0.338900
\(85\) 0 0
\(86\) −0.512489 −0.0552631
\(87\) 1.38459 + 1.38459i 0.148444 + 0.148444i
\(88\) −6.30358 + 2.61103i −0.671964 + 0.278337i
\(89\) 6.32770i 0.670734i −0.942087 0.335367i \(-0.891140\pi\)
0.942087 0.335367i \(-0.108860\pi\)
\(90\) 0.694650 + 1.67703i 0.0732225 + 0.176775i
\(91\) 8.19004 + 3.39243i 0.858550 + 0.355623i
\(92\) 1.27539 3.07906i 0.132968 0.321014i
\(93\) −1.20854 + 1.20854i −0.125320 + 0.125320i
\(94\) −2.09527 + 2.09527i −0.216111 + 0.216111i
\(95\) 0.311966 0.753153i 0.0320071 0.0772719i
\(96\) 3.11776 + 1.29142i 0.318205 + 0.131805i
\(97\) −3.54989 8.57019i −0.360437 0.870171i −0.995236 0.0974943i \(-0.968917\pi\)
0.634799 0.772677i \(-0.281083\pi\)
\(98\) 1.20439i 0.121662i
\(99\) 10.4180 4.31526i 1.04704 0.433700i
\(100\) 0.677487 + 0.677487i 0.0677487 + 0.0677487i
\(101\) 7.04963 0.701464 0.350732 0.936476i \(-0.385933\pi\)
0.350732 + 0.936476i \(0.385933\pi\)
\(102\) 0 0
\(103\) 5.29860 0.522087 0.261043 0.965327i \(-0.415933\pi\)
0.261043 + 0.965327i \(0.415933\pi\)
\(104\) −4.49369 4.49369i −0.440643 0.440643i
\(105\) −3.58408 + 1.48458i −0.349771 + 0.144880i
\(106\) 3.63041i 0.352617i
\(107\) −5.96843 14.4091i −0.576990 1.39298i −0.895502 0.445058i \(-0.853183\pi\)
0.318511 0.947919i \(-0.396817\pi\)
\(108\) −7.98062 3.30568i −0.767935 0.318089i
\(109\) 0.716247 1.72917i 0.0686041 0.165625i −0.885859 0.463955i \(-0.846430\pi\)
0.954463 + 0.298331i \(0.0964298\pi\)
\(110\) −2.91919 + 2.91919i −0.278334 + 0.278334i
\(111\) −3.83678 + 3.83678i −0.364171 + 0.364171i
\(112\) 2.36682 5.71400i 0.223643 0.539923i
\(113\) −11.1917 4.63575i −1.05283 0.436095i −0.211927 0.977286i \(-0.567974\pi\)
−0.840900 + 0.541191i \(0.817974\pi\)
\(114\) −0.0405900 0.0979930i −0.00380160 0.00917788i
\(115\) 4.16250i 0.388155i
\(116\) −3.86624 + 1.60145i −0.358972 + 0.148691i
\(117\) 7.42674 + 7.42674i 0.686602 + 0.686602i
\(118\) −1.73917 −0.160104
\(119\) 0 0
\(120\) 2.78106 0.253875
\(121\) 10.3562 + 10.3562i 0.941474 + 0.941474i
\(122\) 0.0592925 0.0245598i 0.00536809 0.00222354i
\(123\) 4.54664i 0.409956i
\(124\) −1.39783 3.37466i −0.125529 0.303053i
\(125\) −9.73753 4.03342i −0.870951 0.360760i
\(126\) 0.556178 1.34273i 0.0495483 0.119620i
\(127\) 8.15989 8.15989i 0.724073 0.724073i −0.245359 0.969432i \(-0.578906\pi\)
0.969432 + 0.245359i \(0.0789058\pi\)
\(128\) −6.71606 + 6.71606i −0.593621 + 0.593621i
\(129\) 0.496595 1.19889i 0.0437228 0.105556i
\(130\) −3.55254 1.47151i −0.311578 0.129060i
\(131\) 7.41435 + 17.8998i 0.647795 + 1.56392i 0.815929 + 0.578151i \(0.196226\pi\)
−0.168134 + 0.985764i \(0.553774\pi\)
\(132\) 8.36959i 0.728479i
\(133\) −0.603020 + 0.249779i −0.0522884 + 0.0216586i
\(134\) 0.601245 + 0.601245i 0.0519397 + 0.0519397i
\(135\) −10.7888 −0.928552
\(136\) 0 0
\(137\) −0.448311 −0.0383018 −0.0191509 0.999817i \(-0.506096\pi\)
−0.0191509 + 0.999817i \(0.506096\pi\)
\(138\) −0.382958 0.382958i −0.0325995 0.0325995i
\(139\) −10.7910 + 4.46976i −0.915277 + 0.379120i −0.790074 0.613011i \(-0.789958\pi\)
−0.125203 + 0.992131i \(0.539958\pi\)
\(140\) 8.29086i 0.700706i
\(141\) −2.87127 6.93186i −0.241805 0.583768i
\(142\) 3.18334 + 1.31858i 0.267140 + 0.110653i
\(143\) −9.14121 + 22.0688i −0.764426 + 1.84549i
\(144\) 5.18146 5.18146i 0.431789 0.431789i
\(145\) −3.69582 + 3.69582i −0.306921 + 0.306921i
\(146\) −1.44888 + 3.49791i −0.119910 + 0.289489i
\(147\) −2.81749 1.16704i −0.232383 0.0962561i
\(148\) −4.43770 10.7136i −0.364777 0.880649i
\(149\) 8.46791i 0.693718i −0.937917 0.346859i \(-0.887248\pi\)
0.937917 0.346859i \(-0.112752\pi\)
\(150\) 0.143845 0.0595825i 0.0117449 0.00486489i
\(151\) 9.73439 + 9.73439i 0.792174 + 0.792174i 0.981847 0.189674i \(-0.0607430\pi\)
−0.189674 + 0.981847i \(0.560743\pi\)
\(152\) 0.467911 0.0379526
\(153\) 0 0
\(154\) 3.30541 0.266357
\(155\) −3.22590 3.22590i −0.259111 0.259111i
\(156\) 7.20220 2.98325i 0.576638 0.238851i
\(157\) 17.9786i 1.43485i −0.696635 0.717426i \(-0.745320\pi\)
0.696635 0.717426i \(-0.254680\pi\)
\(158\) 0.589267 + 1.42262i 0.0468796 + 0.113177i
\(159\) 8.49279 + 3.51783i 0.673522 + 0.278982i
\(160\) −3.44711 + 8.32207i −0.272518 + 0.657917i
\(161\) −2.35661 + 2.35661i −0.185727 + 0.185727i
\(162\) 0.647867 0.647867i 0.0509012 0.0509012i
\(163\) 2.76849 6.68373i 0.216845 0.523511i −0.777601 0.628758i \(-0.783564\pi\)
0.994446 + 0.105248i \(0.0335635\pi\)
\(164\) −8.97723 3.71849i −0.701004 0.290365i
\(165\) −4.00033 9.65765i −0.311425 0.751847i
\(166\) 4.71688i 0.366101i
\(167\) −4.71739 + 1.95401i −0.365043 + 0.151206i −0.557662 0.830068i \(-0.688302\pi\)
0.192620 + 0.981273i \(0.438302\pi\)
\(168\) −1.57450 1.57450i −0.121475 0.121475i
\(169\) −9.24897 −0.711459
\(170\) 0 0
\(171\) −0.773318 −0.0591371
\(172\) 1.96103 + 1.96103i 0.149527 + 0.149527i
\(173\) −11.8493 + 4.90816i −0.900889 + 0.373160i −0.784562 0.620051i \(-0.787112\pi\)
−0.116327 + 0.993211i \(0.537112\pi\)
\(174\) 0.680045i 0.0515541i
\(175\) −0.366653 0.885179i −0.0277164 0.0669132i
\(176\) 15.3969 + 6.37761i 1.16059 + 0.480730i
\(177\) 1.68524 4.06852i 0.126670 0.305809i
\(178\) 1.55393 1.55393i 0.116472 0.116472i
\(179\) 3.02024 3.02024i 0.225743 0.225743i −0.585169 0.810912i \(-0.698972\pi\)
0.810912 + 0.585169i \(0.198972\pi\)
\(180\) 3.75908 9.07522i 0.280185 0.676427i
\(181\) −0.427626 0.177128i −0.0317852 0.0131658i 0.366734 0.930326i \(-0.380476\pi\)
−0.398519 + 0.917160i \(0.630476\pi\)
\(182\) 1.17818 + 2.84437i 0.0873323 + 0.210839i
\(183\) 0.162504i 0.0120126i
\(184\) 2.20732 0.914302i 0.162726 0.0674032i
\(185\) −10.2413 10.2413i −0.752956 0.752956i
\(186\) −0.593578 −0.0435233
\(187\) 0 0
\(188\) 16.0351 1.16948
\(189\) 6.10810 + 6.10810i 0.444299 + 0.444299i
\(190\) 0.261567 0.108345i 0.0189761 0.00786016i
\(191\) 1.43107i 0.103549i −0.998659 0.0517745i \(-0.983512\pi\)
0.998659 0.0517745i \(-0.0164877\pi\)
\(192\) −1.76642 4.26451i −0.127480 0.307764i
\(193\) −22.8426 9.46170i −1.64424 0.681068i −0.647528 0.762042i \(-0.724197\pi\)
−0.996716 + 0.0809733i \(0.974197\pi\)
\(194\) 1.23286 2.97640i 0.0885145 0.213693i
\(195\) 6.88473 6.88473i 0.493026 0.493026i
\(196\) 4.60860 4.60860i 0.329186 0.329186i
\(197\) −4.50092 + 10.8662i −0.320677 + 0.774183i 0.678538 + 0.734565i \(0.262614\pi\)
