Properties

Label 289.2.c.d.251.4
Level $289$
Weight $2$
Character 289.251
Analytic conductor $2.308$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,2,Mod(38,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.38"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 289.c (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.30767661842\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.722204136308736.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{8} + 69x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 251.4
Root \(-1.32893 + 1.32893i\) of defining polynomial
Character \(\chi\) \(=\) 289.251
Dual form 289.2.c.d.38.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.347296i q^{2} +(0.621819 + 0.621819i) q^{3} +1.87939 q^{4} +(1.65979 + 1.65979i) q^{5} +(0.215956 - 0.215956i) q^{6} +(1.32893 - 1.32893i) q^{7} -1.34730i q^{8} -2.22668i q^{9} +(0.576439 - 0.576439i) q^{10} +(-3.58091 + 3.58091i) q^{11} +(1.16864 + 1.16864i) q^{12} -4.71688 q^{13} +(-0.461531 - 0.461531i) q^{14} +2.06418i q^{15} +3.29086 q^{16} -0.773318 q^{18} -0.347296i q^{19} +(3.11938 + 3.11938i) q^{20} +1.65270 q^{21} +(1.24364 + 1.24364i) q^{22} +(-1.25393 + 1.25393i) q^{23} +(0.837775 - 0.837775i) q^{24} +0.509800i q^{25} +1.63816i q^{26} +(3.25005 - 3.25005i) q^{27} +(2.49756 - 2.49756i) q^{28} +(-1.57450 - 1.57450i) q^{29} +0.716881 q^{30} +(1.37431 + 1.37431i) q^{31} -3.83750i q^{32} -4.45336 q^{33} +4.41147 q^{35} -4.18479i q^{36} +(-4.36302 - 4.36302i) q^{37} -0.120615 q^{38} +(-2.93305 - 2.93305i) q^{39} +(2.23623 - 2.23623i) q^{40} +(-3.65592 + 3.65592i) q^{41} -0.573978i q^{42} -1.47565i q^{43} +(-6.72992 + 6.72992i) q^{44} +(3.69582 - 3.69582i) q^{45} +(0.435484 + 0.435484i) q^{46} +8.53209 q^{47} +(2.04632 + 2.04632i) q^{48} +3.46791i q^{49} +0.177052 q^{50} -8.86484 q^{52} +10.4534i q^{53} +(-1.12873 - 1.12873i) q^{54} -11.8871 q^{55} +(-1.79046 - 1.79046i) q^{56} +(0.215956 - 0.215956i) q^{57} +(-0.546819 + 0.546819i) q^{58} +5.00774i q^{59} +3.87939i q^{60} +(0.130668 - 0.130668i) q^{61} +(0.477292 - 0.477292i) q^{62} +(-2.95910 - 2.95910i) q^{63} +5.24897 q^{64} +(-7.82903 - 7.82903i) q^{65} +1.54664i q^{66} -2.44831 q^{67} -1.55943 q^{69} -1.53209i q^{70} +(-7.01540 - 7.01540i) q^{71} -3.00000 q^{72} +(-7.70865 - 7.70865i) q^{73} +(-1.51526 + 1.51526i) q^{74} +(-0.317004 + 0.317004i) q^{75} -0.652704i q^{76} +9.51754i q^{77} +(-1.01864 + 1.01864i) q^{78} +(3.13514 - 3.13514i) q^{79} +(5.46213 + 5.46213i) q^{80} -2.63816 q^{81} +(1.26969 + 1.26969i) q^{82} -13.5817i q^{83} +3.10607 q^{84} -0.512489 q^{86} -1.95811i q^{87} +(4.82455 + 4.82455i) q^{88} +6.32770 q^{89} +(-1.28355 - 1.28355i) q^{90} +(-6.26839 + 6.26839i) q^{91} +(-2.35661 + 2.35661i) q^{92} +1.70914i q^{93} -2.96316i q^{94} +(0.576439 - 0.576439i) q^{95} +(2.38623 - 2.38623i) q^{96} +(-6.55934 - 6.55934i) q^{97} +1.20439 q^{98} +(7.97356 + 7.97356i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{13} - 24 q^{16} - 36 q^{18} + 24 q^{21} - 24 q^{30} + 12 q^{35} - 24 q^{38} + 84 q^{47} + 84 q^{50} - 12 q^{52} - 24 q^{55} + 12 q^{64} - 36 q^{67} + 84 q^{69} - 36 q^{72} + 36 q^{81} - 12 q^{84}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.347296i 0.245576i −0.992433 0.122788i \(-0.960817\pi\)
0.992433 0.122788i \(-0.0391835\pi\)
\(3\) 0.621819 + 0.621819i 0.359008 + 0.359008i 0.863447 0.504440i \(-0.168301\pi\)
−0.504440 + 0.863447i \(0.668301\pi\)
\(4\) 1.87939 0.939693
\(5\) 1.65979 + 1.65979i 0.742280 + 0.742280i 0.973016 0.230736i \(-0.0741134\pi\)
−0.230736 + 0.973016i \(0.574113\pi\)
\(6\) 0.215956 0.215956i 0.0881635 0.0881635i
\(7\) 1.32893 1.32893i 0.502287 0.502287i −0.409861 0.912148i \(-0.634423\pi\)
0.912148 + 0.409861i \(0.134423\pi\)
\(8\) 1.34730i 0.476341i
\(9\) 2.22668i 0.742227i
\(10\) 0.576439 0.576439i 0.182286 0.182286i
\(11\) −3.58091 + 3.58091i −1.07969 + 1.07969i −0.0831492 + 0.996537i \(0.526498\pi\)
−0.996537 + 0.0831492i \(0.973502\pi\)
\(12\) 1.16864 + 1.16864i 0.337357 + 0.337357i
\(13\) −4.71688 −1.30823 −0.654114 0.756396i \(-0.726958\pi\)
−0.654114 + 0.756396i \(0.726958\pi\)
\(14\) −0.461531 0.461531i −0.123349 0.123349i
\(15\) 2.06418i 0.532968i
\(16\) 3.29086 0.822715
\(17\) 0 0
\(18\) −0.773318 −0.182273
\(19\) 0.347296i 0.0796752i −0.999206 0.0398376i \(-0.987316\pi\)
0.999206 0.0398376i \(-0.0126841\pi\)
\(20\) 3.11938 + 3.11938i 0.697515 + 0.697515i
\(21\) 1.65270 0.360650
\(22\) 1.24364 + 1.24364i 0.265145 + 0.265145i
\(23\) −1.25393 + 1.25393i −0.261462 + 0.261462i −0.825648 0.564186i \(-0.809190\pi\)
0.564186 + 0.825648i \(0.309190\pi\)
\(24\) 0.837775 0.837775i 0.171010 0.171010i
\(25\) 0.509800i 0.101960i
\(26\) 1.63816i 0.321269i
\(27\) 3.25005 3.25005i 0.625473 0.625473i
\(28\) 2.49756 2.49756i 0.471995 0.471995i
\(29\) −1.57450 1.57450i −0.292378 0.292378i 0.545641 0.838019i \(-0.316286\pi\)
−0.838019 + 0.545641i \(0.816286\pi\)
\(30\) 0.716881 0.130884
\(31\) 1.37431 + 1.37431i 0.246833 + 0.246833i 0.819669 0.572837i \(-0.194157\pi\)
−0.572837 + 0.819669i \(0.694157\pi\)
\(32\) 3.83750i 0.678380i
\(33\) −4.45336 −0.775231
\(34\) 0 0
\(35\) 4.41147 0.745675
\(36\) 4.18479i 0.697465i
\(37\) −4.36302 4.36302i −0.717276 0.717276i 0.250770 0.968047i \(-0.419316\pi\)
−0.968047 + 0.250770i \(0.919316\pi\)
\(38\) −0.120615 −0.0195663
\(39\) −2.93305 2.93305i −0.469664 0.469664i
\(40\) 2.23623 2.23623i 0.353579 0.353579i
\(41\) −3.65592 + 3.65592i −0.570958 + 0.570958i −0.932396 0.361438i \(-0.882286\pi\)
0.361438 + 0.932396i \(0.382286\pi\)
\(42\) 0.573978i 0.0885667i
\(43\) 1.47565i 0.225035i −0.993650 0.112517i \(-0.964109\pi\)
0.993650 0.112517i \(-0.0358914\pi\)
\(44\) −6.72992 + 6.72992i −1.01457 + 1.01457i
\(45\) 3.69582 3.69582i 0.550941 0.550941i
\(46\) 0.435484 + 0.435484i 0.0642086 + 0.0642086i
\(47\) 8.53209 1.24453 0.622267 0.782805i \(-0.286212\pi\)
0.622267 + 0.782805i \(0.286212\pi\)
\(48\) 2.04632 + 2.04632i 0.295361 + 0.295361i
\(49\) 3.46791i 0.495416i
\(50\) 0.177052 0.0250389
\(51\) 0 0
\(52\) −8.86484 −1.22933
\(53\) 10.4534i 1.43588i 0.696105 + 0.717940i \(0.254915\pi\)
−0.696105 + 0.717940i \(0.745085\pi\)
\(54\) −1.12873 1.12873i −0.153601 0.153601i
\(55\) −11.8871 −1.60286
\(56\) −1.79046 1.79046i −0.239260 0.239260i
\(57\) 0.215956 0.215956i 0.0286040 0.0286040i
\(58\) −0.546819 + 0.546819i −0.0718008 + 0.0718008i
\(59\) 5.00774i 0.651952i 0.945378 + 0.325976i \(0.105693\pi\)
−0.945378 + 0.325976i \(0.894307\pi\)
\(60\) 3.87939i 0.500826i
\(61\) 0.130668 0.130668i 0.0167303 0.0167303i −0.698692 0.715422i \(-0.746234\pi\)
0.715422 + 0.698692i \(0.246234\pi\)
\(62\) 0.477292 0.477292i 0.0606161 0.0606161i
