Properties

Label 2883.2.a.r.1.8
Level $2883$
Weight $2$
Character 2883.1
Self dual yes
Analytic conductor $23.021$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2883,2,Mod(1,2883)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2883, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2883.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2883 = 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2883.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,8,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0208709027\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.1413480448.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 2x^{6} + 16x^{5} - x^{4} - 16x^{3} + 2x^{2} + 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(1.13761\) of defining polynomial
Character \(\chi\) \(=\) 2883.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.55182 q^{2} +1.00000 q^{3} +4.51180 q^{4} -3.99832 q^{5} +2.55182 q^{6} -2.72957 q^{7} +6.40966 q^{8} +1.00000 q^{9} -10.2030 q^{10} -2.41812 q^{11} +4.51180 q^{12} -1.70470 q^{13} -6.96538 q^{14} -3.99832 q^{15} +7.33272 q^{16} -0.933445 q^{17} +2.55182 q^{18} -2.19748 q^{19} -18.0396 q^{20} -2.72957 q^{21} -6.17061 q^{22} -6.25483 q^{23} +6.40966 q^{24} +10.9866 q^{25} -4.35008 q^{26} +1.00000 q^{27} -12.3153 q^{28} +0.762139 q^{29} -10.2030 q^{30} +5.89248 q^{32} -2.41812 q^{33} -2.38199 q^{34} +10.9137 q^{35} +4.51180 q^{36} -11.6934 q^{37} -5.60759 q^{38} -1.70470 q^{39} -25.6279 q^{40} +11.6920 q^{41} -6.96538 q^{42} -2.08795 q^{43} -10.9101 q^{44} -3.99832 q^{45} -15.9612 q^{46} -3.12589 q^{47} +7.33272 q^{48} +0.450549 q^{49} +28.0358 q^{50} -0.933445 q^{51} -7.69125 q^{52} -5.23989 q^{53} +2.55182 q^{54} +9.66842 q^{55} -17.4956 q^{56} -2.19748 q^{57} +1.94484 q^{58} +6.93133 q^{59} -18.0396 q^{60} -6.64318 q^{61} -2.72957 q^{63} +0.371123 q^{64} +6.81593 q^{65} -6.17061 q^{66} -3.86409 q^{67} -4.21152 q^{68} -6.25483 q^{69} +27.8498 q^{70} -2.62805 q^{71} +6.40966 q^{72} +2.32021 q^{73} -29.8395 q^{74} +10.9866 q^{75} -9.91460 q^{76} +6.60042 q^{77} -4.35008 q^{78} -8.41452 q^{79} -29.3186 q^{80} +1.00000 q^{81} +29.8358 q^{82} +12.7355 q^{83} -12.3153 q^{84} +3.73222 q^{85} -5.32809 q^{86} +0.762139 q^{87} -15.4993 q^{88} +11.6131 q^{89} -10.2030 q^{90} +4.65309 q^{91} -28.2205 q^{92} -7.97671 q^{94} +8.78625 q^{95} +5.89248 q^{96} +4.40969 q^{97} +1.14972 q^{98} -2.41812 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 8 q^{3} + 4 q^{4} + 4 q^{6} - 8 q^{7} + 8 q^{9} - 20 q^{10} - 8 q^{11} + 4 q^{12} - 16 q^{13} - 12 q^{14} + 4 q^{16} + 4 q^{18} - 16 q^{19} - 12 q^{20} - 8 q^{21} - 16 q^{23} + 8 q^{25}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.55182 1.80441 0.902205 0.431307i \(-0.141947\pi\)
0.902205 + 0.431307i \(0.141947\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.51180 2.25590
\(5\) −3.99832 −1.78810 −0.894052 0.447963i \(-0.852150\pi\)
−0.894052 + 0.447963i \(0.852150\pi\)
\(6\) 2.55182 1.04178
\(7\) −2.72957 −1.03168 −0.515840 0.856685i \(-0.672520\pi\)
−0.515840 + 0.856685i \(0.672520\pi\)
\(8\) 6.40966 2.26616
\(9\) 1.00000 0.333333
\(10\) −10.2030 −3.22648
\(11\) −2.41812 −0.729090 −0.364545 0.931186i \(-0.618776\pi\)
−0.364545 + 0.931186i \(0.618776\pi\)
\(12\) 4.51180 1.30244
\(13\) −1.70470 −0.472798 −0.236399 0.971656i \(-0.575967\pi\)
−0.236399 + 0.971656i \(0.575967\pi\)
\(14\) −6.96538 −1.86158
\(15\) −3.99832 −1.03236
\(16\) 7.33272 1.83318
\(17\) −0.933445 −0.226394 −0.113197 0.993573i \(-0.536109\pi\)
−0.113197 + 0.993573i \(0.536109\pi\)
\(18\) 2.55182 0.601470
\(19\) −2.19748 −0.504137 −0.252069 0.967709i \(-0.581111\pi\)
−0.252069 + 0.967709i \(0.581111\pi\)
\(20\) −18.0396 −4.03378
\(21\) −2.72957 −0.595641
\(22\) −6.17061 −1.31558
\(23\) −6.25483 −1.30422 −0.652111 0.758124i \(-0.726116\pi\)
−0.652111 + 0.758124i \(0.726116\pi\)
\(24\) 6.40966 1.30837
\(25\) 10.9866 2.19732
\(26\) −4.35008 −0.853122
\(27\) 1.00000 0.192450
\(28\) −12.3153 −2.32737
\(29\) 0.762139 0.141526 0.0707629 0.997493i \(-0.477457\pi\)
0.0707629 + 0.997493i \(0.477457\pi\)
\(30\) −10.2030 −1.86281
\(31\) 0 0
\(32\) 5.89248 1.04165
\(33\) −2.41812 −0.420941
\(34\) −2.38199 −0.408507
\(35\) 10.9137 1.84475
\(36\) 4.51180 0.751966
\(37\) −11.6934 −1.92238 −0.961191 0.275884i \(-0.911029\pi\)
−0.961191 + 0.275884i \(0.911029\pi\)
\(38\) −5.60759 −0.909671
\(39\) −1.70470 −0.272970
\(40\) −25.6279 −4.05213
\(41\) 11.6920 1.82598 0.912988 0.407986i \(-0.133769\pi\)
0.912988 + 0.407986i \(0.133769\pi\)
\(42\) −6.96538 −1.07478
\(43\) −2.08795 −0.318410 −0.159205 0.987246i \(-0.550893\pi\)
−0.159205 + 0.987246i \(0.550893\pi\)
\(44\) −10.9101 −1.64475
\(45\) −3.99832 −0.596035
\(46\) −15.9612 −2.35335
\(47\) −3.12589 −0.455958 −0.227979 0.973666i \(-0.573212\pi\)
−0.227979 + 0.973666i \(0.573212\pi\)
\(48\) 7.33272 1.05839
\(49\) 0.450549 0.0643642
\(50\) 28.0358 3.96487
\(51\) −0.933445 −0.130709
\(52\) −7.69125 −1.06658
\(53\) −5.23989 −0.719754 −0.359877 0.933000i \(-0.617181\pi\)
−0.359877 + 0.933000i \(0.617181\pi\)
\(54\) 2.55182 0.347259
\(55\) 9.66842 1.30369
\(56\) −17.4956 −2.33795
