Properties

Label 2880.3.e.n.2431.1
Level $2880$
Weight $3$
Character 2880.2431
Analytic conductor $78.474$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2880,3,Mod(2431,2880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2880.2431"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2880.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,16,0,0,0,0,0,0,0,40,0,0,0,-96, 0,0,0,0,0,0,0,112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.4743161358\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2431.1
Root \(-0.535233 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 2880.2431
Dual form 2880.3.e.n.2431.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{5} -13.4003i q^{7} +21.2261i q^{11} -2.66241 q^{13} +19.7577 q^{17} -13.5547i q^{19} -40.1023i q^{23} +5.00000 q^{25} +1.41641 q^{29} +41.1420i q^{31} +29.9641i q^{35} +54.0590 q^{37} +2.74692 q^{41} +22.6732i q^{43} +45.6501i q^{47} -130.569 q^{49} +4.37878 q^{53} -47.4631i q^{55} -30.8060i q^{59} +27.0376 q^{61} +5.95332 q^{65} -103.603i q^{67} -88.3730i q^{71} +36.0216 q^{73} +284.437 q^{77} +23.6019i q^{79} +119.743i q^{83} -44.1796 q^{85} +71.7494 q^{89} +35.6772i q^{91} +30.3092i q^{95} +121.426 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{13} + 16 q^{17} + 40 q^{25} - 96 q^{29} + 112 q^{37} - 112 q^{41} - 184 q^{49} + 224 q^{53} - 80 q^{61} + 160 q^{65} + 272 q^{73} + 256 q^{77} + 160 q^{85} + 48 q^{89} + 528 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) − 13.4003i − 1.91433i −0.289536 0.957167i \(-0.593501\pi\)
0.289536 0.957167i \(-0.406499\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 21.2261i 1.92965i 0.262895 + 0.964824i \(0.415323\pi\)
−0.262895 + 0.964824i \(0.584677\pi\)
\(12\) 0 0
\(13\) −2.66241 −0.204801 −0.102400 0.994743i \(-0.532652\pi\)
−0.102400 + 0.994743i \(0.532652\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 19.7577 1.16222 0.581110 0.813825i \(-0.302619\pi\)
0.581110 + 0.813825i \(0.302619\pi\)
\(18\) 0 0
\(19\) − 13.5547i − 0.713404i −0.934218 0.356702i \(-0.883901\pi\)
0.934218 0.356702i \(-0.116099\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 40.1023i − 1.74358i −0.489880 0.871790i \(-0.662959\pi\)
0.489880 0.871790i \(-0.337041\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.41641 0.0488417 0.0244208 0.999702i \(-0.492226\pi\)
0.0244208 + 0.999702i \(0.492226\pi\)
\(30\) 0 0
\(31\) 41.1420i 1.32716i 0.748105 + 0.663581i \(0.230964\pi\)
−0.748105 + 0.663581i \(0.769036\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 29.9641i 0.856116i
\(36\) 0 0
\(37\) 54.0590 1.46105 0.730526 0.682884i \(-0.239275\pi\)
0.730526 + 0.682884i \(0.239275\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.74692 0.0669980 0.0334990 0.999439i \(-0.489335\pi\)
0.0334990 + 0.999439i \(0.489335\pi\)
\(42\) 0 0
\(43\) 22.6732i 0.527283i 0.964621 + 0.263641i \(0.0849235\pi\)
−0.964621 + 0.263641i \(0.915076\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 45.6501i 0.971278i 0.874159 + 0.485639i \(0.161413\pi\)
−0.874159 + 0.485639i \(0.838587\pi\)
\(48\) 0 0
\(49\) −130.569 −2.66468
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.37878 0.0826185 0.0413093 0.999146i \(-0.486847\pi\)
0.0413093 + 0.999146i \(0.486847\pi\)
\(54\) 0 0
\(55\) − 47.4631i − 0.862965i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 30.8060i − 0.522136i −0.965320 0.261068i \(-0.915925\pi\)
0.965320 0.261068i \(-0.0840746\pi\)
\(60\) 0 0
\(61\) 27.0376 0.443240 0.221620 0.975133i \(-0.428866\pi\)