−0.999215 + 0.0396173i \(0.987386\pi\)
\(198\) 3.61812 + 1.49867i 0.257128 + 0.106506i
\(199\) 7.85275 + 18.9582i 0.556667 + 1.34391i 0.912390 + 0.409321i \(0.134234\pi\)
−0.355723 + 0.934591i \(0.615766\pi\)
\(200\) 0.686852i 0.0485678i
\(201\) −1.98912 + 0.823921i −0.140302 + 0.0581149i
\(202\) 1.73122 + 1.73122i 0.121808 + 0.121808i
\(203\) 4.18479 0.293715
\(204\) 0 0
\(205\) −12.1361 −0.847622
\(206\) 1.30121 + 1.30121i 0.0906594 + 0.0906594i
\(207\) −3.64804 + 1.51107i −0.253557 + 0.105027i
\(208\) 15.5226i 1.07630i
\(209\) −0.673052 1.62489i −0.0465560 0.112396i
\(210\) −1.24474 0.515588i −0.0858952 0.0355790i
\(211\) 8.31105 20.0646i 0.572156 1.38131i −0.327559 0.944831i \(-0.606226\pi\)
0.899716 0.436477i \(-0.143774\pi\)
\(212\) −13.8917 + 13.8917i −0.954089 + 0.954089i
\(213\) −6.16924 + 6.16924i −0.422709 + 0.422709i
\(214\) 2.07281 5.00422i 0.141695 0.342081i
\(215\) 3.20013 + 1.32554i 0.218247 + 0.0904008i
\(216\) −2.36978 5.72115i −0.161243 0.389275i
\(217\) 3.65270i 0.247962i
\(218\) 0.600536 0.248750i 0.0406734 0.0168475i
\(219\) −6.77887 6.77887i −0.458074 0.458074i
\(220\) 22.3405 1.50620
\(221\) 0 0
\(222\) −1.88444 −0.126475
\(223\) −14.1077 14.1077i −0.944722 0.944722i 0.0538286 0.998550i \(-0.482858\pi\)
−0.998550 + 0.0538286i \(0.982858\pi\)
\(224\) 6.66314 2.75996i 0.445200 0.184408i
\(225\) 1.13516i 0.0756775i
\(226\) −1.60998 3.88684i −0.107094 0.258549i
\(227\) 3.90028 + 1.61555i 0.258870 + 0.107228i 0.508344 0.861154i \(-0.330258\pi\)
−0.249474 + 0.968382i \(0.580258\pi\)
\(228\) −0.219652 + 0.530286i −0.0145468 + 0.0351191i
\(229\) −10.2571 + 10.2571i −0.677806 + 0.677806i −0.959503 0.281697i \(-0.909103\pi\)
0.281697 + 0.959503i \(0.409103\pi\)
\(230\) 1.02221 1.02221i 0.0674025 0.0674025i
\(231\) −3.20290 + 7.73249i −0.210735 + 0.508760i
\(232\) −2.77164 1.14805i −0.181967 0.0753732i
\(233\) −1.96218 4.73712i −0.128547 0.310339i 0.846482 0.532417i \(-0.178716\pi\)
−0.975029 + 0.222078i \(0.928716\pi\)
\(234\) 3.64765i 0.238454i
\(235\) 18.5029 7.66413i 1.20699 0.499953i
\(236\) 6.65492 + 6.65492i 0.433198 + 0.433198i
\(237\) −3.89899 −0.253266
\(238\) 0 0
\(239\) −15.8503 −1.02527 −0.512635 0.858607i \(-0.671331\pi\)
−0.512635 + 0.858607i \(0.671331\pi\)
\(240\) −4.80332 4.80332i −0.310053 0.310053i
\(241\) 16.7375 6.93288i 1.07815 0.446586i 0.228293 0.973592i \(-0.426686\pi\)
0.849861 + 0.527006i \(0.176686\pi\)
\(242\) 5.08647i 0.326970i
\(243\) 6.16455 + 14.8825i 0.395456 + 0.954716i
\(244\) −0.320860 0.132905i −0.0205410 0.00850834i
\(245\) 3.11513 7.52058i 0.199018 0.480472i
\(246\) −1.11654 + 1.11654i −0.0711882 + 0.0711882i
\(247\) 1.15835 1.15835i 0.0737041 0.0737041i
\(248\) 1.00208 2.41923i 0.0636320 0.153621i
\(249\) 11.0344 + 4.57060i 0.699278 + 0.289650i
\(250\) −1.40079 3.38181i −0.0885938 0.213884i
\(251\) 29.6810i 1.87345i 0.350070 + 0.936723i \(0.386158\pi\)
−0.350070 + 0.936723i \(0.613842\pi\)
\(252\) −7.26616 + 3.00974i −0.457725 + 0.189596i
\(253\) −6.35010 6.35010i −0.399227 0.399227i
\(254\) 4.00774 0.251468
\(255\) 0 0
\(256\) 7.19934 0.449959
\(257\) 5.23042 + 5.23042i 0.326264 + 0.326264i 0.851164 0.524900i \(-0.175897\pi\)
−0.524900 + 0.851164i \(0.675897\pi\)
\(258\) 0.416369 0.172466i 0.0259220 0.0107373i
\(259\) 11.5963i 0.720557i
\(260\) 7.96303 + 19.2245i 0.493846 + 1.19225i
\(261\) 4.58070 + 1.89739i 0.283538 + 0.117445i
\(262\) −2.57498 + 6.21655i −0.159083 + 0.384059i
\(263\) 16.3984 16.3984i 1.01117 1.01117i 0.0112290 0.999937i \(-0.496426\pi\)
0.999937 0.0112290i \(-0.00357439\pi\)
\(264\) 4.24264 4.24264i 0.261116 0.261116i
\(265\) −9.38996 + 22.6694i −0.576821 + 1.39257i
\(266\) −0.209426 0.0867473i −0.0128408 0.00531882i
\(267\) 2.12944 + 5.14091i 0.130319 + 0.314619i
\(268\) 4.60132i 0.281070i
\(269\) −14.6959 + 6.08724i −0.896025 + 0.371146i −0.782690 0.622411i \(-0.786153\pi\)
−0.113334 + 0.993557i \(0.536153\pi\)
\(270\) −2.64947 2.64947i −0.161241 0.161241i
\(271\) −17.0000 −1.03268 −0.516338 0.856385i \(-0.672705\pi\)
−0.516338 + 0.856385i \(0.672705\pi\)
\(272\) 0 0
\(273\) −7.79561 −0.471812
\(274\) −0.110094 0.110094i −0.00665103 0.00665103i
\(275\) 2.38520 0.987981i 0.143833 0.0595775i
\(276\) 2.93077i 0.176412i
\(277\) 6.43127 + 15.5265i 0.386417 + 0.932894i 0.990693 + 0.136118i \(0.0434628\pi\)
−0.604275 + 0.796776i \(0.706537\pi\)
\(278\) −3.74766 1.55233i −0.224770 0.0931026i
\(279\) −1.65614 + 3.99827i −0.0991504 + 0.239370i
\(280\) 4.20273 4.20273i 0.251161 0.251161i
\(281\) 20.0259 20.0259i 1.19464 1.19464i 0.218897 0.975748i \(-0.429754\pi\)
0.975748 0.218897i \(-0.0702457\pi\)
\(282\) 0.997182 2.40741i 0.0593813 0.143359i
\(283\) 29.7807 + 12.3356i 1.77028 + 0.733274i 0.994794 + 0.101910i \(0.0324954\pi\)
0.775487 + 0.631364i \(0.217505\pi\)
\(284\) −7.13548 17.2266i −0.423413 1.02221i
\(285\) 0.716881i 0.0424644i
\(286\) −7.66442 + 3.17471i −0.453207 + 0.187724i
\(287\) 6.87087 + 6.87087i 0.405575 + 0.405575i
\(288\) 8.54488 0.503512
\(289\) 0 0
\(290\) −1.81521 −0.106593
\(291\) 5.76819 + 5.76819i 0.338137 + 0.338137i
\(292\) 18.9289 7.84059i 1.10773 0.458836i
\(293\) 13.9709i 0.816189i 0.912940 + 0.408094i \(0.133807\pi\)
−0.912940 + 0.408094i \(0.866193\pi\)
\(294\) −0.405310 0.978504i −0.0236381 0.0570675i
\(295\) 10.8599 + 4.49831i 0.632287 + 0.261902i
\(296\) 3.18130 7.68035i 0.184910 0.446411i
\(297\) −16.4588 + 16.4588i −0.955039 + 0.955039i
\(298\) 2.07951 2.07951i 0.120463 0.120463i
\(299\) 3.20097 7.72782i 0.185117 0.446911i
\(300\) −0.778413 0.322429i −0.0449417 0.0186155i
\(301\) −1.06130 2.56221i −0.0611725 0.147683i
\(302\) 4.78106i 0.275119i
\(303\) −5.72744 + 2.37238i −0.329033 + 0.136290i
\(304\) −0.808155 0.808155i −0.0463509 0.0463509i
\(305\) −0.433763 −0.0248372
\(306\) 0 0
\(307\) 9.04963 0.516490 0.258245 0.966080i \(-0.416856\pi\)
0.258245 + 0.966080i \(0.416856\pi\)
\(308\) −12.6481 12.6481i −0.720693 0.720693i
\(309\) −4.30483 + 1.78312i −0.244893 + 0.101438i
\(310\) 1.58441i 0.0899883i
\(311\) −0.898271 2.16862i −0.0509363 0.122971i 0.896363 0.443321i \(-0.146200\pi\)
−0.947299 + 0.320349i \(0.896200\pi\)
\(312\) 5.16312 + 2.13864i 0.292304 + 0.121076i
\(313\) −5.78937 + 13.9768i −0.327235 + 0.790014i 0.671561 + 0.740949i \(0.265624\pi\)
−0.998796 + 0.0490649i \(0.984376\pi\)