\(57\) −2.19748 −0.291064
\(58\) 1.94484 0.255371
\(59\) 6.93133 0.902382 0.451191 0.892427i \(-0.350999\pi\)
0.451191 + 0.892427i \(0.350999\pi\)
\(60\) −18.0396 −2.32891
\(61\) −6.64318 −0.850572 −0.425286 0.905059i \(-0.639827\pi\)
−0.425286 + 0.905059i \(0.639827\pi\)
\(62\) 0 0
\(63\) −2.72957 −0.343893
\(64\) 0.371123 0.0463903
\(65\) 6.81593 0.845412
\(66\) −6.17061 −0.759550
\(67\) −3.86409 −0.472073 −0.236037 0.971744i \(-0.575849\pi\)
−0.236037 + 0.971744i \(0.575849\pi\)
\(68\) −4.21152 −0.510721
\(69\) −6.25483 −0.752993
\(70\) 27.8498 3.32869
\(71\) −2.62805 −0.311892 −0.155946 0.987766i \(-0.549843\pi\)
−0.155946 + 0.987766i \(0.549843\pi\)
\(72\) 6.40966 0.755386
\(73\) 2.32021 0.271560 0.135780 0.990739i \(-0.456646\pi\)
0.135780 + 0.990739i \(0.456646\pi\)
\(74\) −29.8395 −3.46877
\(75\) 10.9866 1.26862
\(76\) −9.91460 −1.13728
\(77\) 6.60042 0.752188
\(78\) −4.35008 −0.492550
\(79\) −8.41452 −0.946707 −0.473353 0.880873i \(-0.656957\pi\)
−0.473353 + 0.880873i \(0.656957\pi\)
\(80\) −29.3186 −3.27792
\(81\) 1.00000 0.111111
\(82\) 29.8358 3.29481
\(83\) 12.7355 1.39790 0.698950 0.715171i \(-0.253651\pi\)
0.698950 + 0.715171i \(0.253651\pi\)
\(84\) −12.3153 −1.34371
\(85\) 3.73222 0.404816
\(86\) −5.32809 −0.574543
\(87\) 0.762139 0.0817099
\(88\) −15.4993 −1.65223
\(89\) 11.6131 1.23099 0.615495 0.788141i \(-0.288956\pi\)
0.615495 + 0.788141i \(0.288956\pi\)
\(90\) −10.2030 −1.07549
\(91\) 4.65309 0.487776
\(92\) −28.2205 −2.94219
\(93\) 0 0
\(94\) −7.97671 −0.822735
\(95\) 8.78625 0.901451
\(96\) 5.89248 0.601399
\(97\) 4.40969 0.447736 0.223868 0.974619i \(-0.428132\pi\)
0.223868 + 0.974619i \(0.428132\pi\)
\(98\) 1.14972 0.116139
\(99\) −2.41812 −0.243030
\(100\) 49.5693 4.95693
\(101\) −5.26496 −0.523883 −0.261942 0.965084i \(-0.584363\pi\)
−0.261942 + 0.965084i \(0.584363\pi\)
\(102\) −2.38199 −0.235852
\(103\) 7.72596 0.761261 0.380631 0.924727i \(-0.375707\pi\)
0.380631 + 0.924727i \(0.375707\pi\)
\(104\) −10.9265 −1.07143
\(105\) 10.9137 1.06507
\(106\) −13.3713 −1.29873
\(107\) 9.12641 0.882283 0.441142 0.897437i \(-0.354574\pi\)
0.441142 + 0.897437i \(0.354574\pi\)
\(108\) 4.51180 0.434148
\(109\) 6.62864 0.634908 0.317454 0.948274i \(-0.397172\pi\)
0.317454 + 0.948274i \(0.397172\pi\)
\(110\) 24.6721 2.35239
\(111\) −11.6934 −1.10989
\(112\) −20.0152 −1.89126
\(113\) −3.50827 −0.330030 −0.165015 0.986291i \(-0.552767\pi\)
−0.165015 + 0.986291i \(0.552767\pi\)
\(114\) −5.60759 −0.525199
\(115\) 25.0088 2.33208
\(116\) 3.43862 0.319268
\(117\) −1.70470 −0.157599
\(118\) 17.6875 1.62827
\(119\) 2.54790 0.233566
\(120\) −25.6279 −2.33950
\(121\) −5.15270 −0.468427
\(122\) −16.9522 −1.53478
\(123\) 11.6920 1.05423
\(124\) 0 0
\(125\) −23.9363 −2.14093
\(126\) −6.96538 −0.620525
\(127\) 12.3067 1.09205 0.546023 0.837770i \(-0.316141\pi\)
0.546023 + 0.837770i \(0.316141\pi\)
\(128\) −10.8379 −0.957946
\(129\) −2.08795 −0.183834
\(130\) 17.3930 1.52547
\(131\) 11.0603 0.966343 0.483171 0.875526i \(-0.339485\pi\)
0.483171 + 0.875526i \(0.339485\pi\)
\(132\) −10.9101 −0.949599
\(133\) 5.99819 0.520109
\(134\) −9.86046 −0.851814
\(135\) −3.99832 −0.344121
\(136\) −5.98307 −0.513044
\(137\) −20.5211 −1.75324 −0.876619 0.481185i \(-0.840207\pi\)
−0.876619 + 0.481185i \(0.840207\pi\)
\(138\) −15.9612 −1.35871
\(139\) −20.5914 −1.74654 −0.873272 0.487234i \(-0.838006\pi\)
−0.873272 + 0.487234i \(0.838006\pi\)
\(140\) 49.2404 4.16157
\(141\) −3.12589 −0.263247
\(142\) −6.70631 −0.562781
\(143\) 4.12216 0.344712
\(144\) 7.33272 0.611060
\(145\) −3.04728 −0.253063
\(146\) 5.92077 0.490006
\(147\) 0.450549 0.0371607
\(148\) −52.7582 −4.33670
\(149\) 13.1296 1.07562 0.537810 0.843066i \(-0.319252\pi\)
0.537810 + 0.843066i \(0.319252\pi\)
\(150\) 28.0358 2.28912
\(151\) 8.38954 0.682731 0.341365 0.939931i \(-0.389111\pi\)
0.341365 + 0.939931i \(0.389111\pi\)
\(152\) −14.0851 −1.14245
\(153\) −0.933445 −0.0754646
\(154\) 16.8431 1.35726
\(155\) 0 0
\(156\) −7.69125 −0.615793
\(157\) 3.01163 0.240355 0.120177 0.992752i \(-0.461654\pi\)
0.120177 + 0.992752i \(0.461654\pi\)
\(158\) −21.4723 −1.70825
\(159\) −5.23989 −0.415550
\(160\) −23.5600 −1.86259
\(161\) 17.0730 1.34554
\(162\) 2.55182 0.200490
\(163\) −9.76076 −0.764522 −0.382261 0.924054i \(-0.624854\pi\)
−0.382261 + 0.924054i \(0.624854\pi\)
\(164\) 52.7517 4.11922
\(165\) 9.66842 0.752686
\(166\) 32.4987 2.52239
\(167\) −6.05312 −0.468404 −0.234202 0.972188i \(-0.575248\pi\)
−0.234202 + 0.972188i \(0.575248\pi\)
\(168\) −17.4956 −1.34982
\(169\) −10.0940 −0.776462
\(170\) 9.52395 0.730454
\(171\) −2.19748 −0.168046
\(172\) −9.42043 −0.718301
\(173\) −1.78486 −0.135700 −0.0678501 0.997696i \(-0.521614\pi\)
−0.0678501 + 0.997696i \(0.521614\pi\)
\(174\) 1.94484 0.147438
\(175\) −29.9887 −2.26693
\(176\) −17.7314 −1.33655
\(177\) 6.93133 0.520991
\(178\) 29.6347 2.22121
\(179\) 24.8227 1.85534 0.927668 0.373406i \(-0.121810\pi\)
0.927668 + 0.373406i \(0.121810\pi\)
\(180\) −18.0396 −1.34459
\(181\) 13.0823 0.972401 0.486201 0.873847i \(-0.338382\pi\)
0.486201 + 0.873847i \(0.338382\pi\)
\(182\) 11.8739 0.880149