\(63\) −2.95910 2.95910i −0.372811 0.372811i
\(64\) 5.24897 0.656121
\(65\) −7.82903 7.82903i −0.971071 0.971071i
\(66\) 1.54664i 0.190378i
\(67\) −2.44831 −0.299109 −0.149554 0.988754i \(-0.547784\pi\)
−0.149554 + 0.988754i \(0.547784\pi\)
\(68\) 0 0
\(69\) −1.55943 −0.187733
\(70\) 1.53209i 0.183120i
\(71\) −7.01540 7.01540i −0.832575 0.832575i 0.155294 0.987868i \(-0.450368\pi\)
−0.987868 + 0.155294i \(0.950368\pi\)
\(72\) −3.00000 −0.353553
\(73\) −7.70865 7.70865i −0.902229 0.902229i 0.0933997 0.995629i \(-0.470227\pi\)
−0.995629 + 0.0933997i \(0.970227\pi\)
\(74\) −1.51526 + 1.51526i −0.176146 + 0.176146i
\(75\) −0.317004 + 0.317004i −0.0366044 + 0.0366044i
\(76\) 0.652704i 0.0748702i
\(77\) 9.51754i 1.08462i
\(78\) −1.01864 + 1.01864i −0.115338 + 0.115338i
\(79\) 3.13514 3.13514i 0.352731 0.352731i −0.508394 0.861125i \(-0.669760\pi\)
0.861125 + 0.508394i \(0.169760\pi\)
\(80\) 5.46213 + 5.46213i 0.610685 + 0.610685i
\(81\) −2.63816 −0.293128
\(82\) 1.26969 + 1.26969i 0.140213 + 0.140213i
\(83\) 13.5817i 1.49079i −0.666625 0.745394i \(-0.732262\pi\)
0.666625 0.745394i \(-0.267738\pi\)
\(84\) 3.10607 0.338900
\(85\) 0 0
\(86\) −0.512489 −0.0552631
\(87\) 1.95811i 0.209932i
\(88\) 4.82455 + 4.82455i 0.514299 + 0.514299i
\(89\) 6.32770 0.670734 0.335367 0.942087i \(-0.391140\pi\)
0.335367 + 0.942087i \(0.391140\pi\)
\(90\) −1.28355 1.28355i −0.135298 0.135298i
\(91\) −6.26839 + 6.26839i −0.657105 + 0.657105i
\(92\) −2.35661 + 2.35661i −0.245693 + 0.245693i
\(93\) 1.70914i 0.177230i
\(94\) 2.96316i 0.305627i
\(95\) 0.576439 0.576439i 0.0591414 0.0591414i
\(96\) 2.38623 2.38623i 0.243543 0.243543i
\(97\) −6.55934 6.55934i −0.666000 0.666000i 0.290787 0.956788i \(-0.406083\pi\)
−0.956788 + 0.290787i \(0.906083\pi\)
\(98\) 1.20439 0.121662
\(99\) 7.97356 + 7.97356i 0.801373 + 0.801373i
\(100\) 0.958111i 0.0958111i
\(101\) −7.04963 −0.701464 −0.350732 0.936476i \(-0.614067\pi\)
−0.350732 + 0.936476i \(0.614067\pi\)
\(102\) 0 0
\(103\) 5.29860 0.522087 0.261043 0.965327i \(-0.415933\pi\)
0.261043 + 0.965327i \(0.415933\pi\)
\(104\) 6.35504i 0.623163i
\(105\) 2.74314 + 2.74314i 0.267703 + 0.267703i
\(106\) 3.63041 0.352617
\(107\) 11.0282 + 11.0282i 1.06614 + 1.06614i 0.997652 + 0.0684868i \(0.0218171\pi\)
0.0684868 + 0.997652i \(0.478183\pi\)
\(108\) 6.10810 6.10810i 0.587752 0.587752i
\(109\) −1.32345 + 1.32345i −0.126764 + 0.126764i −0.767642 0.640879i \(-0.778570\pi\)
0.640879 + 0.767642i \(0.278570\pi\)
\(110\) 4.12836i 0.393623i
\(111\) 5.42602i 0.515015i
\(112\) 4.37331 4.37331i 0.413239 0.413239i
\(113\) −8.56576 + 8.56576i −0.805798 + 0.805798i −0.983995 0.178196i \(-0.942974\pi\)
0.178196 + 0.983995i \(0.442974\pi\)
\(114\) −0.0750006 0.0750006i −0.00702445 0.00702445i
\(115\) −4.16250 −0.388155
\(116\) −2.95910 2.95910i −0.274745 0.274745i
\(117\) 10.5030i 0.971002i
\(118\) 1.73917 0.160104
\(119\) 0 0
\(120\) 2.78106 0.253875
\(121\) 14.6459i 1.33145i
\(122\) −0.0453805 0.0453805i −0.00410856 0.00410856i
\(123\) −4.54664 −0.409956
\(124\) 2.58285 + 2.58285i 0.231947 + 0.231947i
\(125\) 7.45279 7.45279i 0.666597 0.666597i
\(126\) −1.02768 + 1.02768i −0.0915533 + 0.0915533i
\(127\) 11.5398i 1.02399i −0.858987 0.511997i \(-0.828906\pi\)
0.858987 0.511997i \(-0.171094\pi\)
\(128\) 9.49794i 0.839507i
\(129\) 0.917589 0.917589i 0.0807892 0.0807892i
\(130\) −2.71899 + 2.71899i −0.238471 + 0.238471i
\(131\) 13.6999 + 13.6999i 1.19697 + 1.19697i 0.975070 + 0.221900i \(0.0712257\pi\)
0.221900 + 0.975070i \(0.428774\pi\)
\(132\) −8.36959 −0.728479
\(133\) −0.461531 0.461531i −0.0400198 0.0400198i
\(134\) 0.850289i 0.0734538i
\(135\) 10.7888 0.928552
\(136\) 0 0
\(137\) −0.448311 −0.0383018 −0.0191509 0.999817i \(-0.506096\pi\)
−0.0191509 + 0.999817i \(0.506096\pi\)
\(138\) 0.541584i 0.0461027i
\(139\) 8.25904 + 8.25904i 0.700523 + 0.700523i 0.964523 0.264000i \(-0.0850419\pi\)
−0.264000 + 0.964523i \(0.585042\pi\)
\(140\) 8.29086 0.700706
\(141\) 5.30542 + 5.30542i 0.446797 + 0.446797i
\(142\) −2.43642 + 2.43642i −0.204460 + 0.204460i
\(143\) 16.8907 16.8907i 1.41248 1.41248i
\(144\) 7.32770i 0.610641i
\(145\) 5.22668i 0.434052i
\(146\) −2.67719 + 2.67719i −0.221565 + 0.221565i
\(147\) −2.15641 + 2.15641i −0.177858 + 0.177858i
\(148\) −8.19980 8.19980i −0.674019 0.674019i
\(149\) −8.46791 −0.693718 −0.346859 0.937917i \(-0.612752\pi\)
−0.346859 + 0.937917i \(0.612752\pi\)
\(150\) 0.110094 + 0.110094i 0.00898915 + 0.00898915i
\(151\) 13.7665i 1.12030i 0.828390 + 0.560151i \(0.189257\pi\)
−0.828390 + 0.560151i \(0.810743\pi\)
\(152\) −0.467911 −0.0379526
\(153\) 0 0
\(154\) 3.30541 0.266357
\(155\) 4.56212i 0.366438i
\(156\) −5.51233 5.51233i −0.441339 0.441339i
\(157\) 17.9786 1.43485 0.717426 0.696635i \(-0.245320\pi\)
0.717426 + 0.696635i \(0.245320\pi\)
\(158\) −1.08882 1.08882i −0.0866222 0.0866222i
\(159\) −6.50010 + 6.50010i −0.515492 + 0.515492i
\(160\) 6.36943 6.36943i 0.503548 0.503548i
\(161\) 3.33275i 0.262657i
\(162\) 0.916222i 0.0719852i
\(163\) 5.11551 5.11551i 0.400678 0.400678i −0.477794 0.878472i \(-0.658564\pi\)
0.878472 + 0.477794i \(0.158564\pi\)
\(164\) −6.87087 + 6.87087i −0.536525 + 0.536525i
\(165\) −7.39164 7.39164i −0.575439 0.575439i
\(166\) −4.71688 −0.366101
\(167\) −3.61053 3.61053i −0.279392 0.279392i 0.553475 0.832866i \(-0.313302\pi\)
−0.832866 + 0.553475i \(0.813302\pi\)
\(168\) 2.22668i 0.171792i
\(169\) 9.24897 0.711459
\(170\) 0 0
\(171\) −0.773318 −0.0591371
\(172\) 2.77332i 0.211464i
\(173\) 9.06909 + 9.06909i 0.689510 + 0.689510i 0.962124 0.272613i \(-0.0878879\pi\)
−0.272613 + 0.962124i \(0.587888\pi\)
\(174\) −0.680045 −0.0515541
\(175\) 0.677487 + 0.677487i 0.0512132 + 0.0512132i
\(176\) −11.7843 + 11.7843i −0.888274 + 0.888274i
\(177\) −3.11391 + 3.11391i −0.234056 + 0.234056i
\(178\) 2.19759i 0.164716i
\(179\) 4.27126i 0.319249i 0.987178 + 0.159624i \(0.0510283\pi\)
−0.987178 + 0.159624i \(0.948972\pi\)
\(180\) 6.94587 6.94587i 0.517715 0.517715i
\(181\) −0.327291 + 0.327291i −0.0243273 + 0.0243273i −0.719166 0.694838i \(-0.755476\pi\)
0.694838 + 0.719166i \(0.255476\pi\)
\(182\) 2.17699 + 2.17699i 0.161369 + 0.161369i
\(183\) 0.162504 0.0120126
\(184\) 1.68941 + 1.68941i 0.124545 + 0.124545i
\(185\) 14.4834i 1.06484i
\(186\) 0.593578 0.0435233
\(187\) 0 0
\(188\) 16.0351 1.16948
\(189\) 8.63816i 0.628333i
\(190\) −0.200195 0.200195i −0.0145237 0.0145237i
\(191\) 1.43107 0.103549 0.0517745 0.998659i \(-0.483512\pi\)
0.0517745 + 0.998659i \(0.483512\pi\)
\(192\) 3.26391 + 3.26391i 0.235552 + 0.235552i
\(193\) 17.4829 17.4829i 1.25845 1.25845i 0.306617 0.951833i \(-0.400803\pi\)
0.951833 0.306617i \(-0.0991972\pi\)