\(314\) 4.41512 4.41512i 0.249159 0.249159i
\(315\) −6.94587 + 6.94587i −0.391356 + 0.391356i
\(316\) 3.18880 7.69846i 0.179384 0.433072i
\(317\) 9.55088 + 3.95611i 0.536431 + 0.222197i 0.634417 0.772991i \(-0.281240\pi\)
−0.0979863 + 0.995188i \(0.531240\pi\)
\(318\) 1.22173 + 2.94952i 0.0685112 + 0.165401i
\(319\) 11.2763i 0.631352i
\(320\) 11.3830 4.71500i 0.636330 0.263577i
\(321\) 9.69806 + 9.69806i 0.541293 + 0.541293i
\(322\) −1.15745 −0.0645022
\(323\) 0 0
\(324\) −4.95811 −0.275451
\(325\) 1.70036 + 1.70036i 0.0943188 + 0.0943188i
\(326\) 2.32124 0.961488i 0.128561 0.0532519i
\(327\) 1.64590i 0.0910183i
\(328\) −2.66572 6.43561i −0.147190 0.355347i
\(329\) −14.8145 6.13636i −0.816749 0.338308i
\(330\) 1.38930 3.35407i 0.0764784 0.184635i
\(331\) −12.9094 + 12.9094i −0.709567 + 0.709567i −0.966444 0.256877i \(-0.917307\pi\)
0.256877 + 0.966444i \(0.417307\pi\)
\(332\) −18.0491 + 18.0491i −0.990573 + 0.990573i
\(333\) −5.25775 + 12.6933i −0.288123 + 0.695591i
\(334\) −1.63833 0.678620i −0.0896456 0.0371324i
\(335\) −2.19925 5.30945i −0.120158 0.290086i
\(336\) 5.43882i 0.296712i
\(337\) 15.2396 6.31246i 0.830155 0.343862i 0.0731911 0.997318i \(-0.476682\pi\)
0.756964 + 0.653456i \(0.226682\pi\)
\(338\) −2.27132 2.27132i −0.123544 0.123544i
\(339\) 10.6527 0.578575
\(340\) 0 0
\(341\) −9.84255 −0.533004
\(342\) −0.189908 0.189908i −0.0102691 0.0102691i
\(343\) −18.1757 + 7.52862i −0.981396 + 0.406507i
\(344\) 1.98814i 0.107193i
\(345\) 1.40079 + 3.38181i 0.0754161 + 0.182071i
\(346\) −4.11523 1.70459i −0.221236 0.0916391i
\(347\) 7.87265 19.0063i 0.422626 1.02031i −0.558944 0.829205i \(-0.688793\pi\)
0.981570 0.191104i \(-0.0612067\pi\)
\(348\) 2.60218 2.60218i 0.139492 0.139492i
\(349\) 4.54264 4.54264i 0.243162 0.243162i −0.574995 0.818157i \(-0.694996\pi\)
0.818157 + 0.574995i \(0.194996\pi\)
\(350\) 0.127337 0.307419i 0.00680647 0.0164323i
\(351\) −20.0297 8.29659i −1.06911 0.442839i
\(352\) 7.43698 + 17.9545i 0.396392 + 0.956976i
\(353\) 27.1685i 1.44603i −0.690831 0.723016i \(-0.742755\pi\)
0.690831 0.723016i \(-0.257245\pi\)
\(354\) 1.41298 0.585276i 0.0750991 0.0311071i
\(355\) −16.4672 16.4672i −0.873989 0.873989i
\(356\) −11.8922 −0.630284
\(357\) 0 0
\(358\) 1.48339 0.0783997
\(359\) 11.9465 + 11.9465i 0.630511 + 0.630511i 0.948196 0.317685i \(-0.102906\pi\)
−0.317685 + 0.948196i \(0.602906\pi\)
\(360\) 6.50586 2.69481i 0.342889 0.142029i
\(361\) 18.8794i 0.993652i
\(362\) −0.0615160 0.148513i −0.00323321 0.00780566i
\(363\) −11.8990 4.92873i −0.624536 0.258691i
\(364\) 6.37568 15.3922i 0.334176 0.806773i
\(365\) 18.0945 18.0945i 0.947108 0.947108i
\(366\) −0.0399070 + 0.0399070i −0.00208597 + 0.00208597i
\(367\) 0.569246 1.37428i 0.0297144 0.0717369i −0.908326 0.418263i \(-0.862639\pi\)
0.938040 + 0.346526i \(0.112639\pi\)
\(368\) −5.39152 2.23324i −0.281053 0.116416i
\(369\) 4.40564 + 10.6362i 0.229348 + 0.553696i
\(370\) 5.03003i 0.261499i
\(371\) 18.1504 7.51816i 0.942324 0.390323i
\(372\) 2.27132 + 2.27132i 0.117763 + 0.117763i
\(373\) 24.0496 1.24524 0.622621 0.782523i \(-0.286068\pi\)
0.622621 + 0.782523i \(0.286068\pi\)
\(374\) 0 0
\(375\) 9.26857 0.478627
\(376\) 8.12837 + 8.12837i 0.419189 + 0.419189i
\(377\) −9.70350 + 4.01932i −0.499756 + 0.207006i
\(378\) 3.00000i 0.154303i
\(379\) −7.72928 18.6601i −0.397027 0.958507i −0.988367 0.152085i \(-0.951401\pi\)
0.591341 0.806422i \(-0.298599\pi\)
\(380\) −1.41547 0.586305i −0.0726119 0.0300768i
\(381\) −3.88345 + 9.37549i −0.198955 + 0.480321i
\(382\) 0.351437 0.351437i 0.0179811 0.0179811i
\(383\) −6.02828 + 6.02828i −0.308031 + 0.308031i −0.844145 0.536114i \(-0.819892\pi\)
0.536114 + 0.844145i \(0.319892\pi\)
\(384\) 3.19631 7.71656i 0.163111 0.393784i
\(385\) −20.6399 8.54934i −1.05191 0.435714i
\(386\) −3.28602 7.93314i −0.167254 0.403786i
\(387\) 3.28581i 0.167027i
\(388\) −16.1067 + 6.67161i −0.817694 + 0.338700i
\(389\) 9.13315 + 9.13315i 0.463069 + 0.463069i 0.899660 0.436591i \(-0.143814\pi\)
−0.436591 + 0.899660i \(0.643814\pi\)
\(390\) 3.38144 0.171226
\(391\) 0 0
\(392\) 4.67230 0.235987
\(393\) −12.0475 12.0475i −0.607717 0.607717i
\(394\) −3.77378 + 1.56315i −0.190120 + 0.0787504i
\(395\) 10.4074i 0.523651i
\(396\) −8.11003 19.5793i −0.407544 0.983899i
\(397\) 22.3809 + 9.27048i 1.12327 + 0.465272i 0.865487 0.500932i \(-0.167009\pi\)
0.257779 + 0.966204i \(0.417009\pi\)
\(398\) −2.72723 + 6.58412i −0.136704 + 0.330032i
\(399\) 0.405864 0.405864i 0.0203186 0.0203186i
\(400\) 1.18630 1.18630i 0.0593150 0.0593150i
\(401\) 9.77264 23.5932i 0.488022 1.17819i −0.467691 0.883892i \(-0.654914\pi\)
0.955714 0.294298i \(-0.0950859\pi\)
\(402\) −0.690814 0.286145i −0.0344547 0.0142716i
\(403\) −3.50827 8.46972i −0.174759 0.421907i
\(404\) 13.2490i 0.659161i
\(405\) −5.72115 + 2.36978i −0.284286 + 0.117755i
\(406\) 1.02768 + 1.02768i 0.0510030 + 0.0510030i
\(407\) −31.2472 −1.54887
\(408\) 0 0
\(409\) 10.3523 0.511891 0.255945 0.966691i \(-0.417613\pi\)
0.255945 + 0.966691i \(0.417613\pi\)
\(410\) −2.98033 2.98033i −0.147188 0.147188i
\(411\) 0.364228 0.150868i 0.0179661 0.00744178i
\(412\) 9.95811i 0.490601i
\(413\) −3.60162 8.69507i −0.177224 0.427856i
\(414\) −1.26695 0.524789i −0.0622673 0.0257920i
\(415\) −12.2001 + 29.4536i −0.598878 + 1.44582i
\(416\) −12.7994 + 12.7994i −0.627540 + 0.627540i
\(417\) 7.26288 7.26288i 0.355665 0.355665i
\(418\) 0.233749 0.564319i 0.0114330 0.0276017i
\(419\) −1.21319 0.502520i −0.0592682 0.0245497i 0.352852 0.935679i \(-0.385212\pi\)
−0.412121 + 0.911129i \(0.635212\pi\)
\(420\) 2.79009 + 6.73588i 0.136143 + 0.328677i
\(421\) 8.01548i 0.390651i −0.980739 0.195325i \(-0.937424\pi\)
0.980739 0.195325i \(-0.0625763\pi\)
\(422\) 6.96838 2.88640i 0.339215 0.140508i
\(423\) −13.4338 13.4338i −0.653173 0.653173i
\(424\) −14.0838 −0.683969
\(425\) 0 0
\(426\) −3.03003 −0.146805
\(427\) 0.245576 + 0.245576i 0.0118842 + 0.0118842i
\(428\) −27.0802 + 11.2170i −1.30897 + 0.542193i
\(429\) 21.0060i 1.01418i
\(430\) 0.460354 + 1.11139i 0.0222002 + 0.0535961i
\(431\) 13.6060 + 5.63577i 0.655376 + 0.271466i 0.685491 0.728081i \(-0.259587\pi\)
−0.0301153 + 0.999546i \(0.509587\pi\)
\(432\) −5.78834 + 13.9743i −0.278492 + 0.672339i