\(183\) −6.64318 −0.491078
\(184\) −40.0913 −2.95557
\(185\) 46.7540 3.43742
\(186\) 0 0
\(187\) 2.25718 0.165062
\(188\) −14.1034 −1.02859
\(189\) −2.72957 −0.198547
\(190\) 22.4210 1.62659
\(191\) 16.6264 1.20304 0.601521 0.798857i \(-0.294562\pi\)
0.601521 + 0.798857i \(0.294562\pi\)
\(192\) 0.371123 0.0267835
\(193\) −13.8340 −0.995796 −0.497898 0.867236i \(-0.665895\pi\)
−0.497898 + 0.867236i \(0.665895\pi\)
\(194\) 11.2527 0.807900
\(195\) 6.81593 0.488099
\(196\) 2.03279 0.145199
\(197\) −24.0564 −1.71395 −0.856973 0.515362i \(-0.827658\pi\)
−0.856973 + 0.515362i \(0.827658\pi\)
\(198\) −6.17061 −0.438526
\(199\) −0.477485 −0.0338480 −0.0169240 0.999857i \(-0.505387\pi\)
−0.0169240 + 0.999857i \(0.505387\pi\)
\(200\) 70.4203 4.97947
\(201\) −3.86409 −0.272552
\(202\) −13.4352 −0.945300
\(203\) −2.08031 −0.146009
\(204\) −4.21152 −0.294865
\(205\) −46.7482 −3.26504
\(206\) 19.7153 1.37363
\(207\) −6.25483 −0.434741
\(208\) −12.5001 −0.866724
\(209\) 5.31378 0.367562
\(210\) 27.8498 1.92182
\(211\) −24.5285 −1.68861 −0.844307 0.535860i \(-0.819987\pi\)
−0.844307 + 0.535860i \(0.819987\pi\)
\(212\) −23.6413 −1.62369
\(213\) −2.62805 −0.180071
\(214\) 23.2890 1.59200
\(215\) 8.34832 0.569351
\(216\) 6.40966 0.436122
\(217\) 0 0
\(218\) 16.9151 1.14564
\(219\) 2.32021 0.156785
\(220\) 43.6220 2.94099
\(221\) 1.59124 0.107039
\(222\) −29.8395 −2.00269
\(223\) 0.111301 0.00745330 0.00372665 0.999993i \(-0.498814\pi\)
0.00372665 + 0.999993i \(0.498814\pi\)
\(224\) −16.0839 −1.07465
\(225\) 10.9866 0.732439
\(226\) −8.95248 −0.595510
\(227\) 14.6566 0.972795 0.486398 0.873738i \(-0.338311\pi\)
0.486398 + 0.873738i \(0.338311\pi\)
\(228\) −9.91460 −0.656611
\(229\) −17.4538 −1.15338 −0.576691 0.816962i \(-0.695656\pi\)
−0.576691 + 0.816962i \(0.695656\pi\)
\(230\) 63.8181 4.20804
\(231\) 6.60042 0.434276
\(232\) 4.88506 0.320720
\(233\) 7.95412 0.521092 0.260546 0.965461i \(-0.416098\pi\)
0.260546 + 0.965461i \(0.416098\pi\)
\(234\) −4.35008 −0.284374
\(235\) 12.4983 0.815300
\(236\) 31.2728 2.03568
\(237\) −8.41452 −0.546581
\(238\) 6.50180 0.421449
\(239\) −2.55515 −0.165279 −0.0826394 0.996580i \(-0.526335\pi\)
−0.0826394 + 0.996580i \(0.526335\pi\)
\(240\) −29.3186 −1.89251
\(241\) 10.6788 0.687882 0.343941 0.938991i \(-0.388238\pi\)
0.343941 + 0.938991i \(0.388238\pi\)
\(242\) −13.1488 −0.845235
\(243\) 1.00000 0.0641500
\(244\) −29.9727 −1.91880
\(245\) −1.80144 −0.115090
\(246\) 29.8358 1.90226
\(247\) 3.74605 0.238355
\(248\) 0 0
\(249\) 12.7355 0.807078
\(250\) −61.0813 −3.86312
\(251\) −29.6514 −1.87158 −0.935791 0.352555i \(-0.885313\pi\)
−0.935791 + 0.352555i \(0.885313\pi\)
\(252\) −12.3153 −0.775789
\(253\) 15.1249 0.950895
\(254\) 31.4046 1.97050
\(255\) 3.73222 0.233720
\(256\) −28.3987 −1.77492
\(257\) −10.4989 −0.654905 −0.327453 0.944868i \(-0.606190\pi\)
−0.327453 + 0.944868i \(0.606190\pi\)
\(258\) −5.32809 −0.331712
\(259\) 31.9179 1.98328
\(260\) 30.7521 1.90716
\(261\) 0.762139 0.0471752
\(262\) 28.2239 1.74368
\(263\) −9.75396 −0.601455 −0.300728 0.953710i \(-0.597230\pi\)
−0.300728 + 0.953710i \(0.597230\pi\)
\(264\) −15.4993 −0.953917
\(265\) 20.9508 1.28700
\(266\) 15.3063 0.938490
\(267\) 11.6131 0.710712
\(268\) −17.4340 −1.06495
\(269\) −3.92734 −0.239454 −0.119727 0.992807i \(-0.538202\pi\)
−0.119727 + 0.992807i \(0.538202\pi\)
\(270\) −10.2030 −0.620936
\(271\) 17.8088 1.08181 0.540905 0.841084i \(-0.318082\pi\)
0.540905 + 0.841084i \(0.318082\pi\)
\(272\) −6.84470 −0.415021
\(273\) 4.65309 0.281618
\(274\) −52.3663 −3.16356
\(275\) −26.5669 −1.60204
\(276\) −28.2205 −1.69868
\(277\) −1.28699 −0.0773278 −0.0386639 0.999252i \(-0.512310\pi\)
−0.0386639 + 0.999252i \(0.512310\pi\)
\(278\) −52.5457 −3.15148
\(279\) 0 0
\(280\) 69.9531 4.18050
\(281\) 11.3771 0.678703 0.339352 0.940660i \(-0.389792\pi\)
0.339352 + 0.940660i \(0.389792\pi\)
\(282\) −7.97671 −0.475006
\(283\) −15.6331 −0.929289 −0.464645 0.885497i \(-0.653818\pi\)
−0.464645 + 0.885497i \(0.653818\pi\)
\(284\) −11.8572 −0.703596
\(285\) 8.78625 0.520453
\(286\) 10.5190 0.622003
\(287\) −31.9140 −1.88382
\(288\) 5.89248 0.347218
\(289\) −16.1287 −0.948746
\(290\) −7.77612 −0.456629
\(291\) 4.40969 0.258501
\(292\) 10.4683 0.612613
\(293\) −20.8849 −1.22011 −0.610055 0.792359i \(-0.708853\pi\)
−0.610055 + 0.792359i \(0.708853\pi\)
\(294\) 1.14972 0.0670531
\(295\) −27.7137 −1.61355
\(296\) −74.9507 −4.35642
\(297\) −2.41812 −0.140314
\(298\) 33.5045 1.94086
\(299\) 10.6626 0.616633
\(300\) 49.5693 2.86188
\(301\) 5.69922 0.328497
\(302\) 21.4086 1.23193
\(303\) −5.26496 −0.302464
\(304\) −16.1135 −0.924175
\(305\) 26.5616 1.52091
\(306\) −2.38199 −0.136169
\(307\) −6.92691 −0.395340 −0.197670 0.980269i \(-0.563337\pi\)
−0.197670 + 0.980269i \(0.563337\pi\)
\(308\) 29.7798 1.69686
\(309\) 7.72596 0.439515
\(310\) 0 0
\(311\) 21.8019 1.23627 0.618136 0.786072i \(-0.287888\pi\)
0.618136 + 0.786072i \(0.287888\pi\)
\(312\) −10.9265 −0.618593
\(313\) −19.4262 −1.09804 −0.549018 0.835811i \(-0.684998\pi\)
−0.549018 + 0.835811i \(0.684998\pi\)
\(314\) 7.68516 0.433698