\(194\) −2.27804 + 2.27804i −0.163553 + 0.163553i
\(195\) 9.73648i 0.697244i
\(196\) 6.51754i 0.465539i
\(197\) −8.31661 + 8.31661i −0.592534 + 0.592534i −0.938315 0.345781i \(-0.887614\pi\)
0.345781 + 0.938315i \(0.387614\pi\)
\(198\) 2.76919 2.76919i 0.196798 0.196798i
\(199\) 14.5100 + 14.5100i 1.02859 + 1.02859i 0.999579 + 0.0290069i \(0.00923449\pi\)
0.0290069 + 0.999579i \(0.490766\pi\)
\(200\) 0.686852 0.0485678
\(201\) −1.52241 1.52241i −0.107382 0.107382i
\(202\) 2.44831i 0.172263i
\(203\) −4.18479 −0.293715
\(204\) 0 0
\(205\) −12.1361 −0.847622
\(206\) 1.84018i 0.128212i
\(207\) 2.79209 + 2.79209i 0.194064 + 0.194064i
\(208\) −15.5226 −1.07630
\(209\) 1.24364 + 1.24364i 0.0860243 + 0.0860243i
\(210\) 0.952682 0.952682i 0.0657413 0.0657413i
\(211\) −15.3568 + 15.3568i −1.05721 + 1.05721i −0.0589455 + 0.998261i \(0.518774\pi\)
−0.998261 + 0.0589455i \(0.981226\pi\)
\(212\) 19.6459i 1.34929i
\(213\) 8.72462i 0.597801i
\(214\) 3.83006 3.83006i 0.261818 0.261818i
\(215\) 2.44927 2.44927i 0.167039 0.167039i
\(216\) −4.37878 4.37878i −0.297938 0.297938i
\(217\) 3.65270 0.247962
\(218\) 0.459630 + 0.459630i 0.0311301 + 0.0311301i
\(219\) 9.58677i 0.647814i
\(220\) −22.3405 −1.50620
\(221\) 0 0
\(222\) −1.88444 −0.126475
\(223\) 19.9513i 1.33604i 0.744144 + 0.668019i \(0.232858\pi\)
−0.744144 + 0.668019i \(0.767142\pi\)
\(224\) −5.09975 5.09975i −0.340741 0.340741i
\(225\) 1.13516 0.0756775
\(226\) 2.97486 + 2.97486i 0.197884 + 0.197884i
\(227\) −2.98514 + 2.98514i −0.198131 + 0.198131i −0.799198 0.601067i \(-0.794742\pi\)
0.601067 + 0.799198i \(0.294742\pi\)
\(228\) 0.405864 0.405864i 0.0268790 0.0268790i
\(229\) 14.5057i 0.958562i 0.877661 + 0.479281i \(0.159103\pi\)
−0.877661 + 0.479281i \(0.840897\pi\)
\(230\) 1.44562i 0.0953215i
\(231\) −5.91819 + 5.91819i −0.389388 + 0.389388i
\(232\) −2.12132 + 2.12132i −0.139272 + 0.139272i
\(233\) −3.62563 3.62563i −0.237523 0.237523i 0.578301 0.815824i \(-0.303716\pi\)
−0.815824 + 0.578301i \(0.803716\pi\)
\(234\) 3.64765 0.238454
\(235\) 14.1615 + 14.1615i 0.923792 + 0.923792i
\(236\) 9.41147i 0.612635i
\(237\) 3.89899 0.253266
\(238\) 0 0
\(239\) −15.8503 −1.02527 −0.512635 0.858607i \(-0.671331\pi\)
−0.512635 + 0.858607i \(0.671331\pi\)
\(240\) 6.79292i 0.438481i
\(241\) −12.8103 12.8103i −0.825184 0.825184i 0.161662 0.986846i \(-0.448314\pi\)
−0.986846 + 0.161662i \(0.948314\pi\)
\(242\) −5.08647 −0.326970
\(243\) −11.3906 11.3906i −0.730708 0.730708i
\(244\) 0.245576 0.245576i 0.0157214 0.0157214i
\(245\) −5.75600 + 5.75600i −0.367737 + 0.367737i
\(246\) 1.57903i 0.100675i
\(247\) 1.63816i 0.104233i
\(248\) 1.85160 1.85160i 0.117577 0.117577i
\(249\) 8.44537 8.44537i 0.535204 0.535204i
\(250\) −2.58833 2.58833i −0.163700 0.163700i
\(251\) 29.6810 1.87345 0.936723 0.350070i \(-0.113842\pi\)
0.936723 + 0.350070i \(0.113842\pi\)
\(252\) −5.56128 5.56128i −0.350328 0.350328i
\(253\) 8.98040i 0.564593i
\(254\) −4.00774 −0.251468
\(255\) 0 0
\(256\) 7.19934 0.449959
\(257\) 7.39693i 0.461408i −0.973024 0.230704i \(-0.925897\pi\)
0.973024 0.230704i \(-0.0741028\pi\)
\(258\) −0.318675 0.318675i −0.0198399 0.0198399i
\(259\) −11.5963 −0.720557
\(260\) −14.7138 14.7138i −0.912509 0.912509i
\(261\) −3.50591 + 3.50591i −0.217011 + 0.217011i
\(262\) 4.75794 4.75794i 0.293946 0.293946i
\(263\) 23.1908i 1.43000i −0.699122 0.715002i \(-0.746426\pi\)
0.699122 0.715002i \(-0.253574\pi\)
\(264\) 6.00000i 0.369274i
\(265\) −17.3504 + 17.3504i −1.06583 + 1.06583i
\(266\) −0.160288 + 0.160288i −0.00982789 + 0.00982789i
\(267\) 3.93468 + 3.93468i 0.240799 + 0.240799i
\(268\) −4.60132 −0.281070
\(269\) −11.2478 11.2478i −0.685788 0.685788i 0.275510 0.961298i \(-0.411153\pi\)
−0.961298 + 0.275510i \(0.911153\pi\)
\(270\) 3.74691i 0.228030i
\(271\) 17.0000 1.03268 0.516338 0.856385i \(-0.327295\pi\)
0.516338 + 0.856385i \(0.327295\pi\)
\(272\) 0 0
\(273\) −7.79561 −0.471812
\(274\) 0.155697i 0.00940598i
\(275\) −1.82555 1.82555i −0.110085 0.110085i
\(276\) −2.93077 −0.176412
\(277\) −11.8834 11.8834i −0.714006 0.714006i 0.253365 0.967371i \(-0.418463\pi\)
−0.967371 + 0.253365i \(0.918463\pi\)
\(278\) 2.86833 2.86833i 0.172031 0.172031i
\(279\) 3.06014 3.06014i 0.183206 0.183206i
\(280\) 5.94356i 0.355196i
\(281\) 28.3209i 1.68948i 0.535175 + 0.844741i \(0.320246\pi\)
−0.535175 + 0.844741i \(0.679754\pi\)
\(282\) 1.84255 1.84255i 0.109722 0.109722i
\(283\) 22.7932 22.7932i 1.35491 1.35491i 0.474844 0.880070i \(-0.342505\pi\)
0.880070 0.474844i \(-0.157495\pi\)
\(284\) −13.1846 13.1846i −0.782364 0.782364i
\(285\) 0.716881 0.0424644
\(286\) −5.86610 5.86610i −0.346869 0.346869i
\(287\) 9.71688i 0.573569i
\(288\) −8.54488 −0.503512
\(289\) 0 0
\(290\) −1.81521 −0.106593
\(291\) 8.15745i 0.478198i
\(292\) −14.4875 14.4875i −0.847818 0.847818i
\(293\) −13.9709 −0.816189 −0.408094 0.912940i \(-0.633807\pi\)
−0.408094 + 0.912940i \(0.633807\pi\)
\(294\) 0.748915 + 0.748915i 0.0436776 + 0.0436776i
\(295\) −8.31179 + 8.31179i −0.483931 + 0.483931i
\(296\) −5.87828 + 5.87828i −0.341668 + 0.341668i
\(297\) 23.2763i 1.35063i
\(298\) 2.94087i 0.170360i
\(299\) 5.91462 5.91462i 0.342051 0.342051i
\(300\) −0.595772 + 0.595772i −0.0343969 + 0.0343969i
\(301\) −1.96103 1.96103i −0.113032 0.113032i
\(302\) 4.78106 0.275119
\(303\) −4.38360 4.38360i −0.251831 0.251831i
\(304\) 1.14290i 0.0655500i
\(305\) 0.433763 0.0248372
\(306\) 0 0
\(307\) 9.04963 0.516490 0.258245 0.966080i \(-0.416856\pi\)
0.258245 + 0.966080i \(0.416856\pi\)
\(308\) 17.8871i 1.01921i
\(309\) 3.29477 + 3.29477i 0.187433 + 0.187433i
\(310\) 1.58441 0.0899883
\(311\) 1.65979 + 1.65979i 0.0941180 + 0.0941180i 0.752598 0.658480i \(-0.228800\pi\)
−0.658480 + 0.752598i \(0.728800\pi\)
\(312\) −3.95168 + 3.95168i −0.223720 + 0.223720i
\(313\) 10.6974 10.6974i 0.604651 0.604651i −0.336892 0.941543i \(-0.609376\pi\)
0.941543 + 0.336892i \(0.109376\pi\)
\(314\) 6.24392i 0.352365i
\(315\) 9.82295i 0.553460i
\(316\) 5.89214 5.89214i 0.331459 0.331459i
\(317\) 7.30993 7.30993i 0.410567 0.410567i −0.471369 0.881936i \(-0.656240\pi\)
0.881936 + 0.471369i \(0.156240\pi\)
\(318\) 2.25746 + 2.25746i 0.126592 + 0.126592i
\(319\) 11.2763 0.631352
\(320\) 8.71218 + 8.71218i 0.487026 + 0.487026i
\(321\) 13.7151i 0.765504i
\(322\) 1.15745 0.0645022
\(323\) 0 0
\(324\) −4.95811 −0.275451
\(325\) 2.40467i 0.133387i
\(326\) −1.77660 1.77660i −0.0983966 0.0983966i
\(327\) −1.64590 −0.0910183
\(328\) 4.92560 + 4.92560i 0.271971 + 0.271971i
\(329\) 11.3385 11.3385i 0.625113 0.625113i
\(330\) −2.56709 + 2.56709i −0.141314 + 0.141314i
\(331\) 18.2567i 1.00348i 0.865019 + 0.501740i \(0.167307\pi\)
−0.865019 + 0.501740i \(0.832693\pi\)