\(433\) 5.82743 5.82743i 0.280048 0.280048i −0.553080 0.833128i \(-0.686548\pi\)
0.833128 + 0.553080i \(0.186548\pi\)
\(434\) −0.897015 + 0.897015i −0.0430581 + 0.0430581i
\(435\) 1.75892 4.24640i 0.0843335 0.203599i
\(436\) −3.24978 1.34610i −0.155636 0.0644667i
\(437\) 0.235682 + 0.568987i 0.0112742 + 0.0272183i
\(438\) 3.32945i 0.159087i
\(439\) −36.9149 + 15.2906i −1.76185 + 0.729782i −0.765595 + 0.643323i \(0.777555\pi\)
−0.996255 + 0.0864590i \(0.972445\pi\)
\(440\) 11.3247 + 11.3247i 0.539882 + 0.539882i
\(441\) −7.72193 −0.367711
\(442\) 0 0
\(443\) 13.9463 0.662606 0.331303 0.943524i \(-0.392512\pi\)
0.331303 + 0.943524i \(0.392512\pi\)
\(444\) 7.21078 + 7.21078i 0.342209 + 0.342209i
\(445\) −13.7224 + 5.68399i −0.650502 + 0.269447i
\(446\) 6.92902i 0.328098i
\(447\) 2.84967 + 6.87972i 0.134785 + 0.325400i
\(448\) −9.11392 3.77511i −0.430592 0.178357i
\(449\) −3.91552 + 9.45289i −0.184785 + 0.446109i −0.988941 0.148308i \(-0.952617\pi\)
0.804157 + 0.594417i \(0.202617\pi\)
\(450\) 0.278768 0.278768i 0.0131413 0.0131413i
\(451\) −18.5142 + 18.5142i −0.871800 + 0.871800i
\(452\) −8.71237 + 21.0335i −0.409795 + 0.989333i
\(453\) −11.1845 4.63279i −0.525496 0.217668i
\(454\) 0.561074 + 1.35455i 0.0263325 + 0.0635723i
\(455\) 20.8084i 0.975513i
\(456\) −0.380153 + 0.157464i −0.0178023 + 0.00737394i
\(457\) 8.32309 + 8.32309i 0.389338 + 0.389338i 0.874451 0.485113i \(-0.161222\pi\)
−0.485113 + 0.874451i \(0.661222\pi\)
\(458\) −5.03777 −0.235400
\(459\) 0 0
\(460\) −7.82295 −0.364747
\(461\) 13.7888 + 13.7888i 0.642208 + 0.642208i 0.951098 0.308890i \(-0.0999574\pi\)
−0.308890 + 0.951098i \(0.599957\pi\)
\(462\) −2.68547 + 1.11236i −0.124939 + 0.0517515i
\(463\) 1.43107i 0.0665077i −0.999447 0.0332538i \(-0.989413\pi\)
0.999447 0.0332538i \(-0.0105870\pi\)
\(464\) 2.80419 + 6.76991i 0.130181 + 0.314285i
\(465\) 3.70647 + 1.53527i 0.171884 + 0.0711965i
\(466\) 0.681458 1.64518i 0.0315679 0.0762117i
\(467\) 7.55865 7.55865i 0.349772 0.349772i −0.510252 0.860025i \(-0.670448\pi\)
0.860025 + 0.510252i \(0.170448\pi\)
\(468\) 13.9577 13.9577i 0.645195 0.645195i
\(469\) −1.76085 + 4.25106i −0.0813084 + 0.196296i
\(470\) 6.42597 + 2.66172i 0.296408 + 0.122776i
\(471\) 6.05028 + 14.6067i 0.278782 + 0.673040i
\(472\) 6.74691i 0.310552i
\(473\) 6.90412 2.85978i 0.317452 0.131493i
\(474\) −0.957496 0.957496i −0.0439792 0.0439792i
\(475\) −0.177052 −0.00812369
\(476\) 0 0
\(477\) 23.2763 1.06575
\(478\) −3.89244 3.89244i −0.178036 0.178036i
\(479\) 35.9089 14.8740i 1.64072 0.679608i 0.644350 0.764731i \(-0.277128\pi\)
0.996370 + 0.0851226i \(0.0271282\pi\)
\(480\) 7.92127i 0.361555i
\(481\) −11.1377 26.8889i −0.507837 1.22603i
\(482\) 5.81286 + 2.40776i 0.264768 + 0.109671i
\(483\) 1.12156 2.70768i 0.0510326 0.123204i
\(484\) 19.4633 19.4633i 0.884696 0.884696i
\(485\) −15.3967 + 15.3967i −0.699129 + 0.699129i
\(486\) −2.14093 + 5.16866i −0.0971144 + 0.234455i
\(487\) −34.1962 14.1645i −1.54958 0.641857i −0.566339 0.824172i \(-0.691641\pi\)
−0.983240 + 0.182316i \(0.941641\pi\)
\(488\) −0.0952768 0.230019i −0.00431298 0.0104125i
\(489\) 6.36184i 0.287693i
\(490\) 2.61187 1.08187i 0.117992 0.0488740i
\(491\) 17.9729 + 17.9729i 0.811104 + 0.811104i 0.984799 0.173696i \(-0.0555709\pi\)
−0.173696 + 0.984799i \(0.555571\pi\)
\(492\) 8.54488 0.385233
\(493\) 0 0
\(494\) 0.568926 0.0255972
\(495\) −18.7163 18.7163i −0.841235 0.841235i
\(496\) −5.90913 + 2.44764i −0.265328 + 0.109902i
\(497\) 18.6459i 0.836383i
\(498\) 1.58735 + 3.83221i 0.0711310 + 0.171726i
\(499\) −20.1626 8.35164i −0.902604 0.373871i −0.117383 0.993087i \(-0.537451\pi\)
−0.785221 + 0.619216i \(0.787451\pi\)
\(500\) −7.58035 + 18.3006i −0.339003 + 0.818427i
\(501\) 3.17505 3.17505i 0.141851 0.141851i
\(502\) −7.28892 + 7.28892i −0.325321 + 0.325321i
\(503\) 12.7958 30.8918i 0.570537 1.37740i −0.330562 0.943784i \(-0.607238\pi\)
0.901099 0.433614i \(-0.142762\pi\)
\(504\) −5.20898 2.15763i −0.232026 0.0961084i
\(505\) −6.33248 15.2880i −0.281792 0.680305i
\(506\) 3.11886i 0.138650i
\(507\) 7.51429 3.11252i 0.333721 0.138232i
\(508\) −15.3356 15.3356i −0.680406 0.680406i
\(509\) 19.1530 0.848942 0.424471 0.905441i \(-0.360460\pi\)
0.424471 + 0.905441i \(0.360460\pi\)
\(510\) 0 0
\(511\) −20.4884 −0.906355
\(512\) 15.2001 + 15.2001i 0.671756 + 0.671756i
\(513\) 1.47476 0.610865i 0.0651122 0.0269703i
\(514\) 2.56893i 0.113310i
\(515\) −4.75958 11.4906i −0.209732 0.506338i
\(516\) −2.25317 0.933294i −0.0991903 0.0410860i
\(517\) 16.5350 39.9190i 0.727208 1.75564i
\(518\) −2.84776 + 2.84776i −0.125123 + 0.125123i
\(519\) 7.97523 7.97523i 0.350074 0.350074i
\(520\) −5.70855 + 13.7817i −0.250336 + 0.604366i
\(521\) 32.8282 + 13.5979i 1.43823 + 0.595735i 0.959369 0.282155i \(-0.0910493\pi\)
0.478862 + 0.877890i \(0.341049\pi\)
\(522\) 0.658956 + 1.59086i 0.0288417 + 0.0696300i
\(523\) 11.8307i 0.517320i 0.965968 + 0.258660i \(0.0832809\pi\)
−0.965968 + 0.258660i \(0.916719\pi\)
\(524\) 33.6407 13.9344i 1.46960 0.608728i
\(525\) 0.595772 + 0.595772i 0.0260016 + 0.0260016i
\(526\) 8.05407 0.351174
\(527\) 0 0
\(528\) −14.6554 −0.637794
\(529\) −14.0398 14.0398i −0.610428 0.610428i
\(530\) −7.87299 + 3.26110i −0.341981 + 0.141653i
\(531\) 11.1506i 0.483897i
\(532\) 0.469431 + 1.13331i 0.0203524 + 0.0491350i
\(533\) −22.5310 9.33267i −0.975928 0.404243i
\(534\) −0.739545 + 1.78542i −0.0320032 + 0.0772627i
\(535\) −25.8865 + 25.8865i −1.11917 + 1.11917i
\(536\) 2.33246 2.33246i 0.100747 0.100747i
\(537\) −1.43739 + 3.47017i −0.0620280 + 0.149749i
\(538\) −5.10383 2.11408i −0.220042 0.0911443i
\(539\) −6.72073 16.2253i −0.289482 0.698872i
\(540\) 20.2763i 0.872554i
\(541\) −5.13538 + 2.12714i −0.220787 + 0.0914531i −0.490335 0.871534i \(-0.663126\pi\)
0.269548 + 0.962987i \(0.413126\pi\)
\(542\) −4.17479 4.17479i −0.179322 0.179322i
\(543\) 0.407031 0.0174674
\(544\) 0 0
\(545\) −4.39330 −0.188188
\(546\) −1.91441 1.91441i −0.0819292 0.0819292i
\(547\) 4.64217 1.92285i 0.198485 0.0822152i −0.281227 0.959641i \(-0.590741\pi\)
0.479712 + 0.877426i \(0.340741\pi\)
\(548\) 0.842549i 0.0359919i
\(549\) 0.157464 + 0.380153i 0.00672041 + 0.0162245i
\(550\) 0.828370 + 0.343122i 0.0353218 + 0.0146308i
\(551\) 0.295936 0.714453i 0.0126073 0.0304367i
\(552\) −1.48564 + 1.48564i −0.0632331 + 0.0632331i