\(315\) 10.9137 0.614917
\(316\) −37.9646 −2.13567
\(317\) −13.7195 −0.770561 −0.385281 0.922799i \(-0.625895\pi\)
−0.385281 + 0.922799i \(0.625895\pi\)
\(318\) −13.3713 −0.749823
\(319\) −1.84294 −0.103185
\(320\) −1.48387 −0.0829508
\(321\) 9.12641 0.509386
\(322\) 43.5672 2.42791
\(323\) 2.05123 0.114134
\(324\) 4.51180 0.250655
\(325\) −18.7288 −1.03889
\(326\) −24.9077 −1.37951
\(327\) 6.62864 0.366564
\(328\) 74.9415 4.13795
\(329\) 8.53233 0.470403
\(330\) 24.6721 1.35815
\(331\) 18.3803 1.01027 0.505137 0.863039i \(-0.331442\pi\)
0.505137 + 0.863039i \(0.331442\pi\)
\(332\) 57.4599 3.15352
\(333\) −11.6934 −0.640794
\(334\) −15.4465 −0.845194
\(335\) 15.4499 0.844117
\(336\) −20.0152 −1.09192
\(337\) 14.9250 0.813017 0.406508 0.913647i \(-0.366746\pi\)
0.406508 + 0.913647i \(0.366746\pi\)
\(338\) −25.7581 −1.40106
\(339\) −3.50827 −0.190543
\(340\) 16.8390 0.913223
\(341\) 0 0
\(342\) −5.60759 −0.303224
\(343\) 17.8772 0.965277
\(344\) −13.3831 −0.721567
\(345\) 25.0088 1.34643
\(346\) −4.55464 −0.244859
\(347\) −10.8392 −0.581876 −0.290938 0.956742i \(-0.593967\pi\)
−0.290938 + 0.956742i \(0.593967\pi\)
\(348\) 3.43862 0.184329
\(349\) 15.3503 0.821681 0.410840 0.911707i \(-0.365235\pi\)
0.410840 + 0.911707i \(0.365235\pi\)
\(350\) −76.5257 −4.09047
\(351\) −1.70470 −0.0909900
\(352\) −14.2487 −0.759459
\(353\) 16.5951 0.883268 0.441634 0.897195i \(-0.354399\pi\)
0.441634 + 0.897195i \(0.354399\pi\)
\(354\) 17.6875 0.940081
\(355\) 10.5078 0.557695
\(356\) 52.3961 2.77699
\(357\) 2.54790 0.134849
\(358\) 63.3431 3.34779
\(359\) −0.262969 −0.0138790 −0.00693948 0.999976i \(-0.502209\pi\)
−0.00693948 + 0.999976i \(0.502209\pi\)
\(360\) −25.6279 −1.35071
\(361\) −14.1711 −0.745845
\(362\) 33.3838 1.75461
\(363\) −5.15270 −0.270447
\(364\) 20.9938 1.10037
\(365\) −9.27696 −0.485578
\(366\) −16.9522 −0.886107
\(367\) −22.5773 −1.17853 −0.589263 0.807941i \(-0.700582\pi\)
−0.589263 + 0.807941i \(0.700582\pi\)
\(368\) −45.8649 −2.39087
\(369\) 11.6920 0.608659
\(370\) 119.308 6.20252
\(371\) 14.3026 0.742556
\(372\) 0 0
\(373\) −32.4618 −1.68081 −0.840404 0.541960i \(-0.817682\pi\)
−0.840404 + 0.541960i \(0.817682\pi\)
\(374\) 5.75993 0.297839
\(375\) −23.9363 −1.23607
\(376\) −20.0359 −1.03327
\(377\) −1.29922 −0.0669131
\(378\) −6.96538 −0.358260
\(379\) −27.8484 −1.43047 −0.715237 0.698882i \(-0.753681\pi\)
−0.715237 + 0.698882i \(0.753681\pi\)
\(380\) 39.6418 2.03358
\(381\) 12.3067 0.630494
\(382\) 42.4275 2.17078
\(383\) 17.8180 0.910460 0.455230 0.890374i \(-0.349557\pi\)
0.455230 + 0.890374i \(0.349557\pi\)
\(384\) −10.8379 −0.553070
\(385\) −26.3906 −1.34499
\(386\) −35.3020 −1.79682
\(387\) −2.08795 −0.106137
\(388\) 19.8956 1.01005
\(389\) −12.8204 −0.650019 −0.325009 0.945711i \(-0.605367\pi\)
−0.325009 + 0.945711i \(0.605367\pi\)
\(390\) 17.3930 0.880731
\(391\) 5.83854 0.295268
\(392\) 2.88787 0.145859
\(393\) 11.0603 0.557918
\(394\) −61.3876 −3.09266
\(395\) 33.6440 1.69281
\(396\) −10.9101 −0.548251
\(397\) 26.1075 1.31030 0.655148 0.755500i \(-0.272606\pi\)
0.655148 + 0.755500i \(0.272606\pi\)
\(398\) −1.21846 −0.0610757
\(399\) 5.99819 0.300285
\(400\) 80.5616 4.02808
\(401\) −6.20676 −0.309951 −0.154975 0.987918i \(-0.549530\pi\)
−0.154975 + 0.987918i \(0.549530\pi\)
\(402\) −9.86046 −0.491795
\(403\) 0 0
\(404\) −23.7544 −1.18183
\(405\) −3.99832 −0.198678
\(406\) −5.30859 −0.263461
\(407\) 28.2760 1.40159
\(408\) −5.98307 −0.296206
\(409\) 38.7733 1.91722 0.958609 0.284726i \(-0.0919025\pi\)
0.958609 + 0.284726i \(0.0919025\pi\)
\(410\) −119.293 −5.89147
\(411\) −20.5211 −1.01223
\(412\) 34.8580 1.71733
\(413\) −18.9195 −0.930970
\(414\) −15.9612 −0.784451
\(415\) −50.9205 −2.49959
\(416\) −10.0449 −0.492492
\(417\) −20.5914 −1.00837
\(418\) 13.5598 0.663232
\(419\) −20.2328 −0.988437 −0.494219 0.869338i \(-0.664546\pi\)
−0.494219 + 0.869338i \(0.664546\pi\)
\(420\) 49.2404 2.40269
\(421\) 36.8539 1.79615 0.898074 0.439845i \(-0.144967\pi\)
0.898074 + 0.439845i \(0.144967\pi\)
\(422\) −62.5925 −3.04695
\(423\) −3.12589 −0.151986
\(424\) −33.5859 −1.63108
\(425\) −10.2554 −0.497459
\(426\) −6.70631 −0.324922
\(427\) 18.1330 0.877519
\(428\) 41.1765 1.99034
\(429\) 4.12216 0.199020
\(430\) 21.3034 1.02734
\(431\) 5.06706 0.244072 0.122036 0.992526i \(-0.461058\pi\)
0.122036 + 0.992526i \(0.461058\pi\)
\(432\) 7.33272 0.352796
\(433\) −15.8658 −0.762460 −0.381230 0.924480i \(-0.624499\pi\)
−0.381230 + 0.924480i \(0.624499\pi\)
\(434\) 0 0
\(435\) −3.04728 −0.146106
\(436\) 29.9071 1.43229
\(437\) 13.7449 0.657507
\(438\) 5.92077 0.282905
\(439\) −23.8862 −1.14002 −0.570012 0.821636i \(-0.693062\pi\)
−0.570012 + 0.821636i \(0.693062\pi\)
\(440\) 61.9713 2.95437
\(441\) 0.450549 0.0214547
\(442\) 4.06057 0.193141
\(443\) 26.4674 1.25750 0.628752 0.777606i \(-0.283566\pi\)
0.628752 + 0.777606i \(0.283566\pi\)
\(444\) −52.7582 −2.50379
\(445\) −46.4331 −2.20114
\(446\) 0.284022 0.0134488
\(447\) 13.1296 0.621010
\(448\) −1.01301 −0.0478600
\(449\) −6.56169 −0.309665 −0.154833 0.987941i \(-0.549484\pi\)
−0.154833 + 0.987941i \(0.549484\pi\)
\(450\) 28.0358 1.32162
