Properties

Label 2883.2.a.q.1.8
Level $2883$
Weight $2$
Character 2883.1
Self dual yes
Analytic conductor $23.021$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2883,2,Mod(1,2883)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2883, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2883.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2883 = 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2883.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,-8,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0208709027\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.1413480448.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 2x^{6} + 16x^{5} - x^{4} - 16x^{3} + 2x^{2} + 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(1.13761\) of defining polynomial
Character \(\chi\) \(=\) 2883.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.55182 q^{2} -1.00000 q^{3} +4.51180 q^{4} -3.99832 q^{5} -2.55182 q^{6} -2.72957 q^{7} +6.40966 q^{8} +1.00000 q^{9} -10.2030 q^{10} +2.41812 q^{11} -4.51180 q^{12} +1.70470 q^{13} -6.96538 q^{14} +3.99832 q^{15} +7.33272 q^{16} +0.933445 q^{17} +2.55182 q^{18} -2.19748 q^{19} -18.0396 q^{20} +2.72957 q^{21} +6.17061 q^{22} +6.25483 q^{23} -6.40966 q^{24} +10.9866 q^{25} +4.35008 q^{26} -1.00000 q^{27} -12.3153 q^{28} -0.762139 q^{29} +10.2030 q^{30} +5.89248 q^{32} -2.41812 q^{33} +2.38199 q^{34} +10.9137 q^{35} +4.51180 q^{36} +11.6934 q^{37} -5.60759 q^{38} -1.70470 q^{39} -25.6279 q^{40} +11.6920 q^{41} +6.96538 q^{42} +2.08795 q^{43} +10.9101 q^{44} -3.99832 q^{45} +15.9612 q^{46} -3.12589 q^{47} -7.33272 q^{48} +0.450549 q^{49} +28.0358 q^{50} -0.933445 q^{51} +7.69125 q^{52} +5.23989 q^{53} -2.55182 q^{54} -9.66842 q^{55} -17.4956 q^{56} +2.19748 q^{57} -1.94484 q^{58} +6.93133 q^{59} +18.0396 q^{60} +6.64318 q^{61} -2.72957 q^{63} +0.371123 q^{64} -6.81593 q^{65} -6.17061 q^{66} -3.86409 q^{67} +4.21152 q^{68} -6.25483 q^{69} +27.8498 q^{70} -2.62805 q^{71} +6.40966 q^{72} -2.32021 q^{73} +29.8395 q^{74} -10.9866 q^{75} -9.91460 q^{76} -6.60042 q^{77} -4.35008 q^{78} +8.41452 q^{79} -29.3186 q^{80} +1.00000 q^{81} +29.8358 q^{82} -12.7355 q^{83} +12.3153 q^{84} -3.73222 q^{85} +5.32809 q^{86} +0.762139 q^{87} +15.4993 q^{88} -11.6131 q^{89} -10.2030 q^{90} -4.65309 q^{91} +28.2205 q^{92} -7.97671 q^{94} +8.78625 q^{95} -5.89248 q^{96} +4.40969 q^{97} +1.14972 q^{98} +2.41812 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 8 q^{3} + 4 q^{4} - 4 q^{6} - 8 q^{7} + 8 q^{9} - 20 q^{10} + 8 q^{11} - 4 q^{12} + 16 q^{13} - 12 q^{14} + 4 q^{16} + 4 q^{18} - 16 q^{19} - 12 q^{20} + 8 q^{21} + 16 q^{23} + 8 q^{25}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.55182 1.80441 0.902205 0.431307i \(-0.141947\pi\)
0.902205 + 0.431307i \(0.141947\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.51180 2.25590
\(5\) −3.99832 −1.78810 −0.894052 0.447963i \(-0.852150\pi\)
−0.894052 + 0.447963i \(0.852150\pi\)
\(6\) −2.55182 −1.04178
\(7\) −2.72957 −1.03168 −0.515840 0.856685i \(-0.672520\pi\)
−0.515840 + 0.856685i \(0.672520\pi\)
\(8\) 6.40966 2.26616
\(9\) 1.00000 0.333333
\(10\) −10.2030 −3.22648
\(11\) 2.41812 0.729090 0.364545 0.931186i \(-0.381224\pi\)
0.364545 + 0.931186i \(0.381224\pi\)
\(12\) −4.51180 −1.30244
\(13\) 1.70470 0.472798 0.236399 0.971656i \(-0.424033\pi\)
0.236399 + 0.971656i \(0.424033\pi\)
\(14\) −6.96538 −1.86158
\(15\) 3.99832 1.03236
\(16\) 7.33272 1.83318
\(17\) 0.933445 0.226394 0.113197 0.993573i \(-0.463891\pi\)
0.113197 + 0.993573i \(0.463891\pi\)
\(18\) 2.55182 0.601470
\(19\) −2.19748 −0.504137 −0.252069 0.967709i \(-0.581111\pi\)
−0.252069 + 0.967709i \(0.581111\pi\)
\(20\) −18.0396 −4.03378
\(21\) 2.72957 0.595641
\(22\) 6.17061 1.31558
\(23\) 6.25483 1.30422 0.652111 0.758124i \(-0.273884\pi\)
0.652111 + 0.758124i \(0.273884\pi\)
\(24\) −6.40966 −1.30837
\(25\) 10.9866 2.19732
\(26\) 4.35008 0.853122
\(27\) −1.00000 −0.192450
\(28\) −12.3153 −2.32737
\(29\) −0.762139 −0.141526 −0.0707629 0.997493i \(-0.522543\pi\)
−0.0707629 + 0.997493i \(0.522543\pi\)
\(30\) 10.2030 1.86281
\(31\) 0 0
\(32\) 5.89248 1.04165
\(33\) −2.41812 −0.420941
\(34\) 2.38199 0.408507
\(35\) 10.9137 1.84475
\(36\) 4.51180 0.751966
\(37\) 11.6934 1.92238 0.961191 0.275884i \(-0.0889707\pi\)
0.961191 + 0.275884i \(0.0889707\pi\)
\(38\) −5.60759 −0.909671
\(39\) −1.70470 −0.272970
\(40\) −25.6279 −4.05213
\(41\) 11.6920 1.82598 0.912988 0.407986i \(-0.133769\pi\)
0.912988 + 0.407986i \(0.133769\pi\)
\(42\) 6.96538 1.07478
\(43\) 2.08795 0.318410 0.159205 0.987246i \(-0.449107\pi\)
0.159205 + 0.987246i \(0.449107\pi\)
\(44\) 10.9101 1.64475
\(45\) −3.99832 −0.596035
\(46\) 15.9612 2.35335
\(47\) −3.12589 −0.455958 −0.227979 0.973666i \(-0.573212\pi\)
−0.227979 + 0.973666i \(0.573212\pi\)
\(48\) −7.33272 −1.05839
\(49\) 0.450549 0.0643642
\(50\) 28.0358 3.96487
\(51\) −0.933445 −0.130709
\(52\) 7.69125 1.06658
\(53\) 5.23989 0.719754 0.359877 0.933000i \(-0.382819\pi\)
0.359877 + 0.933000i \(0.382819\pi\)
\(54\) −2.55182 −0.347259
\(55\) −9.66842 −1.30369
\(56\) −17.4956 −2.33795
