gp: [N,k,chi] = [289,2,Mod(1,289)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(289, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("289.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,-1,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 1 2 ( 1 + 13 ) \beta = \frac{1}{2}(1 + \sqrt{13}) β = 2 1 ( 1 + 1 3 ) .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
17 17 1 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 289 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(289)) S 2 n e w ( Γ 0 ( 2 8 9 ) ) :
T 2 2 + T 2 − 3 T_{2}^{2} + T_{2} - 3 T 2 2 + T 2 − 3
T2^2 + T2 - 3
T 3 2 + T 3 − 3 T_{3}^{2} + T_{3} - 3 T 3 2 + T 3 − 3
T3^2 + T3 - 3
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + T − 3 T^{2} + T - 3 T 2 + T − 3
T^2 + T - 3
3 3 3
T 2 + T − 3 T^{2} + T - 3 T 2 + T − 3
T^2 + T - 3
5 5 5
T 2 + T − 3 T^{2} + T - 3 T 2 + T − 3
T^2 + T - 3
7 7 7
T 2 + 3 T − 1 T^{2} + 3T - 1 T 2 + 3 T − 1
T^2 + 3*T - 1
11 11 1 1
( T + 3 ) 2 (T + 3)^{2} ( T + 3 ) 2
(T + 3)^2
13 13 1 3
T 2 + 3 T − 1 T^{2} + 3T - 1 T 2 + 3 T − 1
T^2 + 3*T - 1
17 17 1 7
T 2 T^{2} T 2
T^2
19 19 1 9
T 2 − T − 29 T^{2} - T - 29 T 2 − T − 2 9
T^2 - T - 29
23 23 2 3
T 2 + T − 3 T^{2} + T - 3 T 2 + T − 3
T^2 + T - 3
29 29 2 9
T 2 + 9 T − 9 T^{2} + 9T - 9 T 2 + 9 T − 9
T^2 + 9*T - 9
31 31 3 1
T 2 − 13 T^{2} - 13 T 2 − 1 3
T^2 - 13
37 37 3 7
T 2 − 6 T − 4 T^{2} - 6T - 4 T 2 − 6 T − 4
T^2 - 6*T - 4
41 41 4 1
( T + 6 ) 2 (T + 6)^{2} ( T + 6 ) 2
(T + 6)^2
43 43 4 3
T 2 + 12 T + 23 T^{2} + 12T + 23 T 2 + 1 2 T + 2 3
T^2 + 12*T + 23
47 47 4 7
( T − 3 ) 2 (T - 3)^{2} ( T − 3 ) 2
(T - 3)^2
53 53 5 3
T 2 − 15 T + 27 T^{2} - 15T + 27 T 2 − 1 5 T + 2 7
T^2 - 15*T + 27
59 59 5 9
( T − 6 ) 2 (T - 6)^{2} ( T − 6 ) 2
(T - 6)^2
61 61 6 1
T 2 + 4 T − 113 T^{2} + 4T - 113 T 2 + 4 T − 1 1 3
T^2 + 4*T - 113
67 67 6 7
T 2 − 18 T + 68 T^{2} - 18T + 68 T 2 − 1 8 T + 6 8
T^2 - 18*T + 68
71 71 7 1
T 2 + 8 T − 36 T^{2} + 8T - 36 T 2 + 8 T − 3 6
T^2 + 8*T - 36
73 73 7 3
T 2 + 8 T + 3 T^{2} + 8T + 3 T 2 + 8 T + 3
T^2 + 8*T + 3
79 79 7 9
T 2 + 8 T − 36 T^{2} + 8T - 36 T 2 + 8 T − 3 6
T^2 + 8*T - 36
83 83 8 3
T 2 + 13 T − 39 T^{2} + 13T - 39 T 2 + 1 3 T − 3 9
T^2 + 13*T - 39
89 89 8 9
T 2 + 8 T − 36 T^{2} + 8T - 36 T 2 + 8 T − 3 6
T^2 + 8*T - 36
97 97 9 7
T 2 − 11 T + 1 T^{2} - 11T + 1 T 2 − 1 1 T + 1
T^2 - 11*T + 1
show more
show less