\(553\) −5.89214 + 5.89214i −0.250559 + 0.250559i
\(554\) −2.23356 + 5.39228i −0.0948947 + 0.229096i
\(555\) 11.7670 + 4.87404i 0.499480 + 0.206891i
\(556\) 8.40040 + 20.2804i 0.356256 + 0.860079i
\(557\) 3.86659i 0.163833i −0.996639 0.0819164i \(-0.973896\pi\)
0.996639 0.0819164i \(-0.0261040\pi\)
\(558\) −1.38858 + 0.575171i −0.0587835 + 0.0243489i
\(559\) 4.92180 + 4.92180i 0.208170 + 0.208170i
\(560\) −14.5175 −0.613478
\(561\) 0 0
\(562\) 9.83574 0.414896
\(563\) 20.3938 + 20.3938i 0.859494 + 0.859494i 0.991278 0.131784i \(-0.0420706\pi\)
−0.131784 + 0.991278i \(0.542071\pi\)
\(564\) −13.0276 + 5.39622i −0.548563 + 0.227222i
\(565\) 28.4347i 1.19626i
\(566\) 4.28410 + 10.3427i 0.180074 + 0.434738i
\(567\) 4.58070 + 1.89739i 0.192371 + 0.0796828i
\(568\) 5.11529 12.3494i 0.214633 0.518169i
\(569\) −1.52846 + 1.52846i −0.0640764 + 0.0640764i −0.738419 0.674342i \(-0.764427\pi\)
0.674342 + 0.738419i \(0.264427\pi\)
\(570\) −0.176049 + 0.176049i −0.00737386 + 0.00737386i
\(571\) −2.18866 + 5.28389i −0.0915926 + 0.221124i −0.963036 0.269371i \(-0.913184\pi\)
0.871444 + 0.490495i \(0.163184\pi\)
\(572\) 41.4758 + 17.1799i 1.73419 + 0.718326i
\(573\) 0.481594 + 1.16267i 0.0201189 + 0.0485713i
\(574\) 3.37464i 0.140855i
\(575\) −0.835222 + 0.345960i −0.0348312 + 0.0144275i
\(576\) −8.26451 8.26451i −0.344355 0.344355i
\(577\) 10.8007 0.449637 0.224819 0.974401i \(-0.427821\pi\)
0.224819 + 0.974401i \(0.427821\pi\)
\(578\) 0 0
\(579\) 21.7425 0.903586
\(580\) 6.94587 + 6.94587i 0.288412 + 0.288412i
\(581\) 23.5823 9.76810i 0.978358 0.405249i
\(582\) 2.83305i 0.117434i
\(583\) 20.2584 + 48.9080i 0.839016 + 2.02556i
\(584\) 13.5697 + 5.62077i 0.561520 + 0.232589i
\(585\) 9.43454 22.7770i 0.390070 0.941713i
\(586\) −3.43091 + 3.43091i −0.141730 + 0.141730i
\(587\) 14.7211 14.7211i 0.607606 0.607606i −0.334714 0.942320i \(-0.608640\pi\)
0.942320 + 0.334714i \(0.108640\pi\)
\(588\) −2.19332 + 5.29515i −0.0904511 + 0.218368i
\(589\) 0.623612 + 0.258308i 0.0256955 + 0.0106434i
\(590\) 1.56225 + 3.77160i 0.0643167 + 0.155274i
\(591\) 10.3429i 0.425448i
\(592\) −18.7598 + 7.77054i −0.771021 + 0.319367i
\(593\) −14.5886 14.5886i −0.599081 0.599081i 0.340987 0.940068i \(-0.389239\pi\)
−0.940068 + 0.340987i \(0.889239\pi\)
\(594\) −8.08378 −0.331681
\(595\) 0 0
\(596\) −15.9145 −0.651882
\(597\) −12.7599 12.7599i −0.522227 0.522227i
\(598\) 2.68384 1.11168i 0.109751 0.0454602i
\(599\) 31.8212i 1.30018i 0.759858 + 0.650089i \(0.225269\pi\)
−0.759858 + 0.650089i \(0.774731\pi\)
\(600\) −0.231144 0.558030i −0.00943640 0.0227815i
\(601\) 44.4547 + 18.4137i 1.81335 + 0.751112i 0.980186 + 0.198079i \(0.0634704\pi\)
0.833159 + 0.553033i \(0.186530\pi\)
\(602\) 0.368587 0.889847i 0.0150225 0.0362675i
\(603\) −3.85487 + 3.85487i −0.156982 + 0.156982i
\(604\) 18.2947 18.2947i 0.744400 0.744400i
\(605\) 13.1560 31.7614i 0.534867 1.29128i
\(606\) −1.98912 0.823921i −0.0808025 0.0334695i
\(607\) −5.92228 14.2976i −0.240378 0.580323i 0.756943 0.653481i \(-0.226692\pi\)
−0.997320 + 0.0731581i \(0.976692\pi\)
\(608\) 1.33275i 0.0540501i
\(609\) −3.39992 + 1.40829i −0.137772 + 0.0570669i
\(610\) −0.106522 0.106522i −0.00431293 0.00431293i
\(611\) 40.2449 1.62813
\(612\) 0 0
\(613\) −5.04963 −0.203953 −0.101976 0.994787i \(-0.532517\pi\)
−0.101976 + 0.994787i \(0.532517\pi\)
\(614\) 2.22237 + 2.22237i 0.0896875 + 0.0896875i
\(615\) 9.85992 4.08411i 0.397590 0.164687i
\(616\) 12.8229i 0.516651i
\(617\) 10.5645 + 25.5050i 0.425311 + 1.02679i 0.980756 + 0.195238i \(0.0625479\pi\)
−0.555445 + 0.831553i \(0.687452\pi\)
\(618\) −1.49505 0.619270i −0.0601398 0.0249107i
\(619\) −5.67636 + 13.7040i −0.228152 + 0.550808i −0.995953 0.0898809i \(-0.971351\pi\)
0.767800 + 0.640689i \(0.221351\pi\)
\(620\) −6.06272 + 6.06272i −0.243485 + 0.243485i
\(621\) 5.76338 5.76338i 0.231276 0.231276i
\(622\) 0.311966 0.753153i 0.0125087 0.0301987i
\(623\) 10.9869 + 4.55094i 0.440182 + 0.182330i
\(624\) −5.22376 12.6113i −0.209118 0.504855i
\(625\) 27.2891i 1.09156i
\(626\) −4.85408 + 2.01063i −0.194008 + 0.0803608i
\(627\) 1.09364 + 1.09364i 0.0436757 + 0.0436757i
\(628\) −33.7888 −1.34832
\(629\) 0 0
\(630\) −3.41147 −0.135916
\(631\) −24.0774 24.0774i −0.958506 0.958506i 0.0406672 0.999173i \(-0.487052\pi\)
−0.999173 + 0.0406672i \(0.987052\pi\)
\(632\) 5.51888 2.28599i 0.219529 0.0909320i
\(633\) 19.0983i 0.759090i
\(634\) 1.37394 + 3.31699i 0.0545662 + 0.131734i
\(635\) −25.0255 10.3659i −0.993106 0.411358i
\(636\) 6.61136 15.9612i 0.262157 0.632904i
\(637\) 11.5667 11.5667i 0.458288 0.458288i
\(638\) −2.76919 + 2.76919i −0.109633 + 0.109633i
\(639\) −8.45406 + 20.4099i −0.334437 + 0.807403i
\(640\) 20.5974 + 8.53173i 0.814184 + 0.337246i
\(641\) −5.74914 13.8796i −0.227077 0.548213i 0.768742 0.639559i \(-0.220883\pi\)
−0.995819 + 0.0913460i \(0.970883\pi\)
\(642\) 4.76321i 0.187989i
\(643\) 16.4432 6.81099i 0.648456 0.268599i −0.0341158 0.999418i \(-0.510862\pi\)
0.682572 + 0.730819i \(0.260862\pi\)
\(644\) 4.42898 + 4.42898i 0.174526 + 0.174526i
\(645\) −3.04601 −0.119936
\(646\) 0 0
\(647\) −46.4971 −1.82799 −0.913995 0.405725i \(-0.867019\pi\)
−0.913995 + 0.405725i \(0.867019\pi\)
\(648\) −2.51332 2.51332i −0.0987327 0.0987327i
\(649\) 23.4297 9.70489i 0.919695 0.380950i
\(650\) 0.835132i 0.0327566i
\(651\) −1.22923 2.96762i −0.0481773 0.116310i
\(652\) −12.5613 5.20307i −0.491939 0.203768i
\(653\) −11.6835 + 28.2064i −0.457209 + 1.10380i 0.512314 + 0.858798i \(0.328788\pi\)
−0.969523 + 0.245002i \(0.921212\pi\)
\(654\) −0.404192 + 0.404192i −0.0158052 + 0.0158052i
\(655\) 32.1578 32.1578i 1.25651 1.25651i
\(656\) −6.51119 + 15.7194i −0.254219 + 0.613739i
\(657\) −22.4268 9.28947i −0.874951 0.362417i
\(658\) −2.13114 5.14502i −0.0830803 0.200574i
\(659\) 9.83481i 0.383110i 0.981482 + 0.191555i \(0.0613530\pi\)
−0.981482 + 0.191555i \(0.938647\pi\)
\(660\) −18.1504 + 7.51816i −0.706505 + 0.292644i
\(661\) −8.79367 8.79367i −0.342034 0.342034i 0.515097 0.857132i \(-0.327756\pi\)
−0.857132 + 0.515097i \(0.827756\pi\)
\(662\) −6.34049 −0.246430
\(663\) 0 0
\(664\) −18.2986 −0.710123
\(665\) 1.08335 + 1.08335i 0.0420105 + 0.0420105i
\(666\) −4.40835 + 1.82600i −0.170820 + 0.0707560i
\(667\) 3.94862i 0.152891i