\(57\) 2.19748 0.291064
\(58\) −1.94484 −0.255371
\(59\) 6.93133 0.902382 0.451191 0.892427i \(-0.350999\pi\)
0.451191 + 0.892427i \(0.350999\pi\)
\(60\) 18.0396 2.32891
\(61\) 6.64318 0.850572 0.425286 0.905059i \(-0.360173\pi\)
0.425286 + 0.905059i \(0.360173\pi\)
\(62\) 0 0
\(63\) −2.72957 −0.343893
\(64\) 0.371123 0.0463903
\(65\) −6.81593 −0.845412
\(66\) −6.17061 −0.759550
\(67\) −3.86409 −0.472073 −0.236037 0.971744i \(-0.575849\pi\)
−0.236037 + 0.971744i \(0.575849\pi\)
\(68\) 4.21152 0.510721
\(69\) −6.25483 −0.752993
\(70\) 27.8498 3.32869
\(71\) −2.62805 −0.311892 −0.155946 0.987766i \(-0.549843\pi\)
−0.155946 + 0.987766i \(0.549843\pi\)
\(72\) 6.40966 0.755386
\(73\) −2.32021 −0.271560 −0.135780 0.990739i \(-0.543354\pi\)
−0.135780 + 0.990739i \(0.543354\pi\)
\(74\) 29.8395 3.46877
\(75\) −10.9866 −1.26862
\(76\) −9.91460 −1.13728
\(77\) −6.60042 −0.752188
\(78\) −4.35008 −0.492550
\(79\) 8.41452 0.946707 0.473353 0.880873i \(-0.343043\pi\)
0.473353 + 0.880873i \(0.343043\pi\)
\(80\) −29.3186 −3.27792
\(81\) 1.00000 0.111111
\(82\) 29.8358 3.29481
\(83\) −12.7355 −1.39790 −0.698950 0.715171i \(-0.746349\pi\)
−0.698950 + 0.715171i \(0.746349\pi\)
\(84\) 12.3153 1.34371
\(85\) −3.73222 −0.404816
\(86\) 5.32809 0.574543
\(87\) 0.762139 0.0817099
\(88\) 15.4993 1.65223
\(89\) −11.6131 −1.23099 −0.615495 0.788141i \(-0.711044\pi\)
−0.615495 + 0.788141i \(0.711044\pi\)
\(90\) −10.2030 −1.07549
\(91\) −4.65309 −0.487776
\(92\) 28.2205 2.94219
\(93\) 0 0
\(94\) −7.97671 −0.822735
\(95\) 8.78625 0.901451
\(96\) −5.89248 −0.601399
\(97\) 4.40969 0.447736 0.223868 0.974619i \(-0.428132\pi\)
0.223868 + 0.974619i \(0.428132\pi\)
\(98\) 1.14972 0.116139
\(99\) 2.41812 0.243030
\(100\) 49.5693 4.95693
\(101\) −5.26496 −0.523883 −0.261942 0.965084i \(-0.584363\pi\)
−0.261942 + 0.965084i \(0.584363\pi\)
\(102\) −2.38199 −0.235852
\(103\) 7.72596 0.761261 0.380631 0.924727i \(-0.375707\pi\)
0.380631 + 0.924727i \(0.375707\pi\)
\(104\) 10.9265 1.07143
\(105\) −10.9137 −1.06507
\(106\) 13.3713 1.29873
\(107\) 9.12641 0.882283 0.441142 0.897437i \(-0.354574\pi\)
0.441142 + 0.897437i \(0.354574\pi\)
\(108\) −4.51180 −0.434148
\(109\) 6.62864 0.634908 0.317454 0.948274i \(-0.397172\pi\)
0.317454 + 0.948274i \(0.397172\pi\)
\(110\) −24.6721 −2.35239
\(111\) −11.6934 −1.10989
\(112\) −20.0152 −1.89126
\(113\) −3.50827 −0.330030 −0.165015 0.986291i \(-0.552767\pi\)
−0.165015 + 0.986291i \(0.552767\pi\)
\(114\) 5.60759 0.525199
\(115\) −25.0088 −2.33208
\(116\) −3.43862 −0.319268
\(117\) 1.70470 0.157599
\(118\) 17.6875 1.62827
\(119\) −2.54790 −0.233566
\(120\) 25.6279 2.33950
\(121\) −5.15270 −0.468427
\(122\) 16.9522 1.53478
\(123\) −11.6920 −1.05423
\(124\) 0 0
\(125\) −23.9363 −2.14093
\(126\) −6.96538 −0.620525
\(127\) −12.3067 −1.09205 −0.546023 0.837770i \(-0.683859\pi\)
−0.546023 + 0.837770i \(0.683859\pi\)
\(128\) −10.8379 −0.957946
\(129\) −2.08795 −0.183834
\(130\) −17.3930 −1.52547
\(131\) 11.0603 0.966343 0.483171 0.875526i \(-0.339485\pi\)
0.483171 + 0.875526i \(0.339485\pi\)
\(132\) −10.9101 −0.949599
\(133\) 5.99819 0.520109
\(134\) −9.86046 −0.851814
\(135\) 3.99832 0.344121
\(136\) 5.98307 0.513044
\(137\) 20.5211 1.75324 0.876619 0.481185i \(-0.159793\pi\)
0.876619 + 0.481185i \(0.159793\pi\)
\(138\) −15.9612 −1.35871
\(139\) 20.5914 1.74654 0.873272 0.487234i \(-0.161994\pi\)
0.873272 + 0.487234i \(0.161994\pi\)
\(140\) 49.2404 4.16157
\(141\) 3.12589 0.263247
\(142\) −6.70631 −0.562781
\(143\) 4.12216 0.344712
\(144\) 7.33272 0.611060
\(145\) 3.04728 0.253063
\(146\) −5.92077 −0.490006
\(147\) −0.450549 −0.0371607
\(148\) 52.7582 4.33670
\(149\) 13.1296 1.07562 0.537810 0.843066i \(-0.319252\pi\)
0.537810 + 0.843066i \(0.319252\pi\)
\(150\) −28.0358 −2.28912
\(151\) −8.38954 −0.682731 −0.341365 0.939931i \(-0.610889\pi\)
−0.341365 + 0.939931i \(0.610889\pi\)
\(152\) −14.0851 −1.14245
\(153\) 0.933445 0.0754646
\(154\) −16.8431 −1.35726
\(155\) 0 0
\(156\) −7.69125 −0.615793
\(157\) 3.01163 0.240355 0.120177 0.992752i \(-0.461654\pi\)
0.120177 + 0.992752i \(0.461654\pi\)
\(158\) 21.4723 1.70825
\(159\) −5.23989 −0.415550
\(160\) −23.5600 −1.86259
\(161\) −17.0730 −1.34554
\(162\) 2.55182 0.200490
\(163\) −9.76076 −0.764522 −0.382261 0.924054i \(-0.624854\pi\)
−0.382261 + 0.924054i \(0.624854\pi\)
\(164\) 52.7517 4.11922
\(165\) 9.66842 0.752686
\(166\) −32.4987 −2.52239
\(167\) 6.05312 0.468404 0.234202 0.972188i \(-0.424752\pi\)
0.234202 + 0.972188i \(0.424752\pi\)
\(168\) 17.4956 1.34982
\(169\) −10.0940 −0.776462
\(170\) −9.52395 −0.730454
\(171\) −2.19748 −0.168046
\(172\) 9.42043 0.718301
\(173\) −1.78486 −0.135700 −0.0678501 0.997696i \(-0.521614\pi\)
−0.0678501 + 0.997696i \(0.521614\pi\)
\(174\) 1.94484 0.147438
\(175\) −29.9887 −2.26693
\(176\) 17.7314 1.33655
\(177\) −6.93133 −0.520991
\(178\) −29.6347 −2.22121
\(179\) −24.8227 −1.85534 −0.927668 0.373406i \(-0.878190\pi\)
−0.927668 + 0.373406i \(0.878190\pi\)
\(180\) −18.0396 −1.34459
\(181\) −13.0823 −0.972401 −0.486201 0.873847i \(-0.661618\pi\)
−0.486201 + 0.873847i \(0.661618\pi\)
\(182\) −11.8739 −0.880149