\(451\) −28.2725 −1.33130
\(452\) −15.8286 −0.744515
\(453\) 8.38954 0.394175
\(454\) 37.4011 1.75532
\(455\) −18.6046 −0.872195
\(456\) −14.0851 −0.659597
\(457\) −3.19578 −0.149492 −0.0747461 0.997203i \(-0.523815\pi\)
−0.0747461 + 0.997203i \(0.523815\pi\)
\(458\) −44.5391 −2.08117
\(459\) −0.933445 −0.0435695
\(460\) 112.835 5.26095
\(461\) −34.7154 −1.61686 −0.808429 0.588594i \(-0.799682\pi\)
−0.808429 + 0.588594i \(0.799682\pi\)
\(462\) 16.8431 0.783612
\(463\) −13.8525 −0.643782 −0.321891 0.946777i \(-0.604318\pi\)
−0.321891 + 0.946777i \(0.604318\pi\)
\(464\) 5.58856 0.259442
\(465\) 0 0
\(466\) 20.2975 0.940263
\(467\) −19.8229 −0.917293 −0.458647 0.888619i \(-0.651666\pi\)
−0.458647 + 0.888619i \(0.651666\pi\)
\(468\) −7.69125 −0.355528
\(469\) 10.5473 0.487029
\(470\) 31.8935 1.47114
\(471\) 3.01163 0.138769
\(472\) 44.4275 2.04494
\(473\) 5.04892 0.232150
\(474\) −21.4723 −0.986258
\(475\) −24.1429 −1.10775
\(476\) 11.4956 0.526901
\(477\) −5.23989 −0.239918
\(478\) −6.52029 −0.298231
\(479\) −5.75785 −0.263083 −0.131542 0.991311i \(-0.541993\pi\)
−0.131542 + 0.991311i \(0.541993\pi\)
\(480\) −23.5600 −1.07536
\(481\) 19.9337 0.908898
\(482\) 27.2504 1.24122
\(483\) 17.0730 0.776848
\(484\) −23.2479 −1.05672
\(485\) −17.6314 −0.800599
\(486\) 2.55182 0.115753
\(487\) −6.31188 −0.286019 −0.143009 0.989721i \(-0.545678\pi\)
−0.143009 + 0.989721i \(0.545678\pi\)
\(488\) −42.5805 −1.92753
\(489\) −9.76076 −0.441397
\(490\) −4.59696 −0.207669
\(491\) −19.3808 −0.874643 −0.437322 0.899305i \(-0.644073\pi\)
−0.437322 + 0.899305i \(0.644073\pi\)
\(492\) 52.7517 2.37823
\(493\) −0.711416 −0.0320405
\(494\) 9.55924 0.430091
\(495\) 9.66842 0.434563
\(496\) 0 0
\(497\) 7.17344 0.321773
\(498\) 32.4987 1.45630
\(499\) 1.60294 0.0717575 0.0358787 0.999356i \(-0.488577\pi\)
0.0358787 + 0.999356i \(0.488577\pi\)
\(500\) −107.996 −4.82972
\(501\) −6.05312 −0.270433
\(502\) −75.6652 −3.37710
\(503\) 11.5436 0.514702 0.257351 0.966318i \(-0.417150\pi\)
0.257351 + 0.966318i \(0.417150\pi\)
\(504\) −17.4956 −0.779317
\(505\) 21.0510 0.936758
\(506\) 38.5961 1.71581
\(507\) −10.0940 −0.448291
\(508\) 55.5255 2.46355
\(509\) −3.67075 −0.162703 −0.0813516 0.996685i \(-0.525924\pi\)
−0.0813516 + 0.996685i \(0.525924\pi\)
\(510\) 9.52395 0.421728
\(511\) −6.33318 −0.280163
\(512\) −50.7926 −2.24474
\(513\) −2.19748 −0.0970213
\(514\) −26.7914 −1.18172
\(515\) −30.8909 −1.36122
\(516\) −9.42043 −0.414711
\(517\) 7.55877 0.332434
\(518\) 81.4489 3.57866
\(519\) −1.78486 −0.0783465
\(520\) 43.6878 1.91584
\(521\) 22.7219 0.995463 0.497731 0.867331i \(-0.334166\pi\)
0.497731 + 0.867331i \(0.334166\pi\)
\(522\) 1.94484 0.0851235
\(523\) −24.0422 −1.05129 −0.525645 0.850704i \(-0.676176\pi\)
−0.525645 + 0.850704i \(0.676176\pi\)
\(524\) 49.9018 2.17997
\(525\) −29.9887 −1.30881
\(526\) −24.8904 −1.08527
\(527\) 0 0
\(528\) −17.7314 −0.771660
\(529\) 16.1229 0.700994
\(530\) 53.4626 2.32227
\(531\) 6.93133 0.300794
\(532\) 27.0626 1.17331
\(533\) −19.9312 −0.863318
\(534\) 29.6347 1.28242
\(535\) −36.4903 −1.57761
\(536\) −24.7675 −1.06979
\(537\) 24.8227 1.07118
\(538\) −10.0219 −0.432074
\(539\) −1.08948 −0.0469273
\(540\) −18.0396 −0.776302
\(541\) 29.9787 1.28888 0.644442 0.764653i \(-0.277090\pi\)
0.644442 + 0.764653i \(0.277090\pi\)
\(542\) 45.4450 1.95203
\(543\) 13.0823 0.561416
\(544\) −5.50031 −0.235824
\(545\) −26.5034 −1.13528
\(546\) 11.8739 0.508154
\(547\) −19.0057 −0.812625 −0.406313 0.913734i \(-0.633186\pi\)
−0.406313 + 0.913734i \(0.633186\pi\)
\(548\) −92.5872 −3.95513
\(549\) −6.64318 −0.283524
\(550\) −67.7940 −2.89074
\(551\) −1.67479 −0.0713484
\(552\) −40.0913 −1.70640
\(553\) 22.9680 0.976699
\(554\) −3.28417 −0.139531
\(555\) 46.7540 1.98460
\(556\) −92.9044 −3.94003
\(557\) −9.48713 −0.401983 −0.200991 0.979593i \(-0.564416\pi\)
−0.200991 + 0.979593i \(0.564416\pi\)
\(558\) 0 0
\(559\) 3.55933 0.150544
\(560\) 80.0271 3.38176
\(561\) 2.25718 0.0952983
\(562\) 29.0324 1.22466
\(563\) −10.2935 −0.433818 −0.216909 0.976192i \(-0.569598\pi\)
−0.216909 + 0.976192i \(0.569598\pi\)
\(564\) −14.1034 −0.593859
\(565\) 14.0272 0.590129
\(566\) −39.8928 −1.67682
\(567\) −2.72957 −0.114631
\(568\) −16.8449 −0.706796
\(569\) −2.22077 −0.0930994 −0.0465497 0.998916i \(-0.514823\pi\)
−0.0465497 + 0.998916i \(0.514823\pi\)
\(570\) 22.4210 0.939111
\(571\) −2.05535 −0.0860135 −0.0430068 0.999075i \(-0.513694\pi\)
−0.0430068 + 0.999075i \(0.513694\pi\)
\(572\) 18.5984 0.777636
\(573\) 16.6264 0.694576
\(574\) −81.4389 −3.39919
\(575\) −68.7192 −2.86579
\(576\) 0.371123 0.0154634
\(577\) 13.0913 0.544996 0.272498 0.962156i \(-0.412150\pi\)
0.272498 + 0.962156i \(0.412150\pi\)
\(578\) −41.1575 −1.71193
\(579\) −13.8340 −0.574923
\(580\) −13.7487 −0.570884
\(581\) −34.7624 −1.44219
\(582\) 11.2527 0.466441
\(583\) 12.6707 0.524766
\(584\) 14.8718 0.615399
\(585\) 6.81593 0.281804
\(586\) −53.2946 −2.20158
\(587\) −42.6528 −1.76047 −0.880235 0.474539i \(-0.842615\pi\)
−0.880235 + 0.474539i \(0.842615\pi\)
\(588\) 2.03279 0.0838307
\(589\) 0 0
\(590\) −70.7204 −2.91151
