Properties

Label 2-2883-1.1-c1-0-153
Degree $2$
Conductor $2883$
Sign $-1$
Analytic cond. $23.0208$
Root an. cond. $4.79800$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.55·2-s + 3-s + 4.51·4-s − 3.99·5-s + 2.55·6-s − 2.72·7-s + 6.40·8-s + 9-s − 10.2·10-s − 2.41·11-s + 4.51·12-s − 1.70·13-s − 6.96·14-s − 3.99·15-s + 7.33·16-s − 0.933·17-s + 2.55·18-s − 2.19·19-s − 18.0·20-s − 2.72·21-s − 6.17·22-s − 6.25·23-s + 6.40·24-s + 10.9·25-s − 4.35·26-s + 27-s − 12.3·28-s + ⋯
L(s)  = 1  + 1.80·2-s + 0.577·3-s + 2.25·4-s − 1.78·5-s + 1.04·6-s − 1.03·7-s + 2.26·8-s + 0.333·9-s − 3.22·10-s − 0.729·11-s + 1.30·12-s − 0.472·13-s − 1.86·14-s − 1.03·15-s + 1.83·16-s − 0.226·17-s + 0.601·18-s − 0.504·19-s − 4.03·20-s − 0.595·21-s − 1.31·22-s − 1.30·23-s + 1.30·24-s + 2.19·25-s − 0.853·26-s + 0.192·27-s − 2.32·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2883 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2883\)    =    \(3 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(23.0208\)
Root analytic conductor: \(4.79800\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2883,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
31 \( 1 \)
good2 \( 1 - 2.55T + 2T^{2} \)
5 \( 1 + 3.99T + 5T^{2} \)
7 \( 1 + 2.72T + 7T^{2} \)
11 \( 1 + 2.41T + 11T^{2} \)
13 \( 1 + 1.70T + 13T^{2} \)
17 \( 1 + 0.933T + 17T^{2} \)
19 \( 1 + 2.19T + 19T^{2} \)
23 \( 1 + 6.25T + 23T^{2} \)
29 \( 1 - 0.762T + 29T^{2} \)
37 \( 1 + 11.6T + 37T^{2} \)
41 \( 1 - 11.6T + 41T^{2} \)
43 \( 1 + 2.08T + 43T^{2} \)
47 \( 1 + 3.12T + 47T^{2} \)
53 \( 1 + 5.23T + 53T^{2} \)
59 \( 1 - 6.93T + 59T^{2} \)
61 \( 1 + 6.64T + 61T^{2} \)
67 \( 1 + 3.86T + 67T^{2} \)
71 \( 1 + 2.62T + 71T^{2} \)
73 \( 1 - 2.32T + 73T^{2} \)
79 \( 1 + 8.41T + 79T^{2} \)
83 \( 1 - 12.7T + 83T^{2} \)
89 \( 1 - 11.6T + 89T^{2} \)
97 \( 1 - 4.40T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.024328636449513930386220361306, −7.48624053343362112956095932568, −6.80823604477224271255965677221, −6.05886432784592398282340151727, −4.95400709254179942689723980517, −4.30905657773059188040656981804, −3.61095136434379374111813707735, −3.11586191143964506124838527781, −2.21412437677741036090903813237, 0, 2.21412437677741036090903813237, 3.11586191143964506124838527781, 3.61095136434379374111813707735, 4.30905657773059188040656981804, 4.95400709254179942689723980517, 6.05886432784592398282340151727, 6.80823604477224271255965677221, 7.48624053343362112956095932568, 8.024328636449513930386220361306

Graph of the $Z$-function along the critical line