\(183\) −6.64318 −0.491078
\(184\) 40.0913 2.95557
\(185\) −46.7540 −3.43742
\(186\) 0 0
\(187\) 2.25718 0.165062
\(188\) −14.1034 −1.02859
\(189\) 2.72957 0.198547
\(190\) 22.4210 1.62659
\(191\) 16.6264 1.20304 0.601521 0.798857i \(-0.294562\pi\)
0.601521 + 0.798857i \(0.294562\pi\)
\(192\) −0.371123 −0.0267835
\(193\) −13.8340 −0.995796 −0.497898 0.867236i \(-0.665895\pi\)
−0.497898 + 0.867236i \(0.665895\pi\)
\(194\) 11.2527 0.807900
\(195\) 6.81593 0.488099
\(196\) 2.03279 0.145199
\(197\) 24.0564 1.71395 0.856973 0.515362i \(-0.172342\pi\)
0.856973 + 0.515362i \(0.172342\pi\)
\(198\) 6.17061 0.438526
\(199\) 0.477485 0.0338480 0.0169240 0.999857i \(-0.494613\pi\)
0.0169240 + 0.999857i \(0.494613\pi\)
\(200\) 70.4203 4.97947
\(201\) 3.86409 0.272552
\(202\) −13.4352 −0.945300
\(203\) 2.08031 0.146009
\(204\) −4.21152 −0.294865
\(205\) −46.7482 −3.26504
\(206\) 19.7153 1.37363
\(207\) 6.25483 0.434741
\(208\) 12.5001 0.866724
\(209\) −5.31378 −0.367562
\(210\) −27.8498 −1.92182
\(211\) −24.5285 −1.68861 −0.844307 0.535860i \(-0.819987\pi\)
−0.844307 + 0.535860i \(0.819987\pi\)
\(212\) 23.6413 1.62369
\(213\) 2.62805 0.180071
\(214\) 23.2890 1.59200
\(215\) −8.34832 −0.569351
\(216\) −6.40966 −0.436122
\(217\) 0 0
\(218\) 16.9151 1.14564
\(219\) 2.32021 0.156785
\(220\) −43.6220 −2.94099
\(221\) 1.59124 0.107039
\(222\) −29.8395 −2.00269
\(223\) −0.111301 −0.00745330 −0.00372665 0.999993i \(-0.501186\pi\)
−0.00372665 + 0.999993i \(0.501186\pi\)
\(224\) −16.0839 −1.07465
\(225\) 10.9866 0.732439
\(226\) −8.95248 −0.595510
\(227\) 14.6566 0.972795 0.486398 0.873738i \(-0.338311\pi\)
0.486398 + 0.873738i \(0.338311\pi\)
\(228\) 9.91460 0.656611
\(229\) 17.4538 1.15338 0.576691 0.816962i \(-0.304344\pi\)
0.576691 + 0.816962i \(0.304344\pi\)
\(230\) −63.8181 −4.20804
\(231\) 6.60042 0.434276
\(232\) −4.88506 −0.320720
\(233\) 7.95412 0.521092 0.260546 0.965461i \(-0.416098\pi\)
0.260546 + 0.965461i \(0.416098\pi\)
\(234\) 4.35008 0.284374
\(235\) 12.4983 0.815300
\(236\) 31.2728 2.03568
\(237\) −8.41452 −0.546581
\(238\) −6.50180 −0.421449
\(239\) 2.55515 0.165279 0.0826394 0.996580i \(-0.473665\pi\)
0.0826394 + 0.996580i \(0.473665\pi\)
\(240\) 29.3186 1.89251
\(241\) −10.6788 −0.687882 −0.343941 0.938991i \(-0.611762\pi\)
−0.343941 + 0.938991i \(0.611762\pi\)
\(242\) −13.1488 −0.845235
\(243\) −1.00000 −0.0641500
\(244\) 29.9727 1.91880
\(245\) −1.80144 −0.115090
\(246\) −29.8358 −1.90226
\(247\) −3.74605 −0.238355
\(248\) 0 0
\(249\) 12.7355 0.807078
\(250\) −61.0813 −3.86312
\(251\) 29.6514 1.87158 0.935791 0.352555i \(-0.114687\pi\)
0.935791 + 0.352555i \(0.114687\pi\)
\(252\) −12.3153 −0.775789
\(253\) 15.1249 0.950895
\(254\) −31.4046 −1.97050
\(255\) 3.73222 0.233720
\(256\) −28.3987 −1.77492
\(257\) −10.4989 −0.654905 −0.327453 0.944868i \(-0.606190\pi\)
−0.327453 + 0.944868i \(0.606190\pi\)
\(258\) −5.32809 −0.331712
\(259\) −31.9179 −1.98328
\(260\) −30.7521 −1.90716
\(261\) −0.762139 −0.0471752
\(262\) 28.2239 1.74368
\(263\) 9.75396 0.601455 0.300728 0.953710i \(-0.402770\pi\)
0.300728 + 0.953710i \(0.402770\pi\)
\(264\) −15.4993 −0.953917
\(265\) −20.9508 −1.28700
\(266\) 15.3063 0.938490
\(267\) 11.6131 0.710712
\(268\) −17.4340 −1.06495
\(269\) 3.92734 0.239454 0.119727 0.992807i \(-0.461798\pi\)
0.119727 + 0.992807i \(0.461798\pi\)
\(270\) 10.2030 0.620936
\(271\) −17.8088 −1.08181 −0.540905 0.841084i \(-0.681918\pi\)
−0.540905 + 0.841084i \(0.681918\pi\)
\(272\) 6.84470 0.415021
\(273\) 4.65309 0.281618
\(274\) 52.3663 3.16356
\(275\) 26.5669 1.60204
\(276\) −28.2205 −1.69868
\(277\) 1.28699 0.0773278 0.0386639 0.999252i \(-0.487690\pi\)
0.0386639 + 0.999252i \(0.487690\pi\)
\(278\) 52.5457 3.15148
\(279\) 0 0
\(280\) 69.9531 4.18050
\(281\) 11.3771 0.678703 0.339352 0.940660i \(-0.389792\pi\)
0.339352 + 0.940660i \(0.389792\pi\)
\(282\) 7.97671 0.475006
\(283\) −15.6331 −0.929289 −0.464645 0.885497i \(-0.653818\pi\)
−0.464645 + 0.885497i \(0.653818\pi\)
\(284\) −11.8572 −0.703596
\(285\) −8.78625 −0.520453
\(286\) 10.5190 0.622003
\(287\) −31.9140 −1.88382
\(288\) 5.89248 0.347218
\(289\) −16.1287 −0.948746
\(290\) 7.77612 0.456629
\(291\) −4.40969 −0.258501
\(292\) −10.4683 −0.612613
\(293\) −20.8849 −1.22011 −0.610055 0.792359i \(-0.708853\pi\)
−0.610055 + 0.792359i \(0.708853\pi\)
\(294\) −1.14972 −0.0670531
\(295\) −27.7137 −1.61355
\(296\) 74.9507 4.35642
\(297\) −2.41812 −0.140314
\(298\) 33.5045 1.94086
\(299\) 10.6626 0.616633
\(300\) −49.5693 −2.86188
\(301\) −5.69922 −0.328497
\(302\) −21.4086 −1.23193
\(303\) 5.26496 0.302464
\(304\) −16.1135 −0.924175
\(305\) −26.5616 −1.52091
\(306\) 2.38199 0.136169
\(307\) −6.92691 −0.395340 −0.197670 0.980269i \(-0.563337\pi\)
−0.197670 + 0.980269i \(0.563337\pi\)
\(308\) −29.7798 −1.69686
\(309\) −7.72596 −0.439515
\(310\) 0 0
\(311\) 21.8019 1.23627 0.618136 0.786072i \(-0.287888\pi\)
0.618136 + 0.786072i \(0.287888\pi\)
\(312\) −10.9265 −0.618593
\(313\) 19.4262 1.09804 0.549018 0.835811i \(-0.315002\pi\)
0.549018 + 0.835811i \(0.315002\pi\)
\(314\) 7.68516 0.433698
\(315\) 10.9137 0.614917