\(591\) −24.0564 −0.989547
\(592\) −85.7444 −3.52407
\(593\) −6.77953 −0.278402 −0.139201 0.990264i \(-0.544453\pi\)
−0.139201 + 0.990264i \(0.544453\pi\)
\(594\) −6.17061 −0.253183
\(595\) −10.1873 −0.417640
\(596\) 59.2382 2.42649
\(597\) −0.477485 −0.0195422
\(598\) 27.2090 1.11266
\(599\) −29.2175 −1.19380 −0.596898 0.802317i \(-0.703600\pi\)
−0.596898 + 0.802317i \(0.703600\pi\)
\(600\) 70.4203 2.87490
\(601\) −23.8290 −0.972005 −0.486003 0.873957i \(-0.661545\pi\)
−0.486003 + 0.873957i \(0.661545\pi\)
\(602\) 14.5434 0.592744
\(603\) −3.86409 −0.157358
\(604\) 37.8519 1.54017
\(605\) 20.6022 0.837597
\(606\) −13.4352 −0.545769
\(607\) −34.1847 −1.38752 −0.693758 0.720209i \(-0.744046\pi\)
−0.693758 + 0.720209i \(0.744046\pi\)
\(608\) −12.9486 −0.525137
\(609\) −2.08031 −0.0842985
\(610\) 67.7805 2.74435
\(611\) 5.32869 0.215576
\(612\) −4.21152 −0.170240
\(613\) −21.2778 −0.859401 −0.429701 0.902971i \(-0.641381\pi\)
−0.429701 + 0.902971i \(0.641381\pi\)
\(614\) −17.6762 −0.713355
\(615\) −46.7482 −1.88507
\(616\) 42.3065 1.70458
\(617\) −13.2846 −0.534817 −0.267409 0.963583i \(-0.586167\pi\)
−0.267409 + 0.963583i \(0.586167\pi\)
\(618\) 19.7153 0.793065
\(619\) 25.3551 1.01911 0.509554 0.860439i \(-0.329810\pi\)
0.509554 + 0.860439i \(0.329810\pi\)
\(620\) 0 0
\(621\) −6.25483 −0.250998
\(622\) 55.6345 2.23074
\(623\) −31.6989 −1.26999
\(624\) −12.5001 −0.500403
\(625\) 40.7722 1.63089
\(626\) −49.5723 −1.98131
\(627\) 5.31378 0.212212
\(628\) 13.5879 0.542216
\(629\) 10.9151 0.435215
\(630\) 27.8498 1.10956
\(631\) 0.709689 0.0282523 0.0141261 0.999900i \(-0.495503\pi\)
0.0141261 + 0.999900i \(0.495503\pi\)
\(632\) −53.9342 −2.14539
\(633\) −24.5285 −0.974922
\(634\) −35.0096 −1.39041
\(635\) −49.2063 −1.95269
\(636\) −23.6413 −0.937439
\(637\) −0.768050 −0.0304312
\(638\) −4.70287 −0.186188
\(639\) −2.62805 −0.103964
\(640\) 43.3335 1.71291
\(641\) −13.6470 −0.539026 −0.269513 0.962997i \(-0.586863\pi\)
−0.269513 + 0.962997i \(0.586863\pi\)
\(642\) 23.2890 0.919143
\(643\) −36.2538 −1.42971 −0.714856 0.699272i \(-0.753508\pi\)
−0.714856 + 0.699272i \(0.753508\pi\)
\(644\) 77.0299 3.03540
\(645\) 8.34832 0.328715
\(646\) 5.23438 0.205944
\(647\) 43.9056 1.72611 0.863055 0.505111i \(-0.168548\pi\)
0.863055 + 0.505111i \(0.168548\pi\)
\(648\) 6.40966 0.251795
\(649\) −16.7608 −0.657918
\(650\) −47.7926 −1.87458
\(651\) 0 0
\(652\) −44.0386 −1.72468
\(653\) −23.2495 −0.909825 −0.454912 0.890536i \(-0.650329\pi\)
−0.454912 + 0.890536i \(0.650329\pi\)
\(654\) 16.9151 0.661433
\(655\) −44.2226 −1.72792
\(656\) 85.7338 3.34734
\(657\) 2.32021 0.0905201
\(658\) 21.7730 0.848800
\(659\) 40.3057 1.57009 0.785043 0.619442i \(-0.212641\pi\)
0.785043 + 0.619442i \(0.212641\pi\)
\(660\) 43.6220 1.69798
\(661\) −27.6976 −1.07731 −0.538655 0.842526i \(-0.681067\pi\)
−0.538655 + 0.842526i \(0.681067\pi\)
\(662\) 46.9033 1.82295
\(663\) 1.59124 0.0617987
\(664\) 81.6301 3.16786
\(665\) −23.9827 −0.930009
\(666\) −29.8395 −1.15626
\(667\) −4.76705 −0.184581
\(668\) −27.3104 −1.05667
\(669\) 0.111301 0.00430316
\(670\) 39.4253 1.52313
\(671\) 16.0640 0.620144
\(672\) −16.0839 −0.620451
\(673\) −11.9164 −0.459343 −0.229671 0.973268i \(-0.573765\pi\)
−0.229671 + 0.973268i \(0.573765\pi\)
\(674\) 38.0860 1.46702
\(675\) 10.9866 0.422874
\(676\) −45.5421 −1.75162
\(677\) 35.6541 1.37030 0.685149 0.728403i \(-0.259737\pi\)
0.685149 + 0.728403i \(0.259737\pi\)
\(678\) −8.95248 −0.343818
\(679\) −12.0366 −0.461921
\(680\) 23.9222 0.917376
\(681\) 14.6566 0.561644
\(682\) 0 0
\(683\) 22.0333 0.843081 0.421541 0.906809i \(-0.361489\pi\)
0.421541 + 0.906809i \(0.361489\pi\)
\(684\) −9.91460 −0.379094
\(685\) 82.0501 3.13497
\(686\) 45.6194 1.74176
\(687\) −17.4538 −0.665905
\(688\) −15.3104 −0.583703
\(689\) 8.93242 0.340298
\(690\) 63.8181 2.42951
\(691\) −31.0331 −1.18055 −0.590277 0.807201i \(-0.700981\pi\)
−0.590277 + 0.807201i \(0.700981\pi\)
\(692\) −8.05291 −0.306126
\(693\) 6.60042 0.250729
\(694\) −27.6596 −1.04994
\(695\) 82.3312 3.12300
\(696\) 4.88506 0.185168
\(697\) −10.9138 −0.413390
\(698\) 39.1711 1.48265
\(699\) 7.95412 0.300852
\(700\) −135.303 −5.11396
\(701\) 31.5677 1.19230 0.596149 0.802874i \(-0.296697\pi\)
0.596149 + 0.802874i \(0.296697\pi\)
\(702\) −4.35008 −0.164183
\(703\) 25.6960 0.969145
\(704\) −0.897419 −0.0338228
\(705\) 12.4983 0.470714
\(706\) 42.3477 1.59378
\(707\) 14.3711 0.540480
\(708\) 31.2728 1.17530
\(709\) 51.9991 1.95287 0.976434 0.215817i \(-0.0692414\pi\)
0.976434 + 0.215817i \(0.0692414\pi\)
\(710\) 26.8140 1.00631
\(711\) −8.41452 −0.315569
\(712\) 74.4363 2.78962
\(713\) 0 0
\(714\) 6.50180 0.243324
\(715\) −16.4817 −0.616382
\(716\) 111.995 4.18545
\(717\) −2.55515 −0.0954238
\(718\) −0.671050 −0.0250434
\(719\) 0.258190 0.00962886 0.00481443 0.999988i \(-0.498468\pi\)
0.00481443 + 0.999988i \(0.498468\pi\)
\(720\) −29.3186 −1.09264
\(721\) −21.0885 −0.785378
\(722\) −36.1620 −1.34581
\(723\) 10.6788 0.397149
\(724\) 59.0248 2.19364
\(725\) 8.37331 0.310977
\(726\) −13.1488 −0.487997
\(727\) 45.5600 1.68973 0.844864 0.534981i \(-0.179681\pi\)