\(332\) 25.5253i 1.40088i
\(333\) −9.71506 + 9.71506i −0.532382 + 0.532382i
\(334\) −1.25393 + 1.25393i −0.0686117 + 0.0686117i
\(335\) −4.06368 4.06368i −0.222023 0.222023i
\(336\) 5.43882 0.296712
\(337\) 11.6639 + 11.6639i 0.635373 + 0.635373i 0.949411 0.314037i \(-0.101682\pi\)
−0.314037 + 0.949411i \(0.601682\pi\)
\(338\) 3.21213i 0.174717i
\(339\) −10.6527 −0.578575
\(340\) 0 0
\(341\) −9.84255 −0.533004
\(342\) 0.268571i 0.0145226i
\(343\) 13.9111 + 13.9111i 0.751128 + 0.751128i
\(344\) −1.98814 −0.107193
\(345\) −2.58833 2.58833i −0.139351 0.139351i
\(346\) 3.14966 3.14966i 0.169327 0.169327i
\(347\) −14.5468 + 14.5468i −0.780911 + 0.780911i −0.979985 0.199074i \(-0.936207\pi\)
0.199074 + 0.979985i \(0.436207\pi\)
\(348\) 3.68004i 0.197271i
\(349\) 6.42427i 0.343883i 0.985107 + 0.171942i \(0.0550040\pi\)
−0.985107 + 0.171942i \(0.944996\pi\)
\(350\) 0.235289 0.235289i 0.0125767 0.0125767i
\(351\) −15.3301 + 15.3301i −0.818261 + 0.818261i
\(352\) 13.7417 + 13.7417i 0.732437 + 0.732437i
\(353\) −27.1685 −1.44603 −0.723016 0.690831i \(-0.757245\pi\)
−0.723016 + 0.690831i \(0.757245\pi\)
\(354\) 1.08145 + 1.08145i 0.0574784 + 0.0574784i
\(355\) 23.2882i 1.23601i
\(356\) 11.8922 0.630284
\(357\) 0 0
\(358\) 1.48339 0.0783997
\(359\) 16.8949i 0.891677i −0.895113 0.445838i \(-0.852906\pi\)
0.895113 0.445838i \(-0.147094\pi\)
\(360\) −4.97937 4.97937i −0.262436 0.262436i
\(361\) 18.8794 0.993652
\(362\) 0.113667 + 0.113667i 0.00597419 + 0.00597419i
\(363\) 9.10710 9.10710i 0.477999 0.477999i
\(364\) −11.7807 + 11.7807i −0.617477 + 0.617477i
\(365\) 25.5895i 1.33941i
\(366\) 0.0564370i 0.00295001i
\(367\) 1.05183 1.05183i 0.0549051 0.0549051i −0.679121 0.734026i \(-0.737639\pi\)
0.734026 + 0.679121i \(0.237639\pi\)
\(368\) −4.12649 + 4.12649i −0.215108 + 0.215108i
\(369\) 8.14056 + 8.14056i 0.423781 + 0.423781i
\(370\) −5.03003 −0.261499
\(371\) 13.8917 + 13.8917i 0.721224 + 0.721224i
\(372\) 3.21213i 0.166541i
\(373\) −24.0496 −1.24524 −0.622621 0.782523i \(-0.713932\pi\)
−0.622621 + 0.782523i \(0.713932\pi\)
\(374\) 0 0
\(375\) 9.26857 0.478627
\(376\) 11.4953i 0.592822i
\(377\) 7.42674 + 7.42674i 0.382496 + 0.382496i
\(378\) −3.00000 −0.154303
\(379\) 14.2818 + 14.2818i 0.733609 + 0.733609i 0.971333 0.237724i \(-0.0764012\pi\)
−0.237724 + 0.971333i \(0.576401\pi\)
\(380\) 1.08335 1.08335i 0.0555747 0.0555747i
\(381\) 7.17569 7.17569i 0.367622 0.367622i
\(382\) 0.497007i 0.0254291i
\(383\) 8.52528i 0.435622i −0.975991 0.217811i \(-0.930108\pi\)
0.975991 0.217811i \(-0.0698916\pi\)
\(384\) 5.90600 5.90600i 0.301389 0.301389i
\(385\) −15.7971 + 15.7971i −0.805095 + 0.805095i
\(386\) −6.07176 6.07176i −0.309045 0.309045i
\(387\) −3.28581 −0.167027
\(388\) −12.3275 12.3275i −0.625836 0.625836i
\(389\) 12.9162i 0.654878i 0.944872 + 0.327439i \(0.106186\pi\)
−0.944872 + 0.327439i \(0.893814\pi\)
\(390\) −3.38144 −0.171226
\(391\) 0 0
\(392\) 4.67230 0.235987
\(393\) 17.0378i 0.859442i
\(394\) 2.88833 + 2.88833i 0.145512 + 0.145512i
\(395\) 10.4074 0.523651
\(396\) 14.9854 + 14.9854i 0.753044 + 0.753044i
\(397\) −17.1296 + 17.1296i −0.859710 + 0.859710i −0.991304 0.131593i \(-0.957991\pi\)
0.131593 + 0.991304i \(0.457991\pi\)
\(398\) 5.03927 5.03927i 0.252596 0.252596i
\(399\) 0.573978i 0.0287348i
\(400\) 1.67768i 0.0838840i
\(401\) 18.0575 18.0575i 0.901748 0.901748i −0.0938395 0.995587i \(-0.529914\pi\)
0.995587 + 0.0938395i \(0.0299141\pi\)
\(402\) −0.528726 + 0.528726i −0.0263705 + 0.0263705i
\(403\) −6.48244 6.48244i −0.322913 0.322913i
\(404\) −13.2490 −0.659161
\(405\) −4.37878 4.37878i −0.217583 0.217583i
\(406\) 1.45336i 0.0721292i
\(407\) 31.2472 1.54887
\(408\) 0 0
\(409\) 10.3523 0.511891 0.255945 0.966691i \(-0.417613\pi\)
0.255945 + 0.966691i \(0.417613\pi\)
\(410\) 4.21482i 0.208155i
\(411\) −0.278768 0.278768i −0.0137506 0.0137506i
\(412\) 9.95811 0.490601
\(413\) 6.65492 + 6.65492i 0.327467 + 0.327467i
\(414\) 0.969684 0.969684i 0.0476574 0.0476574i
\(415\) 22.5428 22.5428i 1.10658 1.10658i
\(416\) 18.1010i 0.887475i
\(417\) 10.2713i 0.502986i
\(418\) 0.431911 0.431911i 0.0211255 0.0211255i
\(419\) −0.928536 + 0.928536i −0.0453619 + 0.0453619i −0.729424 0.684062i \(-0.760212\pi\)
0.684062 + 0.729424i \(0.260212\pi\)
\(420\) 5.15542 + 5.15542i 0.251559 + 0.251559i
\(421\) −8.01548 −0.390651 −0.195325 0.980739i \(-0.562576\pi\)
−0.195325 + 0.980739i \(0.562576\pi\)
\(422\) 5.33337 + 5.33337i 0.259624 + 0.259624i
\(423\) 18.9982i 0.923726i
\(424\) 14.0838 0.683969
\(425\) 0 0
\(426\) −3.03003 −0.146805
\(427\) 0.347296i 0.0168068i
\(428\) 20.7263 + 20.7263i 1.00184 + 1.00184i
\(429\) 21.0060 1.01418
\(430\) −0.850623 0.850623i −0.0410207 0.0410207i
\(431\) −10.4136 + 10.4136i −0.501603 + 0.501603i −0.911936 0.410333i \(-0.865413\pi\)
0.410333 + 0.911936i \(0.365413\pi\)
\(432\) 10.6955 10.6955i 0.514586 0.514586i
\(433\) 8.24123i 0.396048i −0.980197 0.198024i \(-0.936548\pi\)
0.980197 0.198024i \(-0.0634524\pi\)
\(434\) 1.26857i 0.0608933i
\(435\) 3.25005 3.25005i 0.155828 0.155828i
\(436\) −2.48728 + 2.48728i −0.119119 + 0.119119i
\(437\) 0.435484 + 0.435484i 0.0208320 + 0.0208320i
\(438\) −3.32945 −0.159087
\(439\) −28.2534 28.2534i −1.34846 1.34846i −0.887334 0.461128i \(-0.847445\pi\)
−0.461128 0.887334i \(-0.652555\pi\)
\(440\) 16.0155i 0.763508i
\(441\) 7.72193 0.367711
\(442\) 0 0
\(443\) 13.9463 0.662606 0.331303 0.943524i \(-0.392512\pi\)
0.331303 + 0.943524i \(0.392512\pi\)
\(444\) 10.1976i 0.483956i
\(445\) 10.5026 + 10.5026i 0.497873 + 0.497873i
\(446\) 6.92902 0.328098
\(447\) −5.26551 5.26551i −0.249050 0.249050i
\(448\) 6.97549 6.97549i 0.329561 0.329561i
\(449\) 7.23493 7.23493i 0.341437 0.341437i −0.515470 0.856908i \(-0.672383\pi\)
0.856908 + 0.515470i \(0.172383\pi\)
\(450\) 0.394238i 0.0185846i
\(451\) 26.1830i 1.23291i
\(452\) −16.0984 + 16.0984i −0.757203 + 0.757203i
\(453\) −8.56028 + 8.56028i −0.402197 + 0.402197i
\(454\) 1.03673 + 1.03673i 0.0486561 + 0.0486561i
\(455\) −20.8084 −0.975513
\(456\) −0.290956 0.290956i −0.0136253 0.0136253i
\(457\) 11.7706i 0.550607i 0.961357 + 0.275303i \(0.0887783\pi\)
−0.961357 + 0.275303i \(0.911222\pi\)
\(458\) 5.03777 0.235400
\(459\) 0 0
\(460\) −7.82295 −0.364747
\(461\) 19.5003i 0.908220i −0.890946 0.454110i \(-0.849957\pi\)
0.890946 0.454110i \(-0.150043\pi\)
\(462\) 2.05537 + 2.05537i 0.0956243 + 0.0956243i
\(463\) 1.43107 0.0665077 0.0332538 0.999447i \(-0.489413\pi\)
0.0332538 + 0.999447i \(0.489413\pi\)
\(464\) −5.18146 5.18146i −0.240543 0.240543i
\(465\) −2.83681 + 2.83681i −0.131554 + 0.131554i
\(466\) −1.25917 + 1.25917i −0.0583299 + 0.0583299i