\(316\) 37.9646 2.13567
\(317\) −13.7195 −0.770561 −0.385281 0.922799i \(-0.625895\pi\)
−0.385281 + 0.922799i \(0.625895\pi\)
\(318\) −13.3713 −0.749823
\(319\) −1.84294 −0.103185
\(320\) −1.48387 −0.0829508
\(321\) −9.12641 −0.509386
\(322\) −43.5672 −2.42791
\(323\) −2.05123 −0.114134
\(324\) 4.51180 0.250655
\(325\) 18.7288 1.03889
\(326\) −24.9077 −1.37951
\(327\) −6.62864 −0.366564
\(328\) 74.9415 4.13795
\(329\) 8.53233 0.470403
\(330\) 24.6721 1.35815
\(331\) −18.3803 −1.01027 −0.505137 0.863039i \(-0.668558\pi\)
−0.505137 + 0.863039i \(0.668558\pi\)
\(332\) −57.4599 −3.15352
\(333\) 11.6934 0.640794
\(334\) 15.4465 0.845194
\(335\) 15.4499 0.844117
\(336\) 20.0152 1.09192
\(337\) −14.9250 −0.813017 −0.406508 0.913647i \(-0.633254\pi\)
−0.406508 + 0.913647i \(0.633254\pi\)
\(338\) −25.7581 −1.40106
\(339\) 3.50827 0.190543
\(340\) −16.8390 −0.913223
\(341\) 0 0
\(342\) −5.60759 −0.303224
\(343\) 17.8772 0.965277
\(344\) 13.3831 0.721567
\(345\) 25.0088 1.34643
\(346\) −4.55464 −0.244859
\(347\) 10.8392 0.581876 0.290938 0.956742i \(-0.406033\pi\)
0.290938 + 0.956742i \(0.406033\pi\)
\(348\) 3.43862 0.184329
\(349\) 15.3503 0.821681 0.410840 0.911707i \(-0.365235\pi\)
0.410840 + 0.911707i \(0.365235\pi\)
\(350\) −76.5257 −4.09047
\(351\) −1.70470 −0.0909900
\(352\) 14.2487 0.759459
\(353\) −16.5951 −0.883268 −0.441634 0.897195i \(-0.645601\pi\)
−0.441634 + 0.897195i \(0.645601\pi\)
\(354\) −17.6875 −0.940081
\(355\) 10.5078 0.557695
\(356\) −52.3961 −2.77699
\(357\) 2.54790 0.134849
\(358\) −63.3431 −3.34779
\(359\) −0.262969 −0.0138790 −0.00693948 0.999976i \(-0.502209\pi\)
−0.00693948 + 0.999976i \(0.502209\pi\)
\(360\) −25.6279 −1.35071
\(361\) −14.1711 −0.745845
\(362\) −33.3838 −1.75461
\(363\) 5.15270 0.270447
\(364\) −20.9938 −1.10037
\(365\) 9.27696 0.485578
\(366\) −16.9522 −0.886107
\(367\) 22.5773 1.17853 0.589263 0.807941i \(-0.299418\pi\)
0.589263 + 0.807941i \(0.299418\pi\)
\(368\) 45.8649 2.39087
\(369\) 11.6920 0.608659
\(370\) −119.308 −6.20252
\(371\) −14.3026 −0.742556
\(372\) 0 0
\(373\) −32.4618 −1.68081 −0.840404 0.541960i \(-0.817682\pi\)
−0.840404 + 0.541960i \(0.817682\pi\)
\(374\) 5.75993 0.297839
\(375\) 23.9363 1.23607
\(376\) −20.0359 −1.03327
\(377\) −1.29922 −0.0669131
\(378\) 6.96538 0.358260
\(379\) −27.8484 −1.43047 −0.715237 0.698882i \(-0.753681\pi\)
−0.715237 + 0.698882i \(0.753681\pi\)
\(380\) 39.6418 2.03358
\(381\) 12.3067 0.630494
\(382\) 42.4275 2.17078
\(383\) −17.8180 −0.910460 −0.455230 0.890374i \(-0.650443\pi\)
−0.455230 + 0.890374i \(0.650443\pi\)
\(384\) 10.8379 0.553070
\(385\) 26.3906 1.34499
\(386\) −35.3020 −1.79682
\(387\) 2.08795 0.106137
\(388\) 19.8956 1.01005
\(389\) 12.8204 0.650019 0.325009 0.945711i \(-0.394633\pi\)
0.325009 + 0.945711i \(0.394633\pi\)
\(390\) 17.3930 0.880731
\(391\) 5.83854 0.295268
\(392\) 2.88787 0.145859
\(393\) −11.0603 −0.557918
\(394\) 61.3876 3.09266
\(395\) −33.6440 −1.69281
\(396\) 10.9101 0.548251
\(397\) 26.1075 1.31030 0.655148 0.755500i \(-0.272606\pi\)
0.655148 + 0.755500i \(0.272606\pi\)
\(398\) 1.21846 0.0610757
\(399\) −5.99819 −0.300285
\(400\) 80.5616 4.02808
\(401\) 6.20676 0.309951 0.154975 0.987918i \(-0.450470\pi\)
0.154975 + 0.987918i \(0.450470\pi\)
\(402\) 9.86046 0.491795
\(403\) 0 0
\(404\) −23.7544 −1.18183
\(405\) −3.99832 −0.198678
\(406\) 5.30859 0.263461
\(407\) 28.2760 1.40159
\(408\) −5.98307 −0.296206
\(409\) −38.7733 −1.91722 −0.958609 0.284726i \(-0.908097\pi\)
−0.958609 + 0.284726i \(0.908097\pi\)
\(410\) −119.293 −5.89147
\(411\) −20.5211 −1.01223
\(412\) 34.8580 1.71733
\(413\) −18.9195 −0.930970
\(414\) 15.9612 0.784451
\(415\) 50.9205 2.49959
\(416\) 10.0449 0.492492
\(417\) −20.5914 −1.00837
\(418\) −13.5598 −0.663232
\(419\) −20.2328 −0.988437 −0.494219 0.869338i \(-0.664546\pi\)
−0.494219 + 0.869338i \(0.664546\pi\)
\(420\) −49.2404 −2.40269
\(421\) 36.8539 1.79615 0.898074 0.439845i \(-0.144967\pi\)
0.898074 + 0.439845i \(0.144967\pi\)
\(422\) −62.5925 −3.04695
\(423\) −3.12589 −0.151986
\(424\) 33.5859 1.63108
\(425\) 10.2554 0.497459
\(426\) 6.70631 0.324922
\(427\) −18.1330 −0.877519
\(428\) 41.1765 1.99034
\(429\) −4.12216 −0.199020
\(430\) −21.3034 −1.02734
\(431\) 5.06706 0.244072 0.122036 0.992526i \(-0.461058\pi\)
0.122036 + 0.992526i \(0.461058\pi\)
\(432\) −7.33272 −0.352796
\(433\) 15.8658 0.762460 0.381230 0.924480i \(-0.375501\pi\)
0.381230 + 0.924480i \(0.375501\pi\)
\(434\) 0 0
\(435\) −3.04728 −0.146106
\(436\) 29.9071 1.43229
\(437\) −13.7449 −0.657507
\(438\) 5.92077 0.282905
\(439\) −23.8862 −1.14002 −0.570012 0.821636i \(-0.693062\pi\)
−0.570012 + 0.821636i \(0.693062\pi\)
\(440\) −61.9713 −2.95437
\(441\) 0.450549 0.0214547
\(442\) 4.06057 0.193141
\(443\) 26.4674 1.25750 0.628752 0.777606i \(-0.283566\pi\)
0.628752 + 0.777606i \(0.283566\pi\)
\(444\) −52.7582 −2.50379
\(445\) 46.4331 2.20114
\(446\) −0.284022 −0.0134488
\(447\) −13.1296 −0.621010
\(448\) −1.01301 −0.0478600
\(449\) 6.56169 0.309665 0.154833 0.987941i \(-0.450516\pi\)
0.154833 + 0.987941i \(0.450516\pi\)
\(450\) 28.0358 1.32162