0.844864 + 0.534981i \(0.179681\pi\)
\(728\) 29.8247 1.10538
\(729\) 1.00000 0.0370370
\(730\) −23.6732 −0.876183
\(731\) 1.94899 0.0720861
\(732\) −29.9727 −1.10782
\(733\) 18.6755 0.689796 0.344898 0.938640i \(-0.387913\pi\)
0.344898 + 0.938640i \(0.387913\pi\)
\(734\) −57.6133 −2.12655
\(735\) −1.80144 −0.0664472
\(736\) −36.8565 −1.35855
\(737\) 9.34382 0.344184
\(738\) 29.8358 1.09827
\(739\) 37.5050 1.37965 0.689823 0.723979i \(-0.257689\pi\)
0.689823 + 0.723979i \(0.257689\pi\)
\(740\) 210.944 7.75447
\(741\) 3.74605 0.137614
\(742\) 36.4978 1.33988
\(743\) 16.9700 0.622569 0.311285 0.950317i \(-0.399241\pi\)
0.311285 + 0.950317i \(0.399241\pi\)
\(744\) 0 0
\(745\) −52.4965 −1.92332
\(746\) −82.8368 −3.03287
\(747\) 12.7355 0.465967
\(748\) 10.1839 0.372362
\(749\) −24.9112 −0.910234
\(750\) −61.0813 −2.23037
\(751\) −39.1241 −1.42766 −0.713830 0.700319i \(-0.753041\pi\)
−0.713830 + 0.700319i \(0.753041\pi\)
\(752\) −22.9213 −0.835853
\(753\) −29.6514 −1.08056
\(754\) −3.31537 −0.120739
\(755\) −33.5441 −1.22079
\(756\) −12.3153 −0.447902
\(757\) −23.9289 −0.869709 −0.434855 0.900501i \(-0.643200\pi\)
−0.434855 + 0.900501i \(0.643200\pi\)
\(758\) −71.0641 −2.58116
\(759\) 15.1249 0.549000
\(760\) 56.3169 2.04283
\(761\) 36.2067 1.31249 0.656245 0.754547i \(-0.272144\pi\)
0.656245 + 0.754547i \(0.272144\pi\)
\(762\) 31.4046 1.13767
\(763\) −18.0933 −0.655022
\(764\) 75.0148 2.71394
\(765\) 3.73222 0.134939
\(766\) 45.4685 1.64284
\(767\) −11.8158 −0.426644
\(768\) −28.3987 −1.02475
\(769\) −41.4245 −1.49380 −0.746902 0.664934i \(-0.768460\pi\)
−0.746902 + 0.664934i \(0.768460\pi\)
\(770\) −67.3442 −2.42692
\(771\) −10.4989 −0.378110
\(772\) −62.4164 −2.24641
\(773\) −4.93527 −0.177509 −0.0887546 0.996054i \(-0.528289\pi\)
−0.0887546 + 0.996054i \(0.528289\pi\)
\(774\) −5.32809 −0.191514
\(775\) 0 0
\(776\) 28.2646 1.01464
\(777\) 31.9179 1.14505
\(778\) −32.7153 −1.17290
\(779\) −25.6929 −0.920543
\(780\) 30.7521 1.10110
\(781\) 6.35493 0.227397
\(782\) 14.8989 0.532784
\(783\) 0.762139 0.0272366
\(784\) 3.30375 0.117991
\(785\) −12.0415 −0.429779
\(786\) 28.2239 1.00671
\(787\) 43.1715 1.53890 0.769448 0.638709i \(-0.220531\pi\)
0.769448 + 0.638709i \(0.220531\pi\)
\(788\) −108.537 −3.86649
\(789\) −9.75396 −0.347250
\(790\) 85.8534 3.05453
\(791\) 9.57607 0.340486
\(792\) −15.4993 −0.550745
\(793\) 11.3246 0.402149
\(794\) 66.6216 2.36431
\(795\) 20.9508 0.743047
\(796\) −2.15431 −0.0763577
\(797\) −32.6896 −1.15792 −0.578962 0.815354i \(-0.696542\pi\)
−0.578962 + 0.815354i \(0.696542\pi\)
\(798\) 15.3063 0.541837
\(799\) 2.91785 0.103226
\(800\) 64.7383 2.28884
\(801\) 11.6131 0.410330
\(802\) −15.8385 −0.559278
\(803\) −5.61055 −0.197992
\(804\) −17.4340 −0.614849
\(805\) −68.2633 −2.40597
\(806\) 0 0
\(807\) −3.92734 −0.138249
\(808\) −33.7466 −1.18720
\(809\) −22.1429 −0.778502 −0.389251 0.921132i \(-0.627266\pi\)
−0.389251 + 0.921132i \(0.627266\pi\)
\(810\) −10.2030 −0.358497
\(811\) −8.79261 −0.308750 −0.154375 0.988012i \(-0.549336\pi\)
−0.154375 + 0.988012i \(0.549336\pi\)
\(812\) −9.38595 −0.329382
\(813\) 17.8088 0.624583
\(814\) 72.1554 2.52904
\(815\) 39.0267 1.36705
\(816\) −6.84470 −0.239612
\(817\) 4.58825 0.160522
\(818\) 98.9427 3.45945
\(819\) 4.65309 0.162592
\(820\) −210.918 −7.36559
\(821\) 15.7261 0.548844 0.274422 0.961609i \(-0.411514\pi\)
0.274422 + 0.961609i \(0.411514\pi\)
\(822\) −52.3663 −1.82648
\(823\) 17.4226 0.607314 0.303657 0.952781i \(-0.401792\pi\)
0.303657 + 0.952781i \(0.401792\pi\)
\(824\) 49.5208 1.72514
\(825\) −26.5669 −0.924940
\(826\) −48.2793 −1.67985
\(827\) −1.04692 −0.0364050 −0.0182025 0.999834i \(-0.505794\pi\)
−0.0182025 + 0.999834i \(0.505794\pi\)
\(828\) −28.2205 −0.980731
\(829\) −38.8456 −1.34916 −0.674582 0.738200i \(-0.735676\pi\)
−0.674582 + 0.738200i \(0.735676\pi\)
\(830\) −129.940 −4.51029
\(831\) −1.28699 −0.0446452
\(832\) −0.632652 −0.0219333
\(833\) −0.420563 −0.0145716
\(834\) −52.5457 −1.81951
\(835\) 24.2023 0.837556
\(836\) 23.9747 0.829182
\(837\) 0 0
\(838\) −51.6305 −1.78355
\(839\) 3.95938 0.136693 0.0683465 0.997662i \(-0.478228\pi\)
0.0683465 + 0.997662i \(0.478228\pi\)
\(840\) 69.9531 2.41361
\(841\) −28.4191 −0.979970
\(842\) 94.0445 3.24099
\(843\) 11.3771 0.391850
\(844\) −110.668 −3.80934
\(845\) 40.3591 1.38840
\(846\) −7.97671 −0.274245
\(847\) 14.0647 0.483267
\(848\) −38.4226 −1.31944
\(849\) −15.6331 −0.536525
\(850\) −26.1699 −0.897621
\(851\) 73.1401 2.50721
\(852\) −11.8572 −0.406222
\(853\) 24.1468 0.826770 0.413385 0.910556i \(-0.364346\pi\)
0.413385 + 0.910556i \(0.364346\pi\)
\(854\) 46.2723 1.58340
\(855\) 8.78625 0.300484
\(856\) 58.4972 1.99939
\(857\) −9.46706 −0.323388 −0.161694 0.986841i \(-0.551696\pi\)
−0.161694 + 0.986841i \(0.551696\pi\)
\(858\) 10.5190 0.359114
\(859\) 13.8191 0.471500 0.235750 0.971814i \(-0.424245\pi\)
0.235750 + 0.971814i \(0.424245\pi\)
\(860\) 37.6659 1.28440
\(861\) −31.9140 −1.08763
\(862\) 12.9302 0.440406
\(863\) 22.9998 0.782921 0.391460 0.920195i \(-0.371970\pi\)
0.391460 + 0.920195i \(0.371970\pi\)
\(864\) 5.89248 0.200466