\(467\) 10.6895i 0.494653i −0.968932 0.247326i \(-0.920448\pi\)
0.968932 0.247326i \(-0.0795520\pi\)
\(468\) 19.7392i 0.912443i
\(469\) −3.25362 + 3.25362i −0.150238 + 0.150238i
\(470\) 4.91823 4.91823i 0.226861 0.226861i
\(471\) 11.1795 + 11.1795i 0.515123 + 0.515123i
\(472\) 6.74691 0.310552
\(473\) 5.28418 + 5.28418i 0.242967 + 0.242967i
\(474\) 1.35410i 0.0621960i
\(475\) 0.177052 0.00812369
\(476\) 0 0
\(477\) 23.2763 1.06575
\(478\) 5.50475i 0.251781i
\(479\) −27.4835 27.4835i −1.25575 1.25575i −0.953101 0.302651i \(-0.902128\pi\)
−0.302651 0.953101i \(-0.597872\pi\)
\(480\) 7.92127 0.361555
\(481\) 20.5799 + 20.5799i 0.938361 + 0.938361i
\(482\) −4.44897 + 4.44897i −0.202645 + 0.202645i
\(483\) −2.07237 + 2.07237i −0.0942960 + 0.0942960i
\(484\) 27.5253i 1.25115i
\(485\) 21.7743i 0.988718i
\(486\) −3.95592 + 3.95592i −0.179444 + 0.179444i
\(487\) −26.1727 + 26.1727i −1.18600 + 1.18600i −0.207832 + 0.978165i \(0.566641\pi\)
−0.978165 + 0.207832i \(0.933359\pi\)
\(488\) −0.176049 0.176049i −0.00796935 0.00796935i
\(489\) 6.36184 0.287693
\(490\) 1.99904 + 1.99904i 0.0903073 + 0.0903073i
\(491\) 25.4175i 1.14707i 0.819180 + 0.573537i \(0.194429\pi\)
−0.819180 + 0.573537i \(0.805571\pi\)
\(492\) −8.54488 −0.385233
\(493\) 0 0
\(494\) 0.568926 0.0255972
\(495\) 26.4688i 1.18969i
\(496\) 4.52265 + 4.52265i 0.203073 + 0.203073i
\(497\) −18.6459 −0.836383
\(498\) −2.93305 2.93305i −0.131433 0.131433i
\(499\) 15.4318 15.4318i 0.690823 0.690823i −0.271590 0.962413i \(-0.587549\pi\)
0.962413 + 0.271590i \(0.0875495\pi\)
\(500\) 14.0067 14.0067i 0.626397 0.626397i
\(501\) 4.49020i 0.200607i
\(502\) 10.3081i 0.460073i
\(503\) 23.6436 23.6436i 1.05421 1.05421i 0.0557712 0.998444i \(-0.482238\pi\)
0.998444 0.0557712i \(-0.0177617\pi\)
\(504\) −3.98678 + 3.98678i −0.177585 + 0.177585i
\(505\) −11.7009 11.7009i −0.520683 0.520683i
\(506\) −3.11886 −0.138650
\(507\) 5.75119 + 5.75119i 0.255419 + 0.255419i
\(508\) 21.6878i 0.962240i
\(509\) −19.1530 −0.848942 −0.424471 0.905441i \(-0.639540\pi\)
−0.424471 + 0.905441i \(0.639540\pi\)
\(510\) 0 0
\(511\) −20.4884 −0.906355
\(512\) 21.4962i 0.950006i
\(513\) −1.12873 1.12873i −0.0498347 0.0498347i
\(514\) −2.56893 −0.113310
\(515\) 8.79456 + 8.79456i 0.387535 + 0.387535i
\(516\) 1.72450 1.72450i 0.0759170 0.0759170i
\(517\) −30.5527 + 30.5527i −1.34371 + 1.34371i
\(518\) 4.02734i 0.176951i
\(519\) 11.2787i 0.495079i
\(520\) −10.5480 + 10.5480i −0.462561 + 0.462561i
\(521\) 25.1256 25.1256i 1.10077 1.10077i 0.106457 0.994317i \(-0.466049\pi\)
0.994317 0.106457i \(-0.0339507\pi\)
\(522\) 1.21759 + 1.21759i 0.0532925 + 0.0532925i
\(523\) 11.8307 0.517320 0.258660 0.965968i \(-0.416719\pi\)
0.258660 + 0.965968i \(0.416719\pi\)
\(524\) 25.7475 + 25.7475i 1.12478 + 1.12478i
\(525\) 0.842549i 0.0367718i
\(526\) −8.05407 −0.351174
\(527\) 0 0
\(528\) −14.6554 −0.637794
\(529\) 19.8553i 0.863276i
\(530\) 6.02572 + 6.02572i 0.261741 + 0.261741i
\(531\) 11.1506 0.483897
\(532\) −0.867395 0.867395i −0.0376063 0.0376063i
\(533\) 17.2445 17.2445i 0.746943 0.746943i
\(534\) 1.36650 1.36650i 0.0591343 0.0591343i
\(535\) 36.6091i 1.58275i
\(536\) 3.29860i 0.142478i
\(537\) −2.65595 + 2.65595i −0.114613 + 0.114613i
\(538\) −3.90630 + 3.90630i −0.168413 + 0.168413i
\(539\) −12.4183 12.4183i −0.534894 0.534894i
\(540\) 20.2763 0.872554
\(541\) −3.93045 3.93045i −0.168983 0.168983i 0.617549 0.786532i \(-0.288126\pi\)
−0.786532 + 0.617549i \(0.788126\pi\)
\(542\) 5.90404i 0.253600i
\(543\) −0.407031 −0.0174674
\(544\) 0 0
\(545\) −4.39330 −0.188188
\(546\) 2.70739i 0.115865i
\(547\) −3.55297 3.55297i −0.151914 0.151914i 0.627058 0.778972i \(-0.284259\pi\)
−0.778972 + 0.627058i \(0.784259\pi\)
\(548\) −0.842549 −0.0359919
\(549\) −0.290956 0.290956i −0.0124177 0.0124177i
\(550\) −0.634007 + 0.634007i −0.0270342 + 0.0270342i
\(551\) −0.546819 + 0.546819i −0.0232953 + 0.0232953i
\(552\) 2.10101i 0.0894251i
\(553\) 8.33275i 0.354345i
\(554\) −4.12707 + 4.12707i −0.175343 + 0.175343i
\(555\) 9.00605 9.00605i 0.382286 0.382286i
\(556\) 15.5219 + 15.5219i 0.658276 + 0.658276i
\(557\) −3.86659 −0.163833 −0.0819164 0.996639i \(-0.526104\pi\)
−0.0819164 + 0.996639i \(0.526104\pi\)
\(558\) −1.06278 1.06278i −0.0449909 0.0449909i
\(559\) 6.96048i 0.294397i
\(560\) 14.5175 0.613478
\(561\) 0 0
\(562\) 9.83574 0.414896
\(563\) 28.8411i 1.21551i −0.794125 0.607754i \(-0.792071\pi\)
0.794125 0.607754i \(-0.207929\pi\)
\(564\) 9.97092 + 9.97092i 0.419852 + 0.419852i
\(565\) −28.4347 −1.19626
\(566\) −7.91599 7.91599i −0.332734 0.332734i
\(567\) −3.50591 + 3.50591i −0.147235 + 0.147235i
\(568\) −9.45182 + 9.45182i −0.396590 + 0.396590i
\(569\) 2.16157i 0.0906177i 0.998973 + 0.0453089i \(0.0144272\pi\)
−0.998973 + 0.0453089i \(0.985573\pi\)
\(570\) 0.248970i 0.0104282i
\(571\) −4.04412 + 4.04412i −0.169241 + 0.169241i −0.786646 0.617405i \(-0.788184\pi\)
0.617405 + 0.786646i \(0.288184\pi\)
\(572\) 31.7442 31.7442i 1.32729 1.32729i
\(573\) 0.889870 + 0.889870i 0.0371748 + 0.0371748i
\(574\) 3.37464 0.140855
\(575\) −0.639251 0.639251i −0.0266586 0.0266586i
\(576\) 11.6878i 0.486991i
\(577\) −10.8007 −0.449637 −0.224819 0.974401i \(-0.572179\pi\)
−0.224819 + 0.974401i \(0.572179\pi\)
\(578\) 0 0
\(579\) 21.7425 0.903586
\(580\) 9.82295i 0.407876i
\(581\) −18.0491 18.0491i −0.748803 0.748803i
\(582\) −2.83305 −0.117434
\(583\) −37.4326 37.4326i −1.55030 1.55030i
\(584\) −10.3858 + 10.3858i −0.429769 + 0.429769i
\(585\) −17.4328 + 17.4328i −0.720756 + 0.720756i
\(586\) 4.85204i 0.200436i
\(587\) 20.8188i 0.859285i 0.902999 + 0.429643i \(0.141360\pi\)
−0.902999 + 0.429643i \(0.858640\pi\)
\(588\) −4.05273 + 4.05273i −0.167132 + 0.167132i
\(589\) 0.477292 0.477292i 0.0196665 0.0196665i
\(590\) 2.88666 + 2.88666i 0.118842 + 0.118842i
\(591\) −10.3429 −0.425448
\(592\) −14.3581 14.3581i −0.590114 0.590114i
\(593\) 20.6313i 0.847228i −0.905843 0.423614i \(-0.860761\pi\)
0.905843 0.423614i \(-0.139239\pi\)
\(594\) 8.08378 0.331681
\(595\) 0 0
\(596\) −15.9145 −0.651882
\(597\) 18.0452i 0.738540i
\(598\) −2.05413 2.05413i −0.0839994 0.0839994i
\(599\) −31.8212 −1.30018 −0.650089 0.759858i \(-0.725269\pi\)
−0.650089 + 0.759858i \(0.725269\pi\)
\(600\) 0.427098 + 0.427098i 0.0174362 + 0.0174362i
\(601\) −34.0242 + 34.0242i −1.38787 + 1.38787i −0.558102 + 0.829772i \(0.688470\pi\)
−0.829772 + 0.558102i \(0.811530\pi\)
\(602\) −0.681059 + 0.681059i −0.0277579 + 0.0277579i
\(603\) 5.45161i 0.222007i
\(604\) 25.8726i 1.05274i
\(605\) 24.3091 24.3091i 0.988305 0.988305i
\(606\) −1.52241 + 1.52241i −0.0618435 + 0.0618435i
\(607\) −10.9429 10.9429i −0.444160 0.444160i 0.449247 0.893407i \(-0.351692\pi\)