0.221620 + 0.975133i \(0.428866\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.95332 0.0915896
\(66\) 0 0
\(67\) − 103.603i − 1.54632i −0.634213 0.773159i \(-0.718676\pi\)
0.634213 0.773159i \(-0.281324\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 88.3730i − 1.24469i −0.782743 0.622345i \(-0.786180\pi\)
0.782743 0.622345i \(-0.213820\pi\)
\(72\) 0 0
\(73\) 36.0216 0.493447 0.246723 0.969086i \(-0.420646\pi\)
0.246723 + 0.969086i \(0.420646\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 284.437 3.69399
\(78\) 0 0
\(79\) 23.6019i 0.298758i 0.988780 + 0.149379i \(0.0477274\pi\)
−0.988780 + 0.149379i \(0.952273\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 119.743i 1.44269i 0.692578 + 0.721343i \(0.256475\pi\)
−0.692578 + 0.721343i \(0.743525\pi\)
\(84\) 0 0
\(85\) −44.1796 −0.519760
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 71.7494 0.806172 0.403086 0.915162i \(-0.367937\pi\)
0.403086 + 0.915162i \(0.367937\pi\)
\(90\) 0 0
\(91\) 35.6772i 0.392057i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 30.3092i 0.319044i
\(96\) 0 0
\(97\) 121.426 1.25181 0.625905 0.779899i \(-0.284730\pi\)
0.625905 + 0.779899i \(0.284730\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −31.2804 −0.309707 −0.154853 0.987937i \(-0.549491\pi\)
−0.154853 + 0.987937i \(0.549491\pi\)
\(102\) 0 0
\(103\) − 122.811i − 1.19234i −0.802859 0.596170i \(-0.796689\pi\)
0.802859 0.596170i \(-0.203311\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 60.3613i − 0.564124i −0.959396 0.282062i \(-0.908982\pi\)
0.959396 0.282062i \(-0.0910184\pi\)
\(108\) 0 0
\(109\) −119.167 −1.09327 −0.546637 0.837370i \(-0.684092\pi\)
−0.546637 + 0.837370i \(0.684092\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.09956 0.0362793 0.0181396 0.999835i \(-0.494226\pi\)
0.0181396 + 0.999835i \(0.494226\pi\)
\(114\) 0 0
\(115\) 89.6716i 0.779753i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 264.760i − 2.22488i
\(120\) 0 0
\(121\) −329.549 −2.72354
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) − 123.411i − 0.971741i −0.874031 0.485870i \(-0.838503\pi\)
0.874031 0.485870i \(-0.161497\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 55.7181i − 0.425329i −0.977125 0.212665i \(-0.931786\pi\)
0.977125 0.212665i \(-0.0682142\pi\)
\(132\) 0 0
\(133\) −181.637 −1.36569
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −39.1191 −0.285541 −0.142770 0.989756i \(-0.545601\pi\)
−0.142770 + 0.989756i \(0.545601\pi\)
\(138\) 0 0
\(139\) − 56.9408i − 0.409646i −0.978799 0.204823i \(-0.934338\pi\)
0.978799 0.204823i \(-0.0656619\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 56.5126i − 0.395193i
\(144\) 0 0
\(145\) −3.16718 −0.0218427
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 149.643 1.00431 0.502156 0.864777i \(-0.332540\pi\)
0.502156 + 0.864777i \(0.332540\pi\)
\(150\) 0 0
\(151\) − 155.119i − 1.02728i −0.858006 0.513640i \(-0.828297\pi\)
0.858006 0.513640i \(-0.171703\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 91.9963i − 0.593525i
\(156\) 0 0
\(157\) −58.9293 −0.375346 −0.187673 0.982232i \(-0.560095\pi\)
−0.187673 + 0.982232i \(0.560095\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −537.385 −3.33779
\(162\) 0 0
\(163\) − 209.423i − 1.28481i −0.766367 0.642403i \(-0.777937\pi\)
0.766367 0.642403i \(-0.222063\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 4.65069i − 0.0278485i −0.999903 0.0139242i \(-0.995568\pi\)
0.999903 0.0139242i \(-0.00443236\pi\)
\(168\) 0 0
\(169\) −161.912 −0.958057