\(451\) 28.2725 1.33130
\(452\) −15.8286 −0.744515
\(453\) 8.38954 0.394175
\(454\) 37.4011 1.75532
\(455\) 18.6046 0.872195
\(456\) 14.0851 0.659597
\(457\) 3.19578 0.149492 0.0747461 0.997203i \(-0.476185\pi\)
0.0747461 + 0.997203i \(0.476185\pi\)
\(458\) 44.5391 2.08117
\(459\) −0.933445 −0.0435695
\(460\) −112.835 −5.26095
\(461\) 34.7154 1.61686 0.808429 0.588594i \(-0.200318\pi\)
0.808429 + 0.588594i \(0.200318\pi\)
\(462\) 16.8431 0.783612
\(463\) 13.8525 0.643782 0.321891 0.946777i \(-0.395682\pi\)
0.321891 + 0.946777i \(0.395682\pi\)
\(464\) −5.58856 −0.259442
\(465\) 0 0
\(466\) 20.2975 0.940263
\(467\) −19.8229 −0.917293 −0.458647 0.888619i \(-0.651666\pi\)
−0.458647 + 0.888619i \(0.651666\pi\)
\(468\) 7.69125 0.355528
\(469\) 10.5473 0.487029
\(470\) 31.8935 1.47114
\(471\) −3.01163 −0.138769
\(472\) 44.4275 2.04494
\(473\) 5.04892 0.232150
\(474\) −21.4723 −0.986258
\(475\) −24.1429 −1.10775
\(476\) −11.4956 −0.526901
\(477\) 5.23989 0.239918
\(478\) 6.52029 0.298231
\(479\) −5.75785 −0.263083 −0.131542 0.991311i \(-0.541993\pi\)
−0.131542 + 0.991311i \(0.541993\pi\)
\(480\) 23.5600 1.07536
\(481\) 19.9337 0.908898
\(482\) −27.2504 −1.24122
\(483\) 17.0730 0.776848
\(484\) −23.2479 −1.05672
\(485\) −17.6314 −0.800599
\(486\) −2.55182 −0.115753
\(487\) 6.31188 0.286019 0.143009 0.989721i \(-0.454322\pi\)
0.143009 + 0.989721i \(0.454322\pi\)
\(488\) 42.5805 1.92753
\(489\) 9.76076 0.441397
\(490\) −4.59696 −0.207669
\(491\) 19.3808 0.874643 0.437322 0.899305i \(-0.355927\pi\)
0.437322 + 0.899305i \(0.355927\pi\)
\(492\) −52.7517 −2.37823
\(493\) −0.711416 −0.0320405
\(494\) −9.55924 −0.430091
\(495\) −9.66842 −0.434563
\(496\) 0 0
\(497\) 7.17344 0.321773
\(498\) 32.4987 1.45630
\(499\) −1.60294 −0.0717575 −0.0358787 0.999356i \(-0.511423\pi\)
−0.0358787 + 0.999356i \(0.511423\pi\)
\(500\) −107.996 −4.82972
\(501\) −6.05312 −0.270433
\(502\) 75.6652 3.37710
\(503\) 11.5436 0.514702 0.257351 0.966318i \(-0.417150\pi\)
0.257351 + 0.966318i \(0.417150\pi\)
\(504\) −17.4956 −0.779317
\(505\) 21.0510 0.936758
\(506\) 38.5961 1.71581
\(507\) 10.0940 0.448291
\(508\) −55.5255 −2.46355
\(509\) 3.67075 0.162703 0.0813516 0.996685i \(-0.474076\pi\)
0.0813516 + 0.996685i \(0.474076\pi\)
\(510\) 9.52395 0.421728
\(511\) 6.33318 0.280163
\(512\) −50.7926 −2.24474
\(513\) 2.19748 0.0970213
\(514\) −26.7914 −1.18172
\(515\) −30.8909 −1.36122
\(516\) −9.42043 −0.414711
\(517\) −7.55877 −0.332434
\(518\) −81.4489 −3.57866
\(519\) 1.78486 0.0783465
\(520\) −43.6878 −1.91584
\(521\) 22.7219 0.995463 0.497731 0.867331i \(-0.334166\pi\)
0.497731 + 0.867331i \(0.334166\pi\)
\(522\) −1.94484 −0.0851235
\(523\) 24.0422 1.05129 0.525645 0.850704i \(-0.323824\pi\)
0.525645 + 0.850704i \(0.323824\pi\)
\(524\) 49.9018 2.17997
\(525\) 29.9887 1.30881
\(526\) 24.8904 1.08527
\(527\) 0 0
\(528\) −17.7314 −0.771660
\(529\) 16.1229 0.700994
\(530\) −53.4626 −2.32227
\(531\) 6.93133 0.300794
\(532\) 27.0626 1.17331
\(533\) 19.9312 0.863318
\(534\) 29.6347 1.28242
\(535\) −36.4903 −1.57761
\(536\) −24.7675 −1.06979
\(537\) 24.8227 1.07118
\(538\) 10.0219 0.432074
\(539\) 1.08948 0.0469273
\(540\) 18.0396 0.776302
\(541\) 29.9787 1.28888 0.644442 0.764653i \(-0.277090\pi\)
0.644442 + 0.764653i \(0.277090\pi\)
\(542\) −45.4450 −1.95203
\(543\) 13.0823 0.561416
\(544\) 5.50031 0.235824
\(545\) −26.5034 −1.13528
\(546\) 11.8739 0.508154
\(547\) −19.0057 −0.812625 −0.406313 0.913734i \(-0.633186\pi\)
−0.406313 + 0.913734i \(0.633186\pi\)
\(548\) 92.5872 3.95513
\(549\) 6.64318 0.283524
\(550\) 67.7940 2.89074
\(551\) 1.67479 0.0713484
\(552\) −40.0913 −1.70640
\(553\) −22.9680 −0.976699
\(554\) 3.28417 0.139531
\(555\) 46.7540 1.98460
\(556\) 92.9044 3.94003
\(557\) 9.48713 0.401983 0.200991 0.979593i \(-0.435584\pi\)
0.200991 + 0.979593i \(0.435584\pi\)
\(558\) 0 0
\(559\) 3.55933 0.150544
\(560\) 80.0271 3.38176
\(561\) −2.25718 −0.0952983
\(562\) 29.0324 1.22466
\(563\) −10.2935 −0.433818 −0.216909 0.976192i \(-0.569598\pi\)
−0.216909 + 0.976192i \(0.569598\pi\)
\(564\) 14.1034 0.593859
\(565\) 14.0272 0.590129
\(566\) −39.8928 −1.67682
\(567\) −2.72957 −0.114631
\(568\) −16.8449 −0.706796
\(569\) 2.22077 0.0930994 0.0465497 0.998916i \(-0.485177\pi\)
0.0465497 + 0.998916i \(0.485177\pi\)
\(570\) −22.4210 −0.939111
\(571\) 2.05535 0.0860135 0.0430068 0.999075i \(-0.486306\pi\)
0.0430068 + 0.999075i \(0.486306\pi\)
\(572\) 18.5984 0.777636
\(573\) −16.6264 −0.694576
\(574\) −81.4389 −3.39919
\(575\) 68.7192 2.86579
\(576\) 0.371123 0.0154634
\(577\) 13.0913 0.544996 0.272498 0.962156i \(-0.412150\pi\)
0.272498 + 0.962156i \(0.412150\pi\)
\(578\) −41.1575 −1.71193
\(579\) 13.8340 0.574923
\(580\) 13.7487 0.570884
\(581\) 34.7624 1.44219
\(582\) −11.2527 −0.466441
\(583\) 12.6707 0.524766
\(584\) −14.8718 −0.615399
\(585\) −6.81593 −0.281804
\(586\) −53.2946 −2.20158
\(587\) 42.6528 1.76047 0.880235 0.474539i \(-0.157385\pi\)
0.880235 + 0.474539i \(0.157385\pi\)
\(588\) −2.03279 −0.0838307
\(589\) 0 0
\(590\) −70.7204 −2.91151
\(591\) −24.0564 −0.989547
\(592\) 85.7444 3.52407