\(668\) 3.67233 + 8.86579i 0.142087 + 0.343028i
\(669\) 16.2094 + 6.71414i 0.626690 + 0.259583i
\(670\) 0.763791 1.84395i 0.0295078 0.0712382i
\(671\) −0.661726 + 0.661726i −0.0255457 + 0.0255457i
\(672\) −4.48464 + 4.48464i −0.172999 + 0.172999i
\(673\) −4.82631 + 11.6517i −0.186040 + 0.449141i −0.989191 0.146635i \(-0.953156\pi\)
0.803150 + 0.595777i \(0.203156\pi\)
\(674\) 5.29267 + 2.19229i 0.203866 + 0.0844440i
\(675\) 0.896695 + 2.16481i 0.0345138 + 0.0833237i
\(676\) 17.3824i 0.668553i
\(677\) 4.20273 1.74083i 0.161524 0.0669054i −0.300456 0.953796i \(-0.597139\pi\)
0.461980 + 0.886890i \(0.347139\pi\)
\(678\) 2.61604 + 2.61604i 0.100469 + 0.100469i
\(679\) 17.4338 0.669046
\(680\) 0 0
\(681\) −3.71244 −0.142261
\(682\) −2.41709 2.41709i −0.0925552 0.0925552i
\(683\) 4.49701 1.86272i 0.172073 0.0712751i −0.294984 0.955502i \(-0.595314\pi\)
0.467057 + 0.884227i \(0.345314\pi\)
\(684\) 1.45336i 0.0555707i
\(685\) 0.402705 + 0.972215i 0.0153866 + 0.0371464i
\(686\) −6.31235 2.61466i −0.241007 0.0998283i
\(687\) 4.88154 11.7851i 0.186242 0.449629i
\(688\) 3.43383 3.43383i 0.130913 0.130913i
\(689\) −34.8655 + 34.8655i −1.32827 + 1.32827i
\(690\) −0.486490 + 1.17449i −0.0185203 + 0.0447121i
\(691\) −5.09668 2.11111i −0.193887 0.0803106i 0.283627 0.958935i \(-0.408462\pi\)
−0.477514 + 0.878624i \(0.658462\pi\)
\(692\) 9.22432 + 22.2695i 0.350656 + 0.846559i
\(693\) 21.1925i 0.805038i
\(694\) 6.60080 2.73414i 0.250563 0.103787i
\(695\) 19.3864 + 19.3864i 0.735369 + 0.735369i
\(696\) 2.63816 0.0999990
\(697\) 0 0
\(698\) 2.23112 0.0844493
\(699\) 3.18833 + 3.18833i 0.120594 + 0.120594i
\(700\) −1.66359 + 0.689083i −0.0628779 + 0.0260449i
\(701\) 22.3233i 0.843138i 0.906796 + 0.421569i \(0.138520\pi\)
−0.906796 + 0.421569i \(0.861480\pi\)
\(702\) −2.88138 6.95626i −0.108751 0.262547i
\(703\) 1.97978 + 0.820054i 0.0746690 + 0.0309289i
\(704\) 10.1724 24.5583i 0.383386 0.925576i
\(705\) −12.4534 + 12.4534i −0.469022 + 0.469022i
\(706\) 6.67192 6.67192i 0.251101 0.251101i
\(707\) −5.07016 + 12.2405i −0.190683 + 0.460350i
\(708\) −7.64631 3.16721i −0.287366 0.119031i
\(709\) 13.3084 + 32.1294i 0.499809 + 1.20665i 0.949587 + 0.313505i \(0.101503\pi\)
−0.449778 + 0.893140i \(0.648497\pi\)
\(710\) 8.08790i 0.303533i
\(711\) −9.12107 + 3.77807i −0.342067 + 0.141689i
\(712\) −6.02828 6.02828i −0.225920 0.225920i
\(713\) 3.44656 0.129075
\(714\) 0 0
\(715\) 56.0702 2.09691
\(716\) −5.67619 5.67619i −0.212129 0.212129i
\(717\) 12.8775 5.33404i 0.480919 0.199203i
\(718\) 5.86753i 0.218974i
\(719\) 1.62637 + 3.92640i 0.0606533 + 0.146430i 0.951301 0.308265i \(-0.0997483\pi\)
−0.890647 + 0.454695i \(0.849748\pi\)
\(720\) −15.8910 6.58226i −0.592222 0.245306i
\(721\) −3.81080 + 9.20009i −0.141922 + 0.342629i
\(722\) 4.63632 4.63632i 0.172546 0.172546i
\(723\) −11.2652 + 11.2652i −0.418957 + 0.418957i
\(724\) −0.332892 + 0.803673i −0.0123718 + 0.0298683i
\(725\) 1.04875 + 0.434408i 0.0389497 + 0.0161335i
\(726\) −1.71173 4.13248i −0.0635282 0.153371i
\(727\) 29.1644i 1.08165i −0.841136 0.540823i \(-0.818113\pi\)
0.841136 0.540823i \(-0.181887\pi\)
\(728\) 11.0344 4.57060i 0.408963 0.169398i
\(729\) −4.42036 4.42036i −0.163717 0.163717i
\(730\) 8.88713 0.328927
\(731\) 0 0
\(732\) 0.305407 0.0112882
\(733\) −0.355670 0.355670i −0.0131370 0.0131370i 0.700508 0.713645i \(-0.252957\pi\)
−0.713645 + 0.700508i \(0.752957\pi\)
\(734\) 0.477283 0.197697i 0.0176168 0.00729713i
\(735\) 7.15839i 0.264041i
\(736\) −2.60420 6.28709i −0.0959921 0.231745i
\(737\) −11.4549 4.74477i −0.421946 0.174776i
\(738\) −1.53006 + 3.69390i −0.0563224 + 0.135974i
\(739\) −10.5770 + 10.5770i −0.389081 + 0.389081i −0.874359 0.485279i \(-0.838718\pi\)
0.485279 + 0.874359i \(0.338718\pi\)
\(740\) −19.2474 + 19.2474i −0.707547 + 0.707547i
\(741\) −0.551282 + 1.33091i −0.0202519 + 0.0488923i
\(742\) 6.30358 + 2.61103i 0.231412 + 0.0958539i
\(743\) −8.94544 21.5962i −0.328177 0.792288i −0.998728 0.0504250i \(-0.983942\pi\)
0.670551 0.741863i \(-0.266058\pi\)
\(744\) 2.30272i 0.0844218i
\(745\) −18.3637 + 7.60648i −0.672793 + 0.278680i
\(746\) 5.90600 + 5.90600i 0.216234 + 0.216234i
\(747\) 30.2422 1.10650
\(748\) 0 0
\(749\) 29.3114 1.07102
\(750\) 2.27613 + 2.27613i 0.0831127 + 0.0831127i
\(751\) −15.7328 + 6.51675i −0.574099 + 0.237800i −0.650793 0.759255i \(-0.725564\pi\)
0.0766940 + 0.997055i \(0.475564\pi\)
\(752\) 28.0779i 1.02390i
\(753\) −9.98843 24.1142i −0.363998 0.878770i
\(754\) −3.36999 1.39590i −0.122728 0.0508355i
\(755\) 12.3661 29.8543i 0.450047 1.08651i
\(756\) 11.4795 11.4795i 0.417504 0.417504i
\(757\) 11.5786 11.5786i 0.420832 0.420832i −0.464658 0.885490i \(-0.653823\pi\)
0.885490 + 0.464658i \(0.153823\pi\)
\(758\) 2.68435 6.48060i 0.0975000 0.235386i
\(759\) 7.29609 + 3.02214i 0.264831 + 0.109697i
\(760\) −0.420311 1.01472i −0.0152463 0.0368078i
\(761\) 18.8803i 0.684411i 0.939625 + 0.342206i \(0.111174\pi\)
−0.939625 + 0.342206i \(0.888826\pi\)
\(762\) −3.25607 + 1.34871i −0.117955 + 0.0488586i
\(763\) 2.48728 + 2.48728i 0.0900455 + 0.0900455i
\(764\) −2.68954 −0.0973042
\(765\) 0 0
\(766\) −2.96080 −0.106978
\(767\) 16.7025 + 16.7025i 0.603093 + 0.603093i
\(768\) −5.84908 + 2.42277i −0.211060 + 0.0874241i
\(769\) 27.4766i 0.990831i −0.868656 0.495416i \(-0.835016\pi\)
0.868656 0.495416i \(-0.164984\pi\)
\(770\) −2.96915 7.16817i −0.107001 0.258323i
\(771\) −6.00960 2.48926i −0.216431 0.0896485i
\(772\) −17.7822 + 42.9300i −0.639995 + 1.54508i
\(773\) −7.00344 + 7.00344i −0.251896 + 0.251896i −0.821748 0.569851i \(-0.807001\pi\)
0.569851 + 0.821748i \(0.307001\pi\)
\(774\) 0.806914 0.806914i 0.0290039 0.0290039i
\(775\) −0.379174 + 0.915406i −0.0136203 + 0.0328824i
\(776\) −11.5466 4.78275i −0.414498 0.171691i
\(777\) −3.90245 9.42134i −0.140000 0.337989i
\(778\) 4.48576i 0.160822i
\(779\) 1.65892 0.687149i 0.0594371 0.0246197i
\(780\) −12.9391 12.9391i −0.463293 0.463293i
\(781\) −50.2431 −1.79784
\(782\) 0 0
\(783\) −10.2344 −0.365748
\(784\) −8.06979 8.06979i −0.288207 0.288207i
\(785\) −38.9888 + 16.1497i −1.39157 + 0.576408i
\(786\) 5.91716i 0.211058i
\(787\) −19.4573 46.9741i −0.693578 1.67445i −0.737443 0.675409i \(-0.763967\pi\)
0.0438650 0.999037i \(-0.486033\pi\)
\(788\) 20.4217 + 8.45895i 0.727494 + 0.301338i