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −140.649 −0.813001 −0.406501 0.913651i \(-0.633251\pi\)
−0.406501 + 0.913651i \(0.633251\pi\)
\(174\) 0 0
\(175\) − 67.0017i − 0.382867i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 120.713i 0.674374i 0.941438 + 0.337187i \(0.109475\pi\)
−0.941438 + 0.337187i \(0.890525\pi\)
\(180\) 0 0
\(181\) 5.48664 0.0303129 0.0151565 0.999885i \(-0.495175\pi\)
0.0151565 + 0.999885i \(0.495175\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −120.879 −0.653403
\(186\) 0 0
\(187\) 419.380i 2.24268i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.80252i 0.00943726i 0.999989 + 0.00471863i \(0.00150199\pi\)
−0.999989 + 0.00471863i \(0.998498\pi\)
\(192\) 0 0
\(193\) −120.214 −0.622873 −0.311436 0.950267i \(-0.600810\pi\)
−0.311436 + 0.950267i \(0.600810\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −29.2006 −0.148226 −0.0741132 0.997250i \(-0.523613\pi\)
−0.0741132 + 0.997250i \(0.523613\pi\)
\(198\) 0 0
\(199\) − 125.025i − 0.628267i −0.949379 0.314134i \(-0.898286\pi\)
0.949379 0.314134i \(-0.101714\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 18.9803i − 0.0934992i
\(204\) 0 0
\(205\) −6.14230 −0.0299624
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 287.713 1.37662
\(210\) 0 0
\(211\) − 165.547i − 0.784582i −0.919841 0.392291i \(-0.871683\pi\)
0.919841 0.392291i \(-0.128317\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 50.6987i − 0.235808i
\(216\) 0 0
\(217\) 551.317 2.54063
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −52.6031 −0.238023
\(222\) 0 0
\(223\) − 367.671i − 1.64875i −0.566044 0.824375i \(-0.691527\pi\)
0.566044 0.824375i \(-0.308473\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 218.397i − 0.962102i −0.876693 0.481051i \(-0.840255\pi\)
0.876693 0.481051i \(-0.159745\pi\)
\(228\) 0 0
\(229\) 163.566 0.714260 0.357130 0.934055i \(-0.383755\pi\)
0.357130 + 0.934055i \(0.383755\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −253.285 −1.08706 −0.543530 0.839390i \(-0.682913\pi\)
−0.543530 + 0.839390i \(0.682913\pi\)
\(234\) 0 0
\(235\) − 102.077i − 0.434369i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 115.321i 0.482516i 0.970461 + 0.241258i \(0.0775600\pi\)
−0.970461 + 0.241258i \(0.922440\pi\)
\(240\) 0 0
\(241\) 127.121 0.527473 0.263737 0.964595i \(-0.415045\pi\)
0.263737 + 0.964595i \(0.415045\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 291.961 1.19168
\(246\) 0 0
\(247\) 36.0881i 0.146106i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.18165i 0.0325962i 0.999867 + 0.0162981i \(0.00518808\pi\)
−0.999867 + 0.0162981i \(0.994812\pi\)
\(252\) 0 0
\(253\) 851.218 3.36450
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 230.691 0.897630 0.448815 0.893625i \(-0.351846\pi\)
0.448815 + 0.893625i \(0.351846\pi\)
\(258\) 0 0
\(259\) − 724.408i − 2.79694i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 0.418350i − 0.00159068i −1.00000 0.000795342i \(-0.999747\pi\)
1.00000 0.000795342i \(-0.000253165\pi\)
\(264\) 0 0
\(265\) −9.79125 −0.0369481
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 79.2328 0.294546 0.147273 0.989096i \(-0.452950\pi\)
0.147273 + 0.989096i \(0.452950\pi\)
\(270\) 0 0
\(271\) − 273.411i − 1.00890i −0.863441 0.504449i \(-0.831696\pi\)
0.863441 0.504449i \(-0.168304\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 106.131i 0.385930i
\(276\) 0 0
\(277\) −119.347 −0.430855 −0.215427 0.976520i \(-0.569114\pi\)
−0.215427 + 0.976520i \(0.569114\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −150.779 −0.536578 −0.268289 0.963338i \(-0.586458\pi\)