−0.893407 + 0.449247i \(0.851692\pi\)
\(608\) −1.33275 −0.0540501
\(609\) −2.60218 2.60218i −0.105446 0.105446i
\(610\) 0.150644i 0.00609941i
\(611\) −40.2449 −1.62813
\(612\) 0 0
\(613\) −5.04963 −0.203953 −0.101976 0.994787i \(-0.532517\pi\)
−0.101976 + 0.994787i \(0.532517\pi\)
\(614\) 3.14290i 0.126837i
\(615\) −7.54646 7.54646i −0.304303 0.304303i
\(616\) 12.8229 0.516651
\(617\) −19.5207 19.5207i −0.785872 0.785872i 0.194943 0.980815i \(-0.437548\pi\)
−0.980815 + 0.194943i \(0.937548\pi\)
\(618\) 1.14426 1.14426i 0.0460290 0.0460290i
\(619\) 10.4886 10.4886i 0.421571 0.421571i −0.464174 0.885744i \(-0.653649\pi\)
0.885744 + 0.464174i \(0.153649\pi\)
\(620\) 8.57398i 0.344339i
\(621\) 8.15064i 0.327074i
\(622\) 0.576439 0.576439i 0.0231131 0.0231131i
\(623\) 8.40904 8.40904i 0.336901 0.336901i
\(624\) −9.65225 9.65225i −0.386399 0.386399i
\(625\) 27.2891 1.09156
\(626\) −3.71516 3.71516i −0.148487 0.148487i
\(627\) 1.54664i 0.0617667i
\(628\) 33.7888 1.34832
\(629\) 0 0
\(630\) −3.41147 −0.135916
\(631\) 34.0506i 1.35553i 0.735278 + 0.677766i \(0.237052\pi\)
−0.735278 + 0.677766i \(0.762948\pi\)
\(632\) −4.22397 4.22397i −0.168020 0.168020i
\(633\) −19.0983 −0.759090
\(634\) −2.53871 2.53871i −0.100825 0.100825i
\(635\) 19.1537 19.1537i 0.760091 0.760091i
\(636\) −12.2162 + 12.2162i −0.484404 + 0.484404i
\(637\) 16.3577i 0.648117i
\(638\) 3.91622i 0.155045i
\(639\) −15.6211 + 15.6211i −0.617960 + 0.617960i
\(640\) 15.7646 15.7646i 0.623150 0.623150i
\(641\) −10.6230 10.6230i −0.419584 0.419584i 0.465476 0.885060i \(-0.345883\pi\)
−0.885060 + 0.465476i \(0.845883\pi\)
\(642\) 4.76321 0.187989
\(643\) 12.5851 + 12.5851i 0.496307 + 0.496307i 0.910286 0.413980i \(-0.135862\pi\)
−0.413980 + 0.910286i \(0.635862\pi\)
\(644\) 6.26352i 0.246817i
\(645\) 3.04601 0.119936
\(646\) 0 0
\(647\) −46.4971 −1.82799 −0.913995 0.405725i \(-0.867019\pi\)
−0.913995 + 0.405725i \(0.867019\pi\)
\(648\) 3.55438i 0.139629i
\(649\) −17.9323 17.9323i −0.703904 0.703904i
\(650\) −0.835132 −0.0327566
\(651\) 2.27132 + 2.27132i 0.0890201 + 0.0890201i
\(652\) 9.61401 9.61401i 0.376514 0.376514i
\(653\) 21.5882 21.5882i 0.844812 0.844812i −0.144668 0.989480i \(-0.546212\pi\)
0.989480 + 0.144668i \(0.0462115\pi\)
\(654\) 0.571614i 0.0223519i
\(655\) 45.4780i 1.77697i
\(656\) −12.0311 + 12.0311i −0.469736 + 0.469736i
\(657\) −17.1647 + 17.1647i −0.669659 + 0.669659i
\(658\) −3.93782 3.93782i −0.153512 0.153512i
\(659\) 9.83481 0.383110 0.191555 0.981482i \(-0.438647\pi\)
0.191555 + 0.981482i \(0.438647\pi\)
\(660\) −13.8917 13.8917i −0.540736 0.540736i
\(661\) 12.4361i 0.483709i −0.970312 0.241855i \(-0.922244\pi\)
0.970312 0.241855i \(-0.0777557\pi\)
\(662\) 6.34049 0.246430
\(663\) 0 0
\(664\) −18.2986 −0.710123
\(665\) 1.53209i 0.0594119i
\(666\) 3.37401 + 3.37401i 0.130740 + 0.130740i
\(667\) 3.94862 0.152891
\(668\) −6.78559 6.78559i −0.262542 0.262542i
\(669\) −12.4061 + 12.4061i −0.479648 + 0.479648i
\(670\) −1.41130 + 1.41130i −0.0545233 + 0.0545233i
\(671\) 0.935822i 0.0361270i
\(672\) 6.34224i 0.244657i
\(673\) −8.91785 + 8.91785i −0.343758 + 0.343758i −0.857778 0.514020i \(-0.828156\pi\)
0.514020 + 0.857778i \(0.328156\pi\)
\(674\) 4.05083 4.05083i 0.156032 0.156032i
\(675\) 1.65688 + 1.65688i 0.0637732 + 0.0637732i
\(676\) 17.3824 0.668553
\(677\) 3.21663 + 3.21663i 0.123625 + 0.123625i 0.766212 0.642587i \(-0.222139\pi\)
−0.642587 + 0.766212i \(0.722139\pi\)
\(678\) 3.69965i 0.142084i
\(679\) −17.4338 −0.669046
\(680\) 0 0
\(681\) −3.71244 −0.142261
\(682\) 3.41828i 0.130893i
\(683\) −3.44186 3.44186i −0.131699 0.131699i 0.638184 0.769884i \(-0.279686\pi\)
−0.769884 + 0.638184i \(0.779686\pi\)
\(684\) −1.45336 −0.0555707
\(685\) −0.744101 0.744101i −0.0284307 0.0284307i
\(686\) 4.83127 4.83127i 0.184459 0.184459i
\(687\) −9.01991 + 9.01991i −0.344131 + 0.344131i
\(688\) 4.85616i 0.185139i
\(689\) 49.3073i 1.87846i
\(690\) −0.898916 + 0.898916i −0.0342211 + 0.0342211i
\(691\) −3.90083 + 3.90083i −0.148395 + 0.148395i −0.777401 0.629006i \(-0.783462\pi\)
0.629006 + 0.777401i \(0.283462\pi\)
\(692\) 17.0443 + 17.0443i 0.647928 + 0.647928i
\(693\) 21.1925 0.805038
\(694\) 5.05204 + 5.05204i 0.191773 + 0.191773i
\(695\) 27.4165i 1.03997i
\(696\) −2.63816 −0.0999990
\(697\) 0 0
\(698\) 2.23112 0.0844493
\(699\) 4.50898i 0.170545i
\(700\) 1.27326 + 1.27326i 0.0481247 + 0.0481247i
\(701\) −22.3233 −0.843138 −0.421569 0.906796i \(-0.638520\pi\)
−0.421569 + 0.906796i \(0.638520\pi\)
\(702\) 5.32409 + 5.32409i 0.200945 + 0.200945i
\(703\) −1.51526 + 1.51526i −0.0571492 + 0.0571492i
\(704\) −18.7961 + 18.7961i −0.708405 + 0.708405i
\(705\) 17.6117i 0.663297i
\(706\) 9.43552i 0.355110i
\(707\) −9.36844 + 9.36844i −0.352336 + 0.352336i
\(708\) −5.85224 + 5.85224i −0.219940 + 0.219940i
\(709\) 24.5908 + 24.5908i 0.923526 + 0.923526i 0.997277 0.0737506i \(-0.0234969\pi\)
−0.0737506 + 0.997277i \(0.523497\pi\)
\(710\) −8.08790 −0.303533
\(711\) −6.98097 6.98097i −0.261807 0.261807i
\(712\) 8.52528i 0.319498i
\(713\) −3.44656 −0.129075
\(714\) 0 0
\(715\) 56.0702 2.09691
\(716\) 8.02734i 0.299996i
\(717\) −9.85602 9.85602i −0.368080 0.368080i
\(718\) −5.86753 −0.218974
\(719\) −3.00514 3.00514i −0.112073 0.112073i 0.648847 0.760919i \(-0.275252\pi\)
−0.760919 + 0.648847i \(0.775252\pi\)
\(720\) 12.1624 12.1624i 0.453267 0.453267i
\(721\) 7.04145 7.04145i 0.262237 0.262237i
\(722\) 6.55674i 0.244017i
\(723\) 15.9314i 0.592494i
\(724\) −0.615105 + 0.615105i −0.0228602 + 0.0228602i
\(725\) 0.802681 0.802681i 0.0298108 0.0298108i
\(726\) −3.16286 3.16286i −0.117385 0.117385i
\(727\) −29.1644 −1.08165 −0.540823 0.841136i \(-0.681887\pi\)
−0.540823 + 0.841136i \(0.681887\pi\)
\(728\) 8.44537 + 8.44537i 0.313006 + 0.313006i
\(729\) 6.25133i 0.231531i
\(730\) −8.88713 −0.328927
\(731\) 0 0
\(732\) 0.305407 0.0112882
\(733\) 0.502993i 0.0185785i 0.999957 + 0.00928924i \(0.00295690\pi\)
−0.999957 + 0.00928924i \(0.997043\pi\)
\(734\) −0.365297 0.365297i −0.0134833 0.0134833i
\(735\) −7.15839 −0.264041
\(736\) 4.81193 + 4.81193i 0.177370 + 0.177370i
\(737\) 8.76719 8.76719i 0.322944 0.322944i
\(738\) 2.82719 2.82719i 0.104070 0.104070i
\(739\) 14.9581i 0.550243i 0.961409 + 0.275122i \(0.0887181\pi\)
−0.961409 + 0.275122i \(0.911282\pi\)
\(740\) 27.2199i 1.00062i
\(741\) −1.01864 + 1.01864i −0.0374206 + 0.0374206i
\(742\) 4.82455 4.82455i 0.177115 0.177115i
\(743\) −16.5290 16.5290i −0.606391 0.606391i 0.335610 0.942001i \(-0.391058\pi\)
−0.942001 + 0.335610i \(0.891058\pi\)
\(744\) 2.30272 0.0844218
\(745\) −14.0549 14.0549i −0.514933 0.514933i
\(746\) 8.35235i 0.305801i
\(747\) −30.2422 −1.10650