\(593\) −6.77953 −0.278402 −0.139201 0.990264i \(-0.544453\pi\)
−0.139201 + 0.990264i \(0.544453\pi\)
\(594\) −6.17061 −0.253183
\(595\) 10.1873 0.417640
\(596\) 59.2382 2.42649
\(597\) −0.477485 −0.0195422
\(598\) 27.2090 1.11266
\(599\) −29.2175 −1.19380 −0.596898 0.802317i \(-0.703600\pi\)
−0.596898 + 0.802317i \(0.703600\pi\)
\(600\) −70.4203 −2.87490
\(601\) 23.8290 0.972005 0.486003 0.873957i \(-0.338455\pi\)
0.486003 + 0.873957i \(0.338455\pi\)
\(602\) −14.5434 −0.592744
\(603\) −3.86409 −0.157358
\(604\) −37.8519 −1.54017
\(605\) 20.6022 0.837597
\(606\) 13.4352 0.545769
\(607\) −34.1847 −1.38752 −0.693758 0.720209i \(-0.744046\pi\)
−0.693758 + 0.720209i \(0.744046\pi\)
\(608\) −12.9486 −0.525137
\(609\) −2.08031 −0.0842985
\(610\) −67.7805 −2.74435
\(611\) −5.32869 −0.215576
\(612\) 4.21152 0.170240
\(613\) 21.2778 0.859401 0.429701 0.902971i \(-0.358619\pi\)
0.429701 + 0.902971i \(0.358619\pi\)
\(614\) −17.6762 −0.713355
\(615\) 46.7482 1.88507
\(616\) −42.3065 −1.70458
\(617\) −13.2846 −0.534817 −0.267409 0.963583i \(-0.586167\pi\)
−0.267409 + 0.963583i \(0.586167\pi\)
\(618\) −19.7153 −0.793065
\(619\) −25.3551 −1.01911 −0.509554 0.860439i \(-0.670190\pi\)
−0.509554 + 0.860439i \(0.670190\pi\)
\(620\) 0 0
\(621\) −6.25483 −0.250998
\(622\) 55.6345 2.23074
\(623\) 31.6989 1.26999
\(624\) −12.5001 −0.500403
\(625\) 40.7722 1.63089
\(626\) 49.5723 1.98131
\(627\) 5.31378 0.212212
\(628\) 13.5879 0.542216
\(629\) 10.9151 0.435215
\(630\) 27.8498 1.10956
\(631\) −0.709689 −0.0282523 −0.0141261 0.999900i \(-0.504497\pi\)
−0.0141261 + 0.999900i \(0.504497\pi\)
\(632\) 53.9342 2.14539
\(633\) 24.5285 0.974922
\(634\) −35.0096 −1.39041
\(635\) 49.2063 1.95269
\(636\) −23.6413 −0.937439
\(637\) 0.768050 0.0304312
\(638\) −4.70287 −0.186188
\(639\) −2.62805 −0.103964
\(640\) 43.3335 1.71291
\(641\) 13.6470 0.539026 0.269513 0.962997i \(-0.413137\pi\)
0.269513 + 0.962997i \(0.413137\pi\)
\(642\) −23.2890 −0.919143
\(643\) 36.2538 1.42971 0.714856 0.699272i \(-0.246492\pi\)
0.714856 + 0.699272i \(0.246492\pi\)
\(644\) −77.0299 −3.03540
\(645\) 8.34832 0.328715
\(646\) −5.23438 −0.205944
\(647\) −43.9056 −1.72611 −0.863055 0.505111i \(-0.831452\pi\)
−0.863055 + 0.505111i \(0.831452\pi\)
\(648\) 6.40966 0.251795
\(649\) 16.7608 0.657918
\(650\) 47.7926 1.87458
\(651\) 0 0
\(652\) −44.0386 −1.72468
\(653\) −23.2495 −0.909825 −0.454912 0.890536i \(-0.650329\pi\)
−0.454912 + 0.890536i \(0.650329\pi\)
\(654\) −16.9151 −0.661433
\(655\) −44.2226 −1.72792
\(656\) 85.7338 3.34734
\(657\) −2.32021 −0.0905201
\(658\) 21.7730 0.848800
\(659\) 40.3057 1.57009 0.785043 0.619442i \(-0.212641\pi\)
0.785043 + 0.619442i \(0.212641\pi\)
\(660\) 43.6220 1.69798
\(661\) −27.6976 −1.07731 −0.538655 0.842526i \(-0.681067\pi\)
−0.538655 + 0.842526i \(0.681067\pi\)
\(662\) −46.9033 −1.82295
\(663\) −1.59124 −0.0617987
\(664\) −81.6301 −3.16786
\(665\) −23.9827 −0.930009
\(666\) 29.8395 1.15626
\(667\) −4.76705 −0.184581
\(668\) 27.3104 1.05667
\(669\) 0.111301 0.00430316
\(670\) 39.4253 1.52313
\(671\) 16.0640 0.620144
\(672\) 16.0839 0.620451
\(673\) 11.9164 0.459343 0.229671 0.973268i \(-0.426235\pi\)
0.229671 + 0.973268i \(0.426235\pi\)
\(674\) −38.0860 −1.46702
\(675\) −10.9866 −0.422874
\(676\) −45.5421 −1.75162
\(677\) −35.6541 −1.37030 −0.685149 0.728403i \(-0.740263\pi\)
−0.685149 + 0.728403i \(0.740263\pi\)
\(678\) 8.95248 0.343818
\(679\) −12.0366 −0.461921
\(680\) −23.9222 −0.917376
\(681\) −14.6566 −0.561644
\(682\) 0 0
\(683\) 22.0333 0.843081 0.421541 0.906809i \(-0.361489\pi\)
0.421541 + 0.906809i \(0.361489\pi\)
\(684\) −9.91460 −0.379094
\(685\) −82.0501 −3.13497
\(686\) 45.6194 1.74176
\(687\) −17.4538 −0.665905
\(688\) 15.3104 0.583703
\(689\) 8.93242 0.340298
\(690\) 63.8181 2.42951
\(691\) −31.0331 −1.18055 −0.590277 0.807201i \(-0.700981\pi\)
−0.590277 + 0.807201i \(0.700981\pi\)
\(692\) −8.05291 −0.306126
\(693\) −6.60042 −0.250729
\(694\) 27.6596 1.04994
\(695\) −82.3312 −3.12300
\(696\) 4.88506 0.185168
\(697\) 10.9138 0.413390
\(698\) 39.1711 1.48265
\(699\) −7.95412 −0.300852
\(700\) −135.303 −5.11396
\(701\) 31.5677 1.19230 0.596149 0.802874i \(-0.296697\pi\)
0.596149 + 0.802874i \(0.296697\pi\)
\(702\) −4.35008 −0.164183
\(703\) −25.6960 −0.969145
\(704\) 0.897419 0.0338228
\(705\) −12.4983 −0.470714
\(706\) −42.3477 −1.59378
\(707\) 14.3711 0.540480
\(708\) −31.2728 −1.17530
\(709\) −51.9991 −1.95287 −0.976434 0.215817i \(-0.930759\pi\)
−0.976434 + 0.215817i \(0.930759\pi\)
\(710\) 26.8140 1.00631
\(711\) 8.41452 0.315569
\(712\) −74.4363 −2.78962
\(713\) 0 0
\(714\) 6.50180 0.243324
\(715\) −16.4817 −0.616382
\(716\) −111.995 −4.18545
\(717\) −2.55515 −0.0954238
\(718\) −0.671050 −0.0250434
\(719\) −0.258190 −0.00962886 −0.00481443 0.999988i \(-0.501532\pi\)
−0.00481443 + 0.999988i \(0.501532\pi\)
\(720\) −29.3186 −1.09264
\(721\) −21.0885 −0.785378
\(722\) −36.1620 −1.34581
\(723\) 10.6788 0.397149
\(724\) −59.0248 −2.19364
\(725\) −8.37331 −0.310977
\(726\) 13.1488 0.487997
\(727\) 45.5600 1.68973 0.844864 0.534981i \(-0.179681\pi\)
0.844864 + 0.534981i \(0.179681\pi\)
