Properties

Label 289.2.d
Level $289$
Weight $2$
Character orbit 289.d
Rep. character $\chi_{289}(110,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $60$
Newform subspaces $6$
Sturm bound $51$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 289.d (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 6 \)
Sturm bound: \(51\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(289, [\chi])\).

Total New Old
Modular forms 140 116 24
Cusp forms 68 60 8
Eisenstein series 72 56 16

Trace form

\( 60 q + 4 q^{2} + 4 q^{3} - 4 q^{6} + 4 q^{7} - 4 q^{8} - 8 q^{9} - 4 q^{10} + 4 q^{11} + 4 q^{12} - 4 q^{14} + 8 q^{15} + 44 q^{16} - 36 q^{18} - 8 q^{19} - 4 q^{20} - 12 q^{22} - 4 q^{23} - 12 q^{24} + 4 q^{25}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(289, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
289.2.d.a 289.d 17.d $4$ $2.308$ \(\Q(\zeta_{8})\) None 17.2.d.a \(-4\) \(4\) \(0\) \(4\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-1+\zeta_{8}^{2}-\zeta_{8}^{3})q^{2}+(1+\zeta_{8}+\zeta_{8}^{2}+\cdots)q^{3}+\cdots\)
289.2.d.b 289.d 17.d $4$ $2.308$ \(\Q(\zeta_{8})\) None 17.2.d.a \(4\) \(-4\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{8}]$ \(q+(1-\zeta_{8}^{2}-\zeta_{8}^{3})q^{2}+(-1-\zeta_{8}+\zeta_{8}^{2}+\cdots)q^{3}+\cdots\)
289.2.d.c 289.d 17.d $4$ $2.308$ \(\Q(\zeta_{8})\) None 17.2.d.a \(4\) \(4\) \(4\) \(4\) $\mathrm{SU}(2)[C_{8}]$ \(q+(1-\zeta_{8}^{2}-\zeta_{8}^{3})q^{2}+(1+\zeta_{8}-\zeta_{8}^{2}+\cdots)q^{3}+\cdots\)
289.2.d.d 289.d 17.d $8$ $2.308$ \(\Q(\zeta_{16})\) None 17.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+\beta_{2} q^{2}-\beta_{4} q^{4}-\beta_{7} q^{5}-2\beta_1 q^{7}+\cdots\)
289.2.d.e 289.d 17.d $16$ $2.308$ 16.0.\(\cdots\).1 None 289.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(\beta _{3}+\beta _{5})q^{2}+(-\beta _{6}-\beta _{7})q^{3}+(-2\beta _{8}+\cdots)q^{4}+\cdots\)
289.2.d.f 289.d 17.d $24$ $2.308$ None 289.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(289, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(289, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 2}\)