\(865\) 7.13644 0.242646
\(866\) −40.4866 −1.37579
\(867\) −16.1287 −0.547759
\(868\) 0 0
\(869\) 20.3473 0.690235
\(870\) −7.77612 −0.263635
\(871\) 6.58710 0.223195
\(872\) 42.4873 1.43880
\(873\) 4.40969 0.149245
\(874\) 35.0745 1.18641
\(875\) 65.3359 2.20876
\(876\) 10.4683 0.353692
\(877\) 17.0271 0.574964 0.287482 0.957786i \(-0.407182\pi\)
0.287482 + 0.957786i \(0.407182\pi\)
\(878\) −60.9533 −2.05707
\(879\) −20.8849 −0.704431
\(880\) 70.8959 2.38990
\(881\) 0.0975295 0.00328585 0.00164293 0.999999i \(-0.499477\pi\)
0.00164293 + 0.999999i \(0.499477\pi\)
\(882\) 1.14972 0.0387131
\(883\) −19.2011 −0.646170 −0.323085 0.946370i \(-0.604720\pi\)
−0.323085 + 0.946370i \(0.604720\pi\)
\(884\) 7.17936 0.241468
\(885\) −27.7137 −0.931586
\(886\) 67.5401 2.26905
\(887\) −11.1920 −0.375792 −0.187896 0.982189i \(-0.560167\pi\)
−0.187896 + 0.982189i \(0.560167\pi\)
\(888\) −74.9507 −2.51518
\(889\) −33.5921 −1.12664
\(890\) −118.489 −3.97176
\(891\) −2.41812 −0.0810100
\(892\) 0.502170 0.0168139
\(893\) 6.86909 0.229865
\(894\) 33.5045 1.12056
\(895\) −99.2492 −3.31753
\(896\) 29.5829 0.988294
\(897\) 10.6626 0.356013
\(898\) −16.7443 −0.558764
\(899\) 0 0
\(900\) 49.5693 1.65231
\(901\) 4.89115 0.162948
\(902\) −72.1465 −2.40222
\(903\) 5.69922 0.189658
\(904\) −22.4868 −0.747901
\(905\) −52.3073 −1.73876
\(906\) 21.4086 0.711253
\(907\) 37.7984 1.25507 0.627537 0.778587i \(-0.284063\pi\)
0.627537 + 0.778587i \(0.284063\pi\)
\(908\) 66.1278 2.19453
\(909\) −5.26496 −0.174628
\(910\) −47.4755 −1.57380
\(911\) 23.4570 0.777164 0.388582 0.921414i \(-0.372965\pi\)
0.388582 + 0.921414i \(0.372965\pi\)
\(912\) −16.1135 −0.533573
\(913\) −30.7959 −1.01920
\(914\) −8.15505 −0.269745
\(915\) 26.5616 0.878099
\(916\) −78.7482 −2.60191
\(917\) −30.1898 −0.996957
\(918\) −2.38199 −0.0786173
\(919\) −5.59965 −0.184715 −0.0923577 0.995726i \(-0.529440\pi\)
−0.0923577 + 0.995726i \(0.529440\pi\)
\(920\) 160.298 5.28487
\(921\) −6.92691 −0.228249
\(922\) −88.5876 −2.91748
\(923\) 4.48002 0.147462
\(924\) 29.7798 0.979683
\(925\) −128.471 −4.22408
\(926\) −35.3492 −1.16165
\(927\) 7.72596 0.253754
\(928\) 4.49089 0.147421
\(929\) 5.98842 0.196474 0.0982369 0.995163i \(-0.468680\pi\)
0.0982369 + 0.995163i \(0.468680\pi\)
\(930\) 0 0
\(931\) −0.990075 −0.0324484
\(932\) 35.8874 1.17553
\(933\) 21.8019 0.713761
\(934\) −50.5845 −1.65517
\(935\) −9.02495 −0.295147
\(936\) −10.9265 −0.357145
\(937\) 16.4832 0.538481 0.269241 0.963073i \(-0.413227\pi\)
0.269241 + 0.963073i \(0.413227\pi\)
\(938\) 26.9148 0.878800
\(939\) −19.4262 −0.633951
\(940\) 56.3899 1.83923
\(941\) 18.7850 0.612373 0.306186 0.951972i \(-0.400947\pi\)
0.306186 + 0.951972i \(0.400947\pi\)
\(942\) 7.68516 0.250396
\(943\) −73.1312 −2.38148
\(944\) 50.8255 1.65423
\(945\) 10.9137 0.355023
\(946\) 12.8840 0.418893
\(947\) 18.6276 0.605316 0.302658 0.953099i \(-0.402126\pi\)
0.302658 + 0.953099i \(0.402126\pi\)
\(948\) −37.9646 −1.23303
\(949\) −3.95526 −0.128393
\(950\) −61.6083 −1.99884
\(951\) −13.7195 −0.444884
\(952\) 16.3312 0.529297
\(953\) 13.5379 0.438535 0.219268 0.975665i \(-0.429633\pi\)
0.219268 + 0.975665i \(0.429633\pi\)
\(954\) −13.3713 −0.432911
\(955\) −66.4776 −2.15116
\(956\) −11.5283 −0.372852
\(957\) −1.84294 −0.0595739
\(958\) −14.6930 −0.474710
\(959\) 56.0138 1.80878
\(960\) −1.48387 −0.0478917
\(961\) 0 0
\(962\) 50.8672 1.64003
\(963\) 9.12641 0.294094
\(964\) 48.1806 1.55179
\(965\) 55.3130 1.78059
\(966\) 43.5672 1.40175
\(967\) 52.7910 1.69764 0.848822 0.528679i \(-0.177312\pi\)
0.848822 + 0.528679i \(0.177312\pi\)
\(968\) −33.0271 −1.06153
\(969\) 2.05123 0.0658951
\(970\) −44.9921 −1.44461
\(971\) −5.05817 −0.162324 −0.0811622 0.996701i \(-0.525863\pi\)
−0.0811622 + 0.996701i \(0.525863\pi\)
\(972\) 4.51180 0.144716
\(973\) 56.2058 1.80187
\(974\) −16.1068 −0.516095
\(975\) −18.7288 −0.599802
\(976\) −48.7126 −1.55925
\(977\) 37.6772 1.20540 0.602701 0.797967i \(-0.294091\pi\)
0.602701 + 0.797967i \(0.294091\pi\)
\(978\) −24.9077 −0.796461
\(979\) −28.0819 −0.897503
\(980\) −8.12774 −0.259631
\(981\) 6.62864 0.211636
\(982\) −49.4564 −1.57822
\(983\) 19.9815 0.637309 0.318655 0.947871i \(-0.396769\pi\)
0.318655 + 0.947871i \(0.396769\pi\)
\(984\) 74.9415 2.38905
\(985\) 96.1852 3.06471
\(986\) −1.81541 −0.0578143
\(987\) 8.53233 0.271587
\(988\) 16.9014 0.537705
\(989\) 13.0598 0.415277
\(990\) 24.6721 0.784131
\(991\) −27.9100 −0.886591 −0.443295 0.896376i \(-0.646191\pi\)
−0.443295 + 0.896376i \(0.646191\pi\)
\(992\) 0 0
\(993\) 18.3803 0.583282
\(994\) 18.3053 0.580610
\(995\) 1.90914 0.0605238
\(996\) 57.4599 1.82069
\(997\) −1.06805 −0.0338254 −0.0169127 0.999857i \(-0.505384\pi\)
−0.0169127 + 0.999857i \(0.505384\pi\)
\(998\) 4.09042 0.129480
\(999\) −11.6934 −0.369963
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2883.2.a.r.1.8 yes 8
3.2 odd 2 8649.2.a.bd.1.1 8
31.30 odd 2 2883.2.a.q.1.8 8
93.92 even 2 8649.2.a.bc.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2883.2.a.q.1.8 8 31.30 odd 2
2883.2.a.r.1.8 yes 8 1.1 even 1 trivial
8649.2.a.bc.1.1 8 93.92 even 2
8649.2.a.bd.1.1 8 3.2 odd 2