\(748\) 0 0
\(749\) 29.3114 1.07102
\(750\) 3.21894i 0.117539i
\(751\) 12.0414 + 12.0414i 0.439397 + 0.439397i 0.891809 0.452412i \(-0.149436\pi\)
−0.452412 + 0.891809i \(0.649436\pi\)
\(752\) 28.0779 1.02390
\(753\) 18.4562 + 18.4562i 0.672581 + 0.672581i
\(754\) 2.57928 2.57928i 0.0939318 0.0939318i
\(755\) −22.8495 + 22.8495i −0.831579 + 0.831579i
\(756\) 16.2344i 0.590440i
\(757\) 16.3746i 0.595146i 0.954699 + 0.297573i \(0.0961772\pi\)
−0.954699 + 0.297573i \(0.903823\pi\)
\(758\) 4.96003 4.96003i 0.180157 0.180157i
\(759\) 5.58419 5.58419i 0.202693 0.202693i
\(760\) −0.776634 0.776634i −0.0281715 0.0281715i
\(761\) 18.8803 0.684411 0.342206 0.939625i \(-0.388826\pi\)
0.342206 + 0.939625i \(0.388826\pi\)
\(762\) −2.49209 2.49209i −0.0902789 0.0902789i
\(763\) 3.51754i 0.127344i
\(764\) 2.68954 0.0973042
\(765\) 0 0
\(766\) −2.96080 −0.106978
\(767\) 23.6209i 0.852902i
\(768\) 4.47669 + 4.47669i 0.161539 + 0.161539i
\(769\) 27.4766 0.990831 0.495416 0.868656i \(-0.335016\pi\)
0.495416 + 0.868656i \(0.335016\pi\)
\(770\) 5.48628 + 5.48628i 0.197712 + 0.197712i
\(771\) 4.59955 4.59955i 0.165649 0.165649i
\(772\) 32.8572 32.8572i 1.18256 1.18256i
\(773\) 9.90436i 0.356235i 0.984009 + 0.178118i \(0.0570007\pi\)
−0.984009 + 0.178118i \(0.942999\pi\)
\(774\) 1.14115i 0.0410177i
\(775\) −0.700622 + 0.700622i −0.0251671 + 0.0251671i
\(776\) −8.83738 + 8.83738i −0.317243 + 0.317243i
\(777\) −7.21078 7.21078i −0.258685 0.258685i
\(778\) 4.48576 0.160822
\(779\) 1.26969 + 1.26969i 0.0454912 + 0.0454912i
\(780\) 18.2986i 0.655195i
\(781\) 50.2431 1.79784
\(782\) 0 0
\(783\) −10.2344 −0.365748
\(784\) 11.4124i 0.407586i
\(785\) 29.8408 + 29.8408i 1.06506 + 1.06506i
\(786\) 5.91716 0.211058
\(787\) 35.9524 + 35.9524i 1.28157 + 1.28157i 0.939777 + 0.341789i \(0.111033\pi\)
0.341789 + 0.939777i \(0.388967\pi\)
\(788\) −15.6301 + 15.6301i −0.556800 + 0.556800i
\(789\) 14.4205 14.4205i 0.513382 0.513382i
\(790\) 3.61444i 0.128596i
\(791\) 22.7665i 0.809484i
\(792\) 10.7427 10.7427i 0.381727 0.381727i
\(793\) −0.616346 + 0.616346i −0.0218871 + 0.0218871i
\(794\) 5.94905 + 5.94905i 0.211124 + 0.211124i
\(795\) −21.5776 −0.765279
\(796\) 27.2699 + 27.2699i 0.966555 + 0.966555i
\(797\) 5.38650i 0.190800i −0.995439 0.0953998i \(-0.969587\pi\)
0.995439 0.0953998i \(-0.0304129\pi\)
\(798\) −0.199340 −0.00705658
\(799\) 0 0
\(800\) 1.95636 0.0691676
\(801\) 14.0898i 0.497837i
\(802\) −6.27130 6.27130i −0.221447 0.221447i
\(803\) 55.2080 1.94825
\(804\) −2.86119 2.86119i −0.100906 0.100906i
\(805\) −5.53166 + 5.53166i −0.194965 + 0.194965i
\(806\) −2.25133 + 2.25133i −0.0792997 + 0.0792997i
\(807\) 13.9881i 0.492406i
\(808\) 9.49794i 0.334136i
\(809\) 34.4233 34.4233i 1.21026 1.21026i 0.239318 0.970941i \(-0.423076\pi\)
0.970941 0.239318i \(-0.0769238\pi\)
\(810\) −1.52074 + 1.52074i −0.0534332 + 0.0534332i
\(811\) −11.2629 11.2629i −0.395492 0.395492i 0.481147 0.876640i \(-0.340220\pi\)
−0.876640 + 0.481147i \(0.840220\pi\)
\(812\) −7.86484 −0.276002
\(813\) 10.5709 + 10.5709i 0.370739 + 0.370739i
\(814\) 10.8520i 0.380364i
\(815\) 16.9813 0.594830
\(816\) 0 0
\(817\) −0.512489 −0.0179297
\(818\) 3.59533i 0.125708i
\(819\) 13.9577 + 13.9577i 0.487722 + 0.487722i
\(820\) −22.8084 −0.796504
\(821\) −12.0922 12.0922i −0.422022 0.422022i 0.463877 0.885899i \(-0.346458\pi\)
−0.885899 + 0.463877i \(0.846458\pi\)
\(822\) −0.0968152 + 0.0968152i −0.00337682 + 0.00337682i
\(823\) −3.97583 + 3.97583i −0.138589 + 0.138589i −0.772998 0.634409i \(-0.781244\pi\)
0.634409 + 0.772998i \(0.281244\pi\)
\(824\) 7.13878i 0.248691i
\(825\) 2.27033i 0.0790426i
\(826\) 2.31123 2.31123i 0.0804179 0.0804179i
\(827\) −12.6294 + 12.6294i −0.439168 + 0.439168i −0.891732 0.452564i \(-0.850510\pi\)
0.452564 + 0.891732i \(0.350510\pi\)
\(828\) 5.24742 + 5.24742i 0.182360 + 0.182360i
\(829\) −35.8161 −1.24395 −0.621973 0.783039i \(-0.713669\pi\)
−0.621973 + 0.783039i \(0.713669\pi\)
\(830\) −7.82903 7.82903i −0.271750 0.271750i
\(831\) 14.7787i 0.512667i
\(832\) −24.7588 −0.858356
\(833\) 0 0
\(834\) 3.56717 0.123521
\(835\) 11.9855i 0.414774i
\(836\) 2.33728 + 2.33728i 0.0808364 + 0.0808364i
\(837\) 8.93313 0.308774
\(838\) 0.322477 + 0.322477i 0.0111398 + 0.0111398i
\(839\) −25.2956 + 25.2956i −0.873300 + 0.873300i −0.992830 0.119531i \(-0.961861\pi\)
0.119531 + 0.992830i \(0.461861\pi\)
\(840\) 3.69582 3.69582i 0.127518 0.127518i
\(841\) 24.0419i 0.829031i
\(842\) 2.78375i 0.0959343i
\(843\) −17.6105 + 17.6105i −0.606537 + 0.606537i
\(844\) −28.8614 + 28.8614i −0.993449 + 0.993449i
\(845\) 15.3513 + 15.3513i 0.528102 + 0.528102i
\(846\) −6.59802 −0.226845
\(847\) −19.4633 19.4633i −0.668767 0.668767i
\(848\) 34.4005i 1.18132i
\(849\) 28.3465 0.972849
\(850\) 0 0
\(851\) 10.9418 0.375080
\(852\) 16.3969i 0.561749i
\(853\) −7.82546 7.82546i −0.267939 0.267939i 0.560331 0.828269i \(-0.310674\pi\)
−0.828269 + 0.560331i \(0.810674\pi\)
\(854\) −0.120615 −0.00412735
\(855\) −1.28355 1.28355i −0.0438963 0.0438963i
\(856\) 14.8583 14.8583i 0.507846 0.507846i
\(857\) 19.1446 19.1446i 0.653968 0.653968i −0.299978 0.953946i \(-0.596979\pi\)
0.953946 + 0.299978i \(0.0969793\pi\)
\(858\) 7.29530i 0.249058i
\(859\) 51.7279i 1.76493i −0.470374 0.882467i \(-0.655881\pi\)
0.470374 0.882467i \(-0.344119\pi\)
\(860\) 4.60312 4.60312i 0.156965 0.156965i
\(861\) −6.04214 + 6.04214i −0.205916 + 0.205916i
\(862\) 3.61659 + 3.61659i 0.123181 + 0.123181i
\(863\) −45.4712 −1.54786 −0.773929 0.633272i \(-0.781711\pi\)
−0.773929 + 0.633272i \(0.781711\pi\)
\(864\) −12.4721 12.4721i −0.424308 0.424308i
\(865\) 30.1056i 1.02362i
\(866\) −2.86215 −0.0972598
\(867\) 0 0
\(868\) 6.86484 0.233008
\(869\) 22.4534i 0.761678i
\(870\) −1.12873 1.12873i −0.0382676 0.0382676i
\(871\) 11.5484 0.391302
\(872\) 1.78308 + 1.78308i 0.0603828 + 0.0603828i
\(873\) −14.6056 + 14.6056i −0.494324 + 0.494324i
\(874\) 0.151242 0.151242i 0.00511583 0.00511583i
\(875\) 19.8084i 0.669646i
\(876\) 18.0172i 0.608746i
\(877\) 26.5048 26.5048i 0.895002 0.895002i −0.0999866 0.994989i \(-0.531880\pi\)
0.994989 + 0.0999866i \(0.0318800\pi\)
\(878\) −9.81231 + 9.81231i −0.331149 + 0.331149i
\(879\) −8.68738 8.68738i −0.293018 0.293018i
\(880\) −39.1189 −1.31870
\(881\) 12.8664 + 12.8664i 0.433480 + 0.433480i 0.889810 0.456330i \(-0.150837\pi\)
−0.456330 + 0.889810i \(0.650837\pi\)
\(882\) 2.68180i 0.0903009i
\(883\) 0.397860 0.0133891 0.00669453 0.999978i \(-0.497869\pi\)
0.00669453 + 0.999978i \(0.497869\pi\)
\(884\) 0 0
\(885\) −10.3369 −0.347470
\(886\) 4.84348i 0.162720i
\(887\) 16.8174 + 16.8174i 0.564674 + 0.564674i 0.930631 0.365958i \(-0.119259\pi\)
