Properties

Label 7225.2.a.m
Level $7225$
Weight $2$
Character orbit 7225.a
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,-1,3,0,6,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 289)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + (\beta - 1) q^{3} + (\beta + 1) q^{4} + 3 q^{6} + (\beta - 2) q^{7} + 3 q^{8} + ( - \beta + 1) q^{9} + 3 q^{11} + (\beta + 2) q^{12} + (\beta + 1) q^{13} + ( - \beta + 3) q^{14} + (\beta - 2) q^{16}+ \cdots + ( - 3 \beta + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{3} + 3 q^{4} + 6 q^{6} - 3 q^{7} + 6 q^{8} + q^{9} + 6 q^{11} + 5 q^{12} + 3 q^{13} + 5 q^{14} - 3 q^{16} - 6 q^{18} + q^{19} + 8 q^{21} + 3 q^{22} - q^{23} - 3 q^{24} + 8 q^{26} - 4 q^{27}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.30278
2.30278
−1.30278 −2.30278 −0.302776 0 3.00000 −3.30278 3.00000 2.30278 0
1.2 2.30278 1.30278 3.30278 0 3.00000 0.302776 3.00000 −1.30278 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7225.2.a.m 2
5.b even 2 1 289.2.a.c yes 2
15.d odd 2 1 2601.2.a.r 2
17.b even 2 1 7225.2.a.n 2
20.d odd 2 1 4624.2.a.j 2
85.c even 2 1 289.2.a.b 2
85.j even 4 2 289.2.b.c 4
85.m even 8 4 289.2.c.b 8
85.p odd 16 8 289.2.d.e 16
255.h odd 2 1 2601.2.a.s 2
340.d odd 2 1 4624.2.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
289.2.a.b 2 85.c even 2 1
289.2.a.c yes 2 5.b even 2 1
289.2.b.c 4 85.j even 4 2
289.2.c.b 8 85.m even 8 4
289.2.d.e 16 85.p odd 16 8
2601.2.a.r 2 15.d odd 2 1
2601.2.a.s 2 255.h odd 2 1
4624.2.a.j 2 20.d odd 2 1
4624.2.a.v 2 340.d odd 2 1
7225.2.a.m 2 1.a even 1 1 trivial
7225.2.a.n 2 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7225))\):

\( T_{2}^{2} - T_{2} - 3 \) Copy content Toggle raw display
\( T_{3}^{2} + T_{3} - 3 \) Copy content Toggle raw display
\( T_{7}^{2} + 3T_{7} - 1 \) Copy content Toggle raw display
\( T_{11} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 3 \) Copy content Toggle raw display
$3$ \( T^{2} + T - 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 3T - 1 \) Copy content Toggle raw display
$11$ \( (T - 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 3T - 1 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - T - 29 \) Copy content Toggle raw display
$23$ \( T^{2} + T - 3 \) Copy content Toggle raw display
$29$ \( T^{2} - 9T - 9 \) Copy content Toggle raw display
$31$ \( T^{2} - 13 \) Copy content Toggle raw display
$37$ \( T^{2} - 6T - 4 \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 12T + 23 \) Copy content Toggle raw display
$47$ \( (T + 3)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 15T + 27 \) Copy content Toggle raw display
$59$ \( (T - 6)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 4T - 113 \) Copy content Toggle raw display
$67$ \( T^{2} + 18T + 68 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T - 36 \) Copy content Toggle raw display
$73$ \( T^{2} + 8T + 3 \) Copy content Toggle raw display
$79$ \( T^{2} - 8T - 36 \) Copy content Toggle raw display
$83$ \( T^{2} - 13T - 39 \) Copy content Toggle raw display
$89$ \( T^{2} + 8T - 36 \) Copy content Toggle raw display
$97$ \( T^{2} - 11T + 1 \) Copy content Toggle raw display
show more
show less