\(728\) −29.8247 −1.10538
\(729\) 1.00000 0.0370370
\(730\) 23.6732 0.876183
\(731\) 1.94899 0.0720861
\(732\) −29.9727 −1.10782
\(733\) 18.6755 0.689796 0.344898 0.938640i \(-0.387913\pi\)
0.344898 + 0.938640i \(0.387913\pi\)
\(734\) 57.6133 2.12655
\(735\) 1.80144 0.0664472
\(736\) 36.8565 1.35855
\(737\) −9.34382 −0.344184
\(738\) 29.8358 1.09827
\(739\) −37.5050 −1.37965 −0.689823 0.723979i \(-0.742311\pi\)
−0.689823 + 0.723979i \(0.742311\pi\)
\(740\) −210.944 −7.75447
\(741\) 3.74605 0.137614
\(742\) −36.4978 −1.33988
\(743\) −16.9700 −0.622569 −0.311285 0.950317i \(-0.600759\pi\)
−0.311285 + 0.950317i \(0.600759\pi\)
\(744\) 0 0
\(745\) −52.4965 −1.92332
\(746\) −82.8368 −3.03287
\(747\) −12.7355 −0.465967
\(748\) 10.1839 0.372362
\(749\) −24.9112 −0.910234
\(750\) 61.0813 2.23037
\(751\) −39.1241 −1.42766 −0.713830 0.700319i \(-0.753041\pi\)
−0.713830 + 0.700319i \(0.753041\pi\)
\(752\) −22.9213 −0.835853
\(753\) −29.6514 −1.08056
\(754\) −3.31537 −0.120739
\(755\) 33.5441 1.22079
\(756\) 12.3153 0.447902
\(757\) 23.9289 0.869709 0.434855 0.900501i \(-0.356800\pi\)
0.434855 + 0.900501i \(0.356800\pi\)
\(758\) −71.0641 −2.58116
\(759\) −15.1249 −0.549000
\(760\) 56.3169 2.04283
\(761\) −36.2067 −1.31249 −0.656245 0.754547i \(-0.727856\pi\)
−0.656245 + 0.754547i \(0.727856\pi\)
\(762\) 31.4046 1.13767
\(763\) −18.0933 −0.655022
\(764\) 75.0148 2.71394
\(765\) −3.73222 −0.134939
\(766\) −45.4685 −1.64284
\(767\) 11.8158 0.426644
\(768\) 28.3987 1.02475
\(769\) −41.4245 −1.49380 −0.746902 0.664934i \(-0.768460\pi\)
−0.746902 + 0.664934i \(0.768460\pi\)
\(770\) 67.3442 2.42692
\(771\) 10.4989 0.378110
\(772\) −62.4164 −2.24641
\(773\) 4.93527 0.177509 0.0887546 0.996054i \(-0.471711\pi\)
0.0887546 + 0.996054i \(0.471711\pi\)
\(774\) 5.32809 0.191514
\(775\) 0 0
\(776\) 28.2646 1.01464
\(777\) 31.9179 1.14505
\(778\) 32.7153 1.17290
\(779\) −25.6929 −0.920543
\(780\) 30.7521 1.10110
\(781\) −6.35493 −0.227397
\(782\) 14.8989 0.532784
\(783\) 0.762139 0.0272366
\(784\) 3.30375 0.117991
\(785\) −12.0415 −0.429779
\(786\) −28.2239 −1.00671
\(787\) −43.1715 −1.53890 −0.769448 0.638709i \(-0.779469\pi\)
−0.769448 + 0.638709i \(0.779469\pi\)
\(788\) 108.537 3.86649
\(789\) −9.75396 −0.347250
\(790\) −85.8534 −3.05453
\(791\) 9.57607 0.340486
\(792\) 15.4993 0.550745
\(793\) 11.3246 0.402149
\(794\) 66.6216 2.36431
\(795\) 20.9508 0.743047
\(796\) 2.15431 0.0763577
\(797\) 32.6896 1.15792 0.578962 0.815354i \(-0.303458\pi\)
0.578962 + 0.815354i \(0.303458\pi\)
\(798\) −15.3063 −0.541837
\(799\) −2.91785 −0.103226
\(800\) 64.7383 2.28884
\(801\) −11.6131 −0.410330
\(802\) 15.8385 0.559278
\(803\) −5.61055 −0.197992
\(804\) 17.4340 0.614849
\(805\) 68.2633 2.40597
\(806\) 0 0
\(807\) −3.92734 −0.138249
\(808\) −33.7466 −1.18720
\(809\) 22.1429 0.778502 0.389251 0.921132i \(-0.372734\pi\)
0.389251 + 0.921132i \(0.372734\pi\)
\(810\) −10.2030 −0.358497
\(811\) −8.79261 −0.308750 −0.154375 0.988012i \(-0.549336\pi\)
−0.154375 + 0.988012i \(0.549336\pi\)
\(812\) 9.38595 0.329382
\(813\) 17.8088 0.624583
\(814\) 72.1554 2.52904
\(815\) 39.0267 1.36705
\(816\) −6.84470 −0.239612
\(817\) −4.58825 −0.160522
\(818\) −98.9427 −3.45945
\(819\) −4.65309 −0.162592
\(820\) −210.918 −7.36559
\(821\) −15.7261 −0.548844 −0.274422 0.961609i \(-0.588486\pi\)
−0.274422 + 0.961609i \(0.588486\pi\)
\(822\) −52.3663 −1.82648
\(823\) −17.4226 −0.607314 −0.303657 0.952781i \(-0.598208\pi\)
−0.303657 + 0.952781i \(0.598208\pi\)
\(824\) 49.5208 1.72514
\(825\) −26.5669 −0.924940
\(826\) −48.2793 −1.67985
\(827\) 1.04692 0.0364050 0.0182025 0.999834i \(-0.494206\pi\)
0.0182025 + 0.999834i \(0.494206\pi\)
\(828\) 28.2205 0.980731
\(829\) 38.8456 1.34916 0.674582 0.738200i \(-0.264324\pi\)
0.674582 + 0.738200i \(0.264324\pi\)
\(830\) 129.940 4.51029
\(831\) −1.28699 −0.0446452
\(832\) 0.632652 0.0219333
\(833\) 0.420563 0.0145716
\(834\) −52.5457 −1.81951
\(835\) −24.2023 −0.837556
\(836\) −23.9747 −0.829182
\(837\) 0 0
\(838\) −51.6305 −1.78355
\(839\) 3.95938 0.136693 0.0683465 0.997662i \(-0.478228\pi\)
0.0683465 + 0.997662i \(0.478228\pi\)
\(840\) −69.9531 −2.41361
\(841\) −28.4191 −0.979970
\(842\) 94.0445 3.24099
\(843\) −11.3771 −0.391850
\(844\) −110.668 −3.80934
\(845\) 40.3591 1.38840
\(846\) −7.97671 −0.274245
\(847\) 14.0647 0.483267
\(848\) 38.4226 1.31944
\(849\) 15.6331 0.536525
\(850\) 26.1699 0.897621
\(851\) 73.1401 2.50721
\(852\) 11.8572 0.406222
\(853\) 24.1468 0.826770 0.413385 0.910556i \(-0.364346\pi\)
0.413385 + 0.910556i \(0.364346\pi\)
\(854\) −46.2723 −1.58340
\(855\) 8.78625 0.300484
\(856\) 58.4972 1.99939
\(857\) −9.46706 −0.323388 −0.161694 0.986841i \(-0.551696\pi\)
−0.161694 + 0.986841i \(0.551696\pi\)
\(858\) −10.5190 −0.359114
\(859\) −13.8191 −0.471500 −0.235750 0.971814i \(-0.575755\pi\)
−0.235750 + 0.971814i \(0.575755\pi\)
\(860\) −37.6659 −1.28440
\(861\) 31.9140 1.08763
\(862\) 12.9302 0.440406
\(863\) −22.9998 −0.782921 −0.391460 0.920195i \(-0.628030\pi\)
−0.391460 + 0.920195i \(0.628030\pi\)
\(864\) −5.89248 −0.200466
\(865\) 7.13644 0.242646