\(789\) −7.80430 + 18.8413i −0.277841 + 0.670766i
\(790\) 2.55579 2.55579i 0.0909310 0.0909310i
\(791\) 16.0984 16.0984i 0.572392 0.572392i
\(792\) 5.81393 14.0361i 0.206589 0.498750i
\(793\) −0.805294 0.333564i −0.0285968 0.0118452i
\(794\) 3.21960 + 7.77281i 0.114259 + 0.275847i
\(795\) 21.5776i 0.765279i
\(796\) 35.6298 14.7583i 1.26286 0.523096i
\(797\) −3.80883 3.80883i −0.134916 0.134916i 0.636424 0.771340i \(-0.280413\pi\)
−0.771340 + 0.636424i \(0.780413\pi\)
\(798\) 0.199340 0.00705658
\(799\) 0 0
\(800\) 1.95636 0.0691676
\(801\) 9.96297 + 9.96297i 0.352024 + 0.352024i
\(802\) 8.19385 3.39400i 0.289335 0.119846i
\(803\) 55.2080i 1.94825i
\(804\) 1.54846 + 3.73832i 0.0546101 + 0.131841i
\(805\) 7.22746 + 2.99371i 0.254735 + 0.105515i
\(806\) 1.21841 2.94150i 0.0429167 0.103610i
\(807\) 9.89111 9.89111i 0.348184 0.348184i
\(808\) 6.71606 6.71606i 0.236270 0.236270i
\(809\) 18.6298 44.9762i 0.654988 1.58128i −0.150462 0.988616i \(-0.548076\pi\)
0.805450 0.592664i \(-0.201924\pi\)
\(810\) −1.98694 0.823016i −0.0698138 0.0289178i
\(811\) −6.09541 14.7156i −0.214039 0.516736i 0.779998 0.625782i \(-0.215220\pi\)
−0.994037 + 0.109047i \(0.965220\pi\)
\(812\) 7.86484i 0.276002i
\(813\) 13.8116 5.72094i 0.484393 0.200642i
\(814\) −7.67355 7.67355i −0.268958 0.268958i
\(815\) −16.9813 −0.594830
\(816\) 0 0
\(817\) −0.512489 −0.0179297
\(818\) 2.54228 + 2.54228i 0.0888889 + 0.0888889i
\(819\) −18.2366 + 7.55385i −0.637239 + 0.263953i
\(820\) 22.8084i 0.796504i
\(821\) 6.54427 + 15.7993i 0.228397 + 0.551399i 0.995983 0.0895477i \(-0.0285421\pi\)
−0.767586 + 0.640946i \(0.778542\pi\)
\(822\) 0.126495 + 0.0523960i 0.00441203 + 0.00182752i
\(823\) 2.15170 5.19467i 0.0750037 0.181075i −0.881931 0.471379i \(-0.843756\pi\)
0.956934 + 0.290304i \(0.0937564\pi\)
\(824\) 5.04788 5.04788i 0.175851 0.175851i
\(825\) −1.60536 + 1.60536i −0.0558915 + 0.0558915i
\(826\) 1.25083 3.01977i 0.0435219 0.105071i
\(827\) −16.5012 6.83500i −0.573801 0.237676i 0.0768632 0.997042i \(-0.475510\pi\)
−0.650664 + 0.759365i \(0.725510\pi\)
\(828\) 2.83988 + 6.85608i 0.0986927 + 0.238265i
\(829\) 35.8161i 1.24395i −0.783039 0.621973i \(-0.786331\pi\)
0.783039 0.621973i \(-0.213669\pi\)
\(830\) −10.2291 + 4.23704i −0.355058 + 0.147070i
\(831\) −10.4501 10.4501i −0.362510 0.362510i
\(832\) 24.7588 0.858356
\(833\) 0 0
\(834\) 3.56717 0.123521
\(835\) 8.47499 + 8.47499i 0.293289 + 0.293289i
\(836\) −3.05380 + 1.26492i −0.105618 + 0.0437483i
\(837\) 8.93313i 0.308774i
\(838\) −0.174523 0.421337i −0.00602881 0.0145548i
\(839\) 33.0502 + 13.6899i 1.14102 + 0.472626i 0.871513 0.490372i \(-0.163139\pi\)
0.269508 + 0.962998i \(0.413139\pi\)
\(840\) −2.00016 + 4.82882i −0.0690122 + 0.166610i
\(841\) 17.0002 17.0002i 0.586213 0.586213i
\(842\) 1.96841 1.96841i 0.0678358 0.0678358i
\(843\) −9.53072 + 23.0092i −0.328255 + 0.792479i
\(844\) −37.7092 15.6197i −1.29800 0.537651i
\(845\) 8.30809 + 20.0575i 0.285807 + 0.689999i
\(846\) 6.59802i 0.226845i
\(847\) −25.4300 + 10.5335i −0.873787 + 0.361934i
\(848\) 24.3249 + 24.3249i 0.835319 + 0.835319i
\(849\) −28.3465 −0.972849
\(850\) 0 0
\(851\) 10.9418 0.375080
\(852\) 11.5944 + 11.5944i 0.397217 + 0.397217i
\(853\) 10.2245 4.23511i 0.350079 0.145007i −0.200713 0.979650i \(-0.564326\pi\)
0.550792 + 0.834643i \(0.314326\pi\)
\(854\) 0.120615i 0.00412735i
\(855\) 0.694650 + 1.67703i 0.0237565 + 0.0573533i
\(856\) −19.4133 8.04125i −0.663533 0.274844i
\(857\) −10.3610 + 25.0137i −0.353925 + 0.854451i 0.642203 + 0.766535i \(0.278021\pi\)
−0.996128 + 0.0879160i \(0.971979\pi\)
\(858\) 5.15856 5.15856i 0.176110 0.176110i
\(859\) −36.5772 + 36.5772i −1.24800 + 1.24800i −0.291393 + 0.956603i \(0.594119\pi\)
−0.956603 + 0.291393i \(0.905881\pi\)
\(860\) 2.49119 6.01427i 0.0849490 0.205085i
\(861\) −7.89444 3.26998i −0.269042 0.111441i
\(862\) 1.95728 + 4.72530i 0.0666653 + 0.160944i
\(863\) 45.4712i 1.54786i −0.633272 0.773929i \(-0.718289\pi\)
0.633272 0.773929i \(-0.281711\pi\)
\(864\) −16.2955 + 6.74983i −0.554385 + 0.229634i
\(865\) 21.2879 + 21.2879i 0.723809 + 0.723809i
\(866\) 2.86215 0.0972598
\(867\) 0 0
\(868\) 6.86484 0.233008
\(869\) −15.8769 15.8769i −0.538588 0.538588i
\(870\) 1.47476 0.610865i 0.0499990 0.0207103i
\(871\) 11.5484i 0.391302i
\(872\) −0.964997 2.32971i −0.0326789 0.0788939i
\(873\) 19.0831 + 7.90448i 0.645865 + 0.267526i
\(874\) −0.0818515 + 0.197607i −0.00276867 + 0.00668416i
\(875\) 14.0067 14.0067i 0.473511 0.473511i
\(876\) −12.7401 + 12.7401i −0.430448 + 0.430448i
\(877\) 14.3443 34.6301i 0.484372 1.16938i −0.473141 0.880987i \(-0.656880\pi\)
0.957513 0.288390i \(-0.0931200\pi\)
\(878\) −12.8204 5.31038i −0.432667 0.179217i
\(879\) −4.70157 11.3506i −0.158580 0.382846i
\(880\) 39.1189i 1.31870i
\(881\) 16.8108 6.96324i 0.566369 0.234598i −0.0810787 0.996708i \(-0.525837\pi\)
0.647447 + 0.762110i \(0.275837\pi\)
\(882\) −1.89632 1.89632i −0.0638524 0.0638524i
\(883\) −0.397860 −0.0133891 −0.00669453 0.999978i \(-0.502131\pi\)
−0.00669453 + 0.999978i \(0.502131\pi\)
\(884\) 0 0
\(885\) −10.3369 −0.347470
\(886\) 3.42486 + 3.42486i 0.115060 + 0.115060i
\(887\) −21.9730 + 9.10152i −0.737782 + 0.305599i −0.719745 0.694238i \(-0.755741\pi\)
−0.0180364 + 0.999837i \(0.505741\pi\)
\(888\) 7.31046i 0.245323i
\(889\) 8.29956 + 20.0369i 0.278358 + 0.672016i
\(890\) −4.76573 1.97403i −0.159748 0.0661696i
\(891\) −5.11268 + 12.3431i −0.171281 + 0.413510i
\(892\) −26.5138 + 26.5138i −0.887748 + 0.887748i
\(893\) −2.09527 + 2.09527i −0.0701156 + 0.0701156i
\(894\) −0.989681 + 2.38930i −0.0330999 + 0.0799102i
\(895\) −9.26273 3.83675i −0.309619 0.128248i
\(896\) −6.83101 16.4915i −0.228208 0.550943i
\(897\) 7.35565i 0.245598i
\(898\) −3.28295 + 1.35984i −0.109554 + 0.0453786i
\(899\) −3.06014 3.06014i −0.102061 0.102061i
\(900\) −2.13341 −0.0711136
\(901\) 0 0
\(902\) −9.09327 −0.302773
\(903\) 1.72450 + 1.72450i 0.0573879 + 0.0573879i
\(904\) −15.0785 + 6.24573i −0.501505 + 0.207730i
\(905\) 1.08647i 0.0361154i
\(906\) −1.60895 3.88435i −0.0534538 0.129049i
\(907\) −34.6650 14.3587i −1.15103 0.476774i −0.276154 0.961114i \(-0.589060\pi\)
−0.874880 + 0.484340i \(0.839060\pi\)
\(908\) 3.03624 7.33012i 0.100761 0.243259i
\(909\) −11.0997 + 11.0997i −0.368152 + 0.368152i
