Properties

Label 289.2.a
Level $289$
Weight $2$
Character orbit 289.a
Rep. character $\chi_{289}(1,\cdot)$
Character field $\Q$
Dimension $15$
Newform subspaces $6$
Sturm bound $51$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 289.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(51\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(289))\).

Total New Old
Modular forms 34 30 4
Cusp forms 17 15 2
Eisenstein series 17 15 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(17\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(15\)\(13\)\(2\)\(7\)\(6\)\(1\)\(8\)\(7\)\(1\)
\(-\)\(19\)\(17\)\(2\)\(10\)\(9\)\(1\)\(9\)\(8\)\(1\)

Trace form

\( 15 q + q^{2} + 9 q^{4} + 2 q^{5} - 4 q^{7} - 3 q^{8} + 3 q^{9} - 2 q^{10} + 4 q^{13} + 4 q^{14} + 2 q^{15} - 7 q^{16} - 15 q^{18} + 6 q^{19} - 2 q^{20} + 4 q^{21} - 4 q^{23} - 13 q^{25} + 2 q^{26} + 4 q^{28}+ \cdots + 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(289))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 17
289.2.a.a 289.a 1.a $1$ $2.308$ \(\Q\) None 17.2.a.a \(-1\) \(0\) \(2\) \(-4\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}+2q^{5}-4q^{7}+3q^{8}-3q^{9}+\cdots\)
289.2.a.b 289.a 1.a $2$ $2.308$ \(\Q(\sqrt{13}) \) None 289.2.a.b \(-1\) \(-1\) \(-1\) \(-3\) $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{3}+(1+\beta )q^{4}-\beta q^{5}+\cdots\)
289.2.a.c 289.a 1.a $2$ $2.308$ \(\Q(\sqrt{13}) \) None 289.2.a.b \(-1\) \(1\) \(1\) \(3\) $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(1-\beta )q^{3}+(1+\beta )q^{4}+\beta q^{5}+\cdots\)
289.2.a.d 289.a 1.a $3$ $2.308$ \(\Q(\zeta_{18})^+\) None 289.2.a.d \(0\) \(-3\) \(-6\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-1-\beta _{2})q^{3}+\beta _{2}q^{4}+(-2+\cdots)q^{5}+\cdots\)
289.2.a.e 289.a 1.a $3$ $2.308$ \(\Q(\zeta_{18})^+\) None 289.2.a.d \(0\) \(3\) \(6\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{3}+\beta _{2}q^{4}+(2-\beta _{1}+\cdots)q^{5}+\cdots\)
289.2.a.f 289.a 1.a $4$ $2.308$ \(\Q(\zeta_{16})^+\) None 17.2.d.a \(4\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{2}+(-\beta _{1}+\beta _{3})q^{3}+(1+2\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(289))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(289)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)