−0.365958 + 0.930631i \(0.619259\pi\)
\(888\) −7.31046 −0.245323
\(889\) −15.3356 15.3356i −0.514339 0.514339i
\(890\) 3.64753 3.64753i 0.122265 0.122265i
\(891\) 9.44701 9.44701i 0.316487 0.316487i
\(892\) 37.4962i 1.25547i
\(893\) 2.96316i 0.0991585i
\(894\) −1.82869 + 1.82869i −0.0611606 + 0.0611606i
\(895\) −7.08939 + 7.08939i −0.236972 + 0.236972i
\(896\) −12.6221 12.6221i −0.421673 0.421673i
\(897\) 7.35565 0.245598
\(898\) −2.51266 2.51266i −0.0838487 0.0838487i
\(899\) 4.32770i 0.144337i
\(900\) 2.13341 0.0711136
\(901\) 0 0
\(902\) −9.09327 −0.302773
\(903\) 2.43882i 0.0811587i
\(904\) 11.5406 + 11.5406i 0.383835 + 0.383835i
\(905\) −1.08647 −0.0361154
\(906\) 2.97295 + 2.97295i 0.0987698 + 0.0987698i
\(907\) 26.5315 26.5315i 0.880963 0.880963i −0.112670 0.993633i \(-0.535940\pi\)
0.993633 + 0.112670i \(0.0359401\pi\)
\(908\) −5.61023 + 5.61023i −0.186182 + 0.186182i
\(909\) 15.6973i 0.520646i
\(910\) 7.22668i 0.239562i
\(911\) −10.4403 + 10.4403i −0.345901 + 0.345901i −0.858580 0.512679i \(-0.828653\pi\)
0.512679 + 0.858580i \(0.328653\pi\)
\(912\) 0.710679 0.710679i 0.0235329 0.0235329i
\(913\) 48.6350 + 48.6350i 1.60958 + 1.60958i
\(914\) 4.08790 0.135216
\(915\) 0.269722 + 0.269722i 0.00891674 + 0.00891674i
\(916\) 27.2618i 0.900754i
\(917\) 36.4124 1.20244
\(918\) 0 0
\(919\) −48.5476 −1.60144 −0.800718 0.599041i \(-0.795549\pi\)
−0.800718 + 0.599041i \(0.795549\pi\)
\(920\) 5.60813i 0.184894i
\(921\) 5.62723 + 5.62723i 0.185424 + 0.185424i
\(922\) −6.77238 −0.223037
\(923\) 33.0908 + 33.0908i 1.08920 + 1.08920i
\(924\) −11.1226 + 11.1226i −0.365905 + 0.365905i
\(925\) 2.22427 2.22427i 0.0731335 0.0731335i
\(926\) 0.497007i 0.0163327i
\(927\) 11.7983i 0.387507i
\(928\) −6.04214 + 6.04214i −0.198343 + 0.198343i
\(929\) −7.96451 + 7.96451i −0.261307 + 0.261307i −0.825585 0.564278i \(-0.809155\pi\)
0.564278 + 0.825585i \(0.309155\pi\)
\(930\) 0.985215 + 0.985215i 0.0323065 + 0.0323065i
\(931\) 1.20439 0.0394724
\(932\) −6.81396 6.81396i −0.223199 0.223199i
\(933\) 2.06418i 0.0675781i
\(934\) −3.71244 −0.121475
\(935\) 0 0
\(936\) 14.1506 0.462528
\(937\) 2.39775i 0.0783310i −0.999233 0.0391655i \(-0.987530\pi\)
0.999233 0.0391655i \(-0.0124700\pi\)
\(938\) 1.12997 + 1.12997i 0.0368949 + 0.0368949i
\(939\) 13.3037 0.434148
\(940\) 26.6149 + 26.6149i 0.868081 + 0.868081i
\(941\) 24.3101 24.3101i 0.792487 0.792487i −0.189411 0.981898i \(-0.560658\pi\)
0.981898 + 0.189411i \(0.0606578\pi\)
\(942\) 3.88259 3.88259i 0.126502 0.126502i
\(943\) 9.16849i 0.298567i
\(944\) 16.4798i 0.536371i
\(945\) 14.3375 14.3375i 0.466399 0.466399i
\(946\) 1.83518 1.83518i 0.0596668 0.0596668i
\(947\) −14.5165 14.5165i −0.471722 0.471722i 0.430749 0.902472i \(-0.358249\pi\)
−0.902472 + 0.430749i \(0.858249\pi\)
\(948\) 7.32770 0.237993
\(949\) 36.3608 + 36.3608i 1.18032 + 1.18032i
\(950\) 0.0614894i 0.00199498i
\(951\) 9.09091 0.294793
\(952\) 0 0
\(953\) 16.5517 0.536162 0.268081 0.963396i \(-0.413611\pi\)
0.268081 + 0.963396i \(0.413611\pi\)
\(954\) 8.08378i 0.261722i
\(955\) 2.37528 + 2.37528i 0.0768623 + 0.0768623i
\(956\) −29.7888 −0.963439
\(957\) 7.01183 + 7.01183i 0.226660 + 0.226660i
\(958\) −9.54492 + 9.54492i −0.308382 + 0.308382i
\(959\) −0.595772 + 0.595772i −0.0192385 + 0.0192385i
\(960\) 10.8348i 0.349692i
\(961\) 27.2226i 0.878147i
\(962\) 7.14731 7.14731i 0.230438 0.230438i
\(963\) 24.5563 24.5563i 0.791317 0.791317i
\(964\) −24.0755 24.0755i −0.775419 0.775419i
\(965\) 58.0360 1.86825
\(966\) 0.719726 + 0.719726i 0.0231568 + 0.0231568i
\(967\) 3.92665i 0.126273i −0.998005 0.0631363i \(-0.979890\pi\)
0.998005 0.0631363i \(-0.0201103\pi\)
\(968\) −19.7324 −0.634222
\(969\) 0 0
\(970\) −7.56212 −0.242805
\(971\) 4.25402i 0.136518i 0.997668 + 0.0682590i \(0.0217444\pi\)
−0.997668 + 0.0682590i \(0.978256\pi\)
\(972\) −21.4073 21.4073i −0.686641 0.686641i
\(973\) 21.9513 0.703726
\(974\) 9.08967 + 9.08967i 0.291252 + 0.291252i
\(975\) 1.49527 1.49527i 0.0478869 0.0478869i
\(976\) 0.430010 0.430010i 0.0137643 0.0137643i
\(977\) 48.5431i 1.55303i −0.630097 0.776516i \(-0.716985\pi\)
0.630097 0.776516i \(-0.283015\pi\)
\(978\) 2.20945i 0.0706503i
\(979\) −22.6589 + 22.6589i −0.724183 + 0.724183i
\(980\) −10.8177 + 10.8177i −0.345560 + 0.345560i
\(981\) 2.94691 + 2.94691i 0.0940875 + 0.0940875i
\(982\) 8.82739 0.281693
\(983\) −24.7910 24.7910i −0.790709 0.790709i 0.190900 0.981609i \(-0.438859\pi\)
−0.981609 + 0.190900i \(0.938859\pi\)
\(984\) 6.12567i 0.195279i
\(985\) −27.6076 −0.879652
\(986\) 0 0
\(987\) 14.1010 0.448840
\(988\) 3.07873i 0.0979473i
\(989\) 1.85036 + 1.85036i 0.0588379 + 0.0588379i
\(990\) 9.19253 0.292158
\(991\) −37.6177 37.6177i −1.19497 1.19497i −0.975655 0.219310i \(-0.929619\pi\)
−0.219310 0.975655i \(-0.570381\pi\)
\(992\) 5.27390 5.27390i 0.167446 0.167446i
\(993\) −11.3524 + 11.3524i −0.360257 + 0.360257i
\(994\) 6.47565i 0.205395i
\(995\) 48.1671i 1.52700i
\(996\) 15.8721 15.8721i 0.502927 0.502927i
\(997\) 15.9660 15.9660i 0.505649 0.505649i −0.407539 0.913188i \(-0.633613\pi\)
0.913188 + 0.407539i \(0.133613\pi\)
\(998\) −5.35941 5.35941i −0.169649 0.169649i
\(999\) −28.3601 −0.897274
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.2.c.d.251.4 12
17.2 even 8 289.2.a.d.1.2 3
17.3 odd 16 289.2.d.f.134.4 24
17.4 even 4 inner 289.2.c.d.38.4 12
17.5 odd 16 289.2.d.f.155.3 24
17.6 odd 16 289.2.d.f.179.4 24
17.7 odd 16 289.2.d.f.110.4 24
17.8 even 8 289.2.b.d.288.3 6
17.9 even 8 289.2.b.d.288.4 6
17.10 odd 16 289.2.d.f.110.3 24
17.11 odd 16 289.2.d.f.179.3 24
17.12 odd 16 289.2.d.f.155.4 24
17.13 even 4 inner 289.2.c.d.38.3 12
17.14 odd 16 289.2.d.f.134.3 24
17.15 even 8 289.2.a.e.1.2 yes 3
17.16 even 2 inner 289.2.c.d.251.3 12
51.2 odd 8 2601.2.a.x.1.2 3
51.32 odd 8 2601.2.a.w.1.2 3
68.15 odd 8 4624.2.a.bd.1.3 3
68.19 odd 8 4624.2.a.bg.1.1 3
85.19 even 8 7225.2.a.t.1.2 3
85.49 even 8 7225.2.a.s.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
289.2.a.d.1.2 3 17.2 even 8
289.2.a.e.1.2 yes 3 17.15 even 8
289.2.b.d.288.3 6 17.8 even 8
289.2.b.d.288.4 6 17.9 even 8
289.2.c.d.38.3 12 17.13 even 4 inner
289.2.c.d.38.4 12 17.4 even 4 inner
289.2.c.d.251.3 12 17.16 even 2 inner
289.2.c.d.251.4 12 1.1 even 1 trivial
289.2.d.f.110.3 24 17.10 odd 16
289.2.d.f.110.4 24 17.7 odd 16
289.2.d.f.134.3 24 17.14 odd 16
289.2.d.f.134.4 24 17.3 odd 16
289.2.d.f.155.3 24 17.5 odd 16
289.2.d.f.155.4 24 17.12 odd 16
289.2.d.f.179.3 24 17.11 odd 16
289.2.d.f.179.4 24 17.6 odd 16
2601.2.a.w.1.2 3 51.32 odd 8
2601.2.a.x.1.2 3 51.2 odd 8
4624.2.a.bd.1.3 3 68.15 odd 8
4624.2.a.bg.1.1 3 68.19 odd 8
7225.2.a.s.1.2 3 85.49 even 8
7225.2.a.t.1.2 3 85.19 even 8