\(910\) 5.11004 5.11004i 0.169396 0.169396i
\(911\) −5.65023 + 13.6409i −0.187200 + 0.451942i −0.989419 0.145089i \(-0.953653\pi\)
0.802218 + 0.597031i \(0.203653\pi\)
\(912\) 0.928547 + 0.384617i 0.0307473 + 0.0127359i
\(913\) 26.3211 + 63.5447i 0.871100 + 2.10302i
\(914\) 4.08790i 0.135216i
\(915\) 0.352409 0.145973i 0.0116503 0.00482570i
\(916\) 19.2770 + 19.2770i 0.636929 + 0.636929i
\(917\) −36.4124 −1.20244
\(918\) 0 0
\(919\) −48.5476 −1.60144 −0.800718 0.599041i \(-0.795549\pi\)
−0.800718 + 0.599041i \(0.795549\pi\)
\(920\) −3.96554 3.96554i −0.130740 0.130740i
\(921\) −7.35234 + 3.04544i −0.242268 + 0.100351i
\(922\) 6.77238i 0.223037i
\(923\) −17.9086 43.2352i −0.589469 1.42310i
\(924\) 14.5323 + 6.01949i 0.478078 + 0.198027i
\(925\) −1.20377 + 2.90615i −0.0395796 + 0.0955536i
\(926\) 0.351437 0.351437i 0.0115489 0.0115489i
\(927\) −8.34265 + 8.34265i −0.274009 + 0.274009i
\(928\) −3.26998 + 7.89444i −0.107343 + 0.259148i
\(929\) −10.4061 4.31036i −0.341414 0.141418i 0.205387 0.978681i \(-0.434155\pi\)
−0.546801 + 0.837262i \(0.684155\pi\)
\(930\) 0.533194 + 1.28725i 0.0174841 + 0.0422104i
\(931\) 1.20439i 0.0394724i
\(932\) −8.90287 + 3.68769i −0.291623 + 0.120794i
\(933\) 1.45959 + 1.45959i 0.0477850 + 0.0477850i
\(934\) 3.71244 0.121475
\(935\) 0 0
\(936\) 14.1506 0.462528
\(937\) 1.69546 + 1.69546i 0.0553884 + 0.0553884i 0.734258 0.678870i \(-0.237530\pi\)
−0.678870 + 0.734258i \(0.737530\pi\)
\(938\) −1.47638 + 0.611536i −0.0482055 + 0.0199674i
\(939\) 13.3037i 0.434148i
\(940\) −14.4039 34.7740i −0.469802 1.13420i
\(941\) −31.7627 13.1565i −1.03543 0.428891i −0.200763 0.979640i \(-0.564342\pi\)
−0.834671 + 0.550749i \(0.814342\pi\)
\(942\) −2.10124 + 5.07285i −0.0684622 + 0.165282i
\(943\) 6.48310 6.48310i 0.211119 0.211119i
\(944\) 11.6530 11.6530i 0.379271 0.379271i
\(945\) 7.75941 18.7329i 0.252414 0.609380i
\(946\) 2.39778 + 0.993191i 0.0779584 + 0.0322914i
\(947\) −7.85626 18.9667i −0.255294 0.616335i 0.743321 0.668934i \(-0.233249\pi\)
−0.998616 + 0.0525996i \(0.983249\pi\)
\(948\) 7.32770i 0.237993i
\(949\) 47.5076 19.6783i 1.54216 0.638785i
\(950\) −0.0434796 0.0434796i −0.00141066 0.00141066i
\(951\) −9.09091 −0.294793
\(952\) 0 0
\(953\) 16.5517 0.536162 0.268081 0.963396i \(-0.413611\pi\)
0.268081 + 0.963396i \(0.413611\pi\)
\(954\) 5.71609 + 5.71609i 0.185065 + 0.185065i
\(955\) −3.10346 + 1.28549i −0.100425 + 0.0415976i
\(956\) 29.7888i 0.963439i
\(957\) −3.79477 9.16139i −0.122668 0.296146i
\(958\) 12.4710 + 5.16567i 0.402921 + 0.166895i
\(959\) 0.322429 0.778413i 0.0104118 0.0251363i
\(960\) −7.66137 + 7.66137i −0.247270 + 0.247270i
\(961\) −19.2493 + 19.2493i −0.620944 + 0.620944i
\(962\) 3.86810 9.33841i 0.124712 0.301082i
\(963\) 32.0844 + 13.2898i 1.03391 + 0.428258i
\(964\) −13.0296 31.4561i −0.419654 1.01313i
\(965\) 58.0360i 1.86825i
\(966\) 0.940367 0.389513i 0.0302558 0.0125324i
\(967\) −2.77656 2.77656i −0.0892882 0.0892882i 0.661052 0.750340i \(-0.270110\pi\)
−0.750340 + 0.661052i \(0.770110\pi\)
\(968\) 19.7324 0.634222
\(969\) 0 0
\(970\) −7.56212 −0.242805
\(971\) −3.00805 3.00805i −0.0965329 0.0965329i 0.657191 0.753724i \(-0.271744\pi\)
−0.753724 + 0.657191i \(0.771744\pi\)
\(972\) 27.9700 11.5856i 0.897140 0.371607i
\(973\) 21.9513i 0.703726i
\(974\) −4.91929 11.8762i −0.157624 0.380539i
\(975\) −1.95366 0.809233i −0.0625673 0.0259162i
\(976\) −0.232720 + 0.561835i −0.00744918 + 0.0179839i
\(977\) 34.3252 34.3252i 1.09816 1.09816i 0.103534 0.994626i \(-0.466985\pi\)
0.994626 0.103534i \(-0.0330150\pi\)
\(978\) −1.56231 + 1.56231i −0.0499573 + 0.0499573i
\(979\) −12.2629 + 29.6053i −0.391925 + 0.946190i
\(980\) −14.1341 5.85452i −0.451496 0.187016i
\(981\) 1.59485 + 3.85032i 0.0509198 + 0.122931i
\(982\) 8.82739i 0.281693i
\(983\) −32.3910 + 13.4168i −1.03311 + 0.427929i −0.833835 0.552014i \(-0.813859\pi\)
−0.199277 + 0.979943i \(0.563859\pi\)
\(984\) 4.33150 + 4.33150i 0.138083 + 0.138083i
\(985\) 27.6076 0.879652
\(986\) 0 0
\(987\) 14.1010 0.448840
\(988\) −2.17699 2.17699i −0.0692592 0.0692592i
\(989\) −2.41761 + 1.00141i −0.0768755 + 0.0318429i
\(990\) 9.19253i 0.292158i
\(991\) 20.3585 + 49.1499i 0.646711 + 1.56130i 0.817461 + 0.575983i \(0.195381\pi\)
−0.170751 + 0.985314i \(0.554619\pi\)
\(992\) −6.89068 2.85421i −0.218779 0.0906213i
\(993\) 6.14386 14.8326i 0.194970 0.470698i
\(994\) −4.57898 + 4.57898i −0.145236 + 0.145236i
\(995\) 34.0593 34.0593i 1.07975 1.07975i
\(996\) 8.58993 20.7379i 0.272182 0.657106i
\(997\) 20.8606 + 8.64074i 0.660662 + 0.273655i 0.687717 0.725979i \(-0.258613\pi\)
−0.0270551 + 0.999634i \(0.508613\pi\)
\(998\) −2.90049 7.00241i −0.0918135 0.221657i
\(999\) 28.3601i 0.897274i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.2.d.f.155.3 24
17.2 even 8 inner 289.2.d.f.110.3 24
17.3 odd 16 289.2.a.e.1.2 yes 3
17.4 even 4 inner 289.2.d.f.134.4 24
17.5 odd 16 289.2.b.d.288.3 6
17.6 odd 16 289.2.c.d.38.3 12
17.7 odd 16 289.2.c.d.251.4 12
17.8 even 8 inner 289.2.d.f.179.4 24
17.9 even 8 inner 289.2.d.f.179.3 24
17.10 odd 16 289.2.c.d.251.3 12
17.11 odd 16 289.2.c.d.38.4 12
17.12 odd 16 289.2.b.d.288.4 6
17.13 even 4 inner 289.2.d.f.134.3 24
17.14 odd 16 289.2.a.d.1.2 3
17.15 even 8 inner 289.2.d.f.110.4 24
17.16 even 2 inner 289.2.d.f.155.4 24
51.14 even 16 2601.2.a.x.1.2 3
51.20 even 16 2601.2.a.w.1.2 3
68.3 even 16 4624.2.a.bd.1.3 3
68.31 even 16 4624.2.a.bg.1.1 3
85.14 odd 16 7225.2.a.t.1.2 3
85.54 odd 16 7225.2.a.s.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
289.2.a.d.1.2 3 17.14 odd 16
289.2.a.e.1.2 yes 3 17.3 odd 16
289.2.b.d.288.3 6 17.5 odd 16
289.2.b.d.288.4 6 17.12 odd 16
289.2.c.d.38.3 12 17.6 odd 16
289.2.c.d.38.4 12 17.11 odd 16
289.2.c.d.251.3 12 17.10 odd 16
289.2.c.d.251.4 12 17.7 odd 16
289.2.d.f.110.3 24 17.2 even 8 inner
289.2.d.f.110.4 24 17.15 even 8 inner
289.2.d.f.134.3 24 17.13 even 4 inner
289.2.d.f.134.4 24 17.4 even 4 inner
289.2.d.f.155.3 24 1.1 even 1 trivial
289.2.d.f.155.4 24 17.16 even 2 inner
289.2.d.f.179.3 24 17.9 even 8 inner
289.2.d.f.179.4 24 17.8 even 8 inner
2601.2.a.w.1.2 3 51.20 even 16
2601.2.a.x.1.2 3 51.14 even 16
4624.2.a.bd.1.3 3 68.3 even 16
4624.2.a.bg.1.1 3 68.31 even 16
7225.2.a.s.1.2 3 85.54 odd 16
7225.2.a.t.1.2 3 85.14 odd 16