\(866\) 40.4866 1.37579
\(867\) 16.1287 0.547759
\(868\) 0 0
\(869\) 20.3473 0.690235
\(870\) −7.77612 −0.263635
\(871\) −6.58710 −0.223195
\(872\) 42.4873 1.43880
\(873\) 4.40969 0.149245
\(874\) −35.0745 −1.18641
\(875\) 65.3359 2.20876
\(876\) 10.4683 0.353692
\(877\) 17.0271 0.574964 0.287482 0.957786i \(-0.407182\pi\)
0.287482 + 0.957786i \(0.407182\pi\)
\(878\) −60.9533 −2.05707
\(879\) 20.8849 0.704431
\(880\) −70.8959 −2.38990
\(881\) −0.0975295 −0.00328585 −0.00164293 0.999999i \(-0.500523\pi\)
−0.00164293 + 0.999999i \(0.500523\pi\)
\(882\) 1.14972 0.0387131
\(883\) 19.2011 0.646170 0.323085 0.946370i \(-0.395280\pi\)
0.323085 + 0.946370i \(0.395280\pi\)
\(884\) 7.17936 0.241468
\(885\) 27.7137 0.931586
\(886\) 67.5401 2.26905
\(887\) −11.1920 −0.375792 −0.187896 0.982189i \(-0.560167\pi\)
−0.187896 + 0.982189i \(0.560167\pi\)
\(888\) −74.9507 −2.51518
\(889\) 33.5921 1.12664
\(890\) 118.489 3.97176
\(891\) 2.41812 0.0810100
\(892\) −0.502170 −0.0168139
\(893\) 6.86909 0.229865
\(894\) −33.5045 −1.12056
\(895\) 99.2492 3.31753
\(896\) 29.5829 0.988294
\(897\) −10.6626 −0.356013
\(898\) 16.7443 0.558764
\(899\) 0 0
\(900\) 49.5693 1.65231
\(901\) 4.89115 0.162948
\(902\) 72.1465 2.40222
\(903\) 5.69922 0.189658
\(904\) −22.4868 −0.747901
\(905\) 52.3073 1.73876
\(906\) 21.4086 0.711253
\(907\) 37.7984 1.25507 0.627537 0.778587i \(-0.284063\pi\)
0.627537 + 0.778587i \(0.284063\pi\)
\(908\) 66.1278 2.19453
\(909\) −5.26496 −0.174628
\(910\) 47.4755 1.57380
\(911\) −23.4570 −0.777164 −0.388582 0.921414i \(-0.627035\pi\)
−0.388582 + 0.921414i \(0.627035\pi\)
\(912\) 16.1135 0.533573
\(913\) −30.7959 −1.01920
\(914\) 8.15505 0.269745
\(915\) 26.5616 0.878099
\(916\) 78.7482 2.60191
\(917\) −30.1898 −0.996957
\(918\) −2.38199 −0.0786173
\(919\) −5.59965 −0.184715 −0.0923577 0.995726i \(-0.529440\pi\)
−0.0923577 + 0.995726i \(0.529440\pi\)
\(920\) −160.298 −5.28487
\(921\) 6.92691 0.228249
\(922\) 88.5876 2.91748
\(923\) −4.48002 −0.147462
\(924\) 29.7798 0.979683
\(925\) 128.471 4.22408
\(926\) 35.3492 1.16165
\(927\) 7.72596 0.253754
\(928\) −4.49089 −0.147421
\(929\) −5.98842 −0.196474 −0.0982369 0.995163i \(-0.531320\pi\)
−0.0982369 + 0.995163i \(0.531320\pi\)
\(930\) 0 0
\(931\) −0.990075 −0.0324484
\(932\) 35.8874 1.17553
\(933\) −21.8019 −0.713761
\(934\) −50.5845 −1.65517
\(935\) −9.02495 −0.295147
\(936\) 10.9265 0.357145
\(937\) 16.4832 0.538481 0.269241 0.963073i \(-0.413227\pi\)
0.269241 + 0.963073i \(0.413227\pi\)
\(938\) 26.9148 0.878800
\(939\) −19.4262 −0.633951
\(940\) 56.3899 1.83923
\(941\) −18.7850 −0.612373 −0.306186 0.951972i \(-0.599053\pi\)
−0.306186 + 0.951972i \(0.599053\pi\)
\(942\) −7.68516 −0.250396
\(943\) 73.1312 2.38148
\(944\) 50.8255 1.65423
\(945\) −10.9137 −0.355023
\(946\) 12.8840 0.418893
\(947\) −18.6276 −0.605316 −0.302658 0.953099i \(-0.597874\pi\)
−0.302658 + 0.953099i \(0.597874\pi\)
\(948\) −37.9646 −1.23303
\(949\) −3.95526 −0.128393
\(950\) −61.6083 −1.99884
\(951\) 13.7195 0.444884
\(952\) −16.3312 −0.529297
\(953\) −13.5379 −0.438535 −0.219268 0.975665i \(-0.570367\pi\)
−0.219268 + 0.975665i \(0.570367\pi\)
\(954\) 13.3713 0.432911
\(955\) −66.4776 −2.15116
\(956\) 11.5283 0.372852
\(957\) 1.84294 0.0595739
\(958\) −14.6930 −0.474710
\(959\) −56.0138 −1.80878
\(960\) 1.48387 0.0478917
\(961\) 0 0
\(962\) 50.8672 1.64003
\(963\) 9.12641 0.294094
\(964\) −48.1806 −1.55179
\(965\) 55.3130 1.78059
\(966\) 43.5672 1.40175
\(967\) −52.7910 −1.69764 −0.848822 0.528679i \(-0.822688\pi\)
−0.848822 + 0.528679i \(0.822688\pi\)
\(968\) −33.0271 −1.06153
\(969\) 2.05123 0.0658951
\(970\) −44.9921 −1.44461
\(971\) −5.05817 −0.162324 −0.0811622 0.996701i \(-0.525863\pi\)
−0.0811622 + 0.996701i \(0.525863\pi\)
\(972\) −4.51180 −0.144716
\(973\) −56.2058 −1.80187
\(974\) 16.1068 0.516095
\(975\) −18.7288 −0.599802
\(976\) 48.7126 1.55925
\(977\) 37.6772 1.20540 0.602701 0.797967i \(-0.294091\pi\)
0.602701 + 0.797967i \(0.294091\pi\)
\(978\) 24.9077 0.796461
\(979\) −28.0819 −0.897503
\(980\) −8.12774 −0.259631
\(981\) 6.62864 0.211636
\(982\) 49.4564 1.57822
\(983\) −19.9815 −0.637309 −0.318655 0.947871i \(-0.603231\pi\)
−0.318655 + 0.947871i \(0.603231\pi\)
\(984\) −74.9415 −2.38905
\(985\) −96.1852 −3.06471
\(986\) −1.81541 −0.0578143
\(987\) −8.53233 −0.271587
\(988\) −16.9014 −0.537705
\(989\) 13.0598 0.415277
\(990\) −24.6721 −0.784131
\(991\) 27.9100 0.886591 0.443295 0.896376i \(-0.353809\pi\)
0.443295 + 0.896376i \(0.353809\pi\)
\(992\) 0 0
\(993\) 18.3803 0.583282
\(994\) 18.3053 0.580610
\(995\) −1.90914 −0.0605238
\(996\) 57.4599 1.82069
\(997\) −1.06805 −0.0338254 −0.0169127 0.999857i \(-0.505384\pi\)
−0.0169127 + 0.999857i \(0.505384\pi\)
\(998\) −4.09042 −0.129480
\(999\) −11.6934 −0.369963
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2883.2.a.q.1.8 8
3.2 odd 2 8649.2.a.bc.1.1 8
31.30 odd 2 2883.2.a.r.1.8 yes 8
93.92 even 2 8649.2.a.bd.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2883.2.a.q.1.8 8 1.1 even 1 trivial
2883.2.a.r.1.8 yes 8 31.30 odd 2
8649.2.a.bc.1.1 8 3.2 odd 2
8649.2.a.bd.1.1 8 93.92 even 2