−0.268289 + 0.963338i \(0.586458\pi\)
\(282\) 0 0
\(283\) − 311.820i − 1.10184i −0.834558 0.550919i \(-0.814277\pi\)
0.834558 0.550919i \(-0.185723\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 36.8096i − 0.128257i
\(288\) 0 0
\(289\) 101.368 0.350754
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −181.094 −0.618067 −0.309034 0.951051i \(-0.600006\pi\)
−0.309034 + 0.951051i \(0.600006\pi\)
\(294\) 0 0
\(295\) 68.8843i 0.233506i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 106.769i 0.357086i
\(300\) 0 0
\(301\) 303.828 1.00940
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −60.4580 −0.198223
\(306\) 0 0
\(307\) − 306.837i − 0.999468i −0.866179 0.499734i \(-0.833431\pi\)
0.866179 0.499734i \(-0.166569\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 525.917i − 1.69105i −0.533934 0.845526i \(-0.679287\pi\)
0.533934 0.845526i \(-0.320713\pi\)
\(312\) 0 0
\(313\) 384.508 1.22846 0.614230 0.789127i \(-0.289467\pi\)
0.614230 + 0.789127i \(0.289467\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 46.6842 0.147269 0.0736345 0.997285i \(-0.476540\pi\)
0.0736345 + 0.997285i \(0.476540\pi\)
\(318\) 0 0
\(319\) 30.0649i 0.0942472i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 267.810i − 0.829132i
\(324\) 0 0
\(325\) −13.3120 −0.0409601
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 611.726 1.85935
\(330\) 0 0
\(331\) 377.349i 1.14003i 0.821635 + 0.570014i \(0.193062\pi\)
−0.821635 + 0.570014i \(0.806938\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 231.664i 0.691534i
\(336\) 0 0
\(337\) 109.117 0.323788 0.161894 0.986808i \(-0.448240\pi\)
0.161894 + 0.986808i \(0.448240\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −873.286 −2.56096
\(342\) 0 0
\(343\) 1093.05i 3.18674i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 177.296i − 0.510940i −0.966817 0.255470i \(-0.917770\pi\)
0.966817 0.255470i \(-0.0822302\pi\)
\(348\) 0 0
\(349\) −52.4982 −0.150425 −0.0752123 0.997168i \(-0.523963\pi\)
−0.0752123 + 0.997168i \(0.523963\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 163.591 0.463431 0.231715 0.972784i \(-0.425566\pi\)
0.231715 + 0.972784i \(0.425566\pi\)
\(354\) 0 0
\(355\) 197.608i 0.556642i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 550.055i − 1.53219i −0.642729 0.766094i \(-0.722198\pi\)
0.642729 0.766094i \(-0.277802\pi\)
\(360\) 0 0
\(361\) 177.271 0.491054
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −80.5468 −0.220676
\(366\) 0 0
\(367\) 128.260i 0.349481i 0.984615 + 0.174740i \(0.0559086\pi\)
−0.984615 + 0.174740i \(0.944091\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 58.6772i − 0.158159i
\(372\) 0 0
\(373\) 345.575 0.926474 0.463237 0.886234i \(-0.346688\pi\)
0.463237 + 0.886234i \(0.346688\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.77105 −0.0100028
\(378\) 0 0
\(379\) − 132.846i − 0.350516i −0.984523 0.175258i \(-0.943924\pi\)
0.984523 0.175258i \(-0.0560760\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 409.707i − 1.06973i −0.844937 0.534866i \(-0.820362\pi\)
0.844937 0.534866i \(-0.179638\pi\)
\(384\) 0 0
\(385\) −636.021 −1.65200
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −257.665 −0.662378 −0.331189 0.943564i \(-0.607450\pi\)
−0.331189 + 0.943564i \(0.607450\pi\)
\(390\) 0 0
\(391\) − 792.331i − 2.02642i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 52.7754i − 0.133609i
\(396\) 0 0
\(397\) −583.420 −1.46957 −0.734786 0.678299i \(-0.762717\pi\)
−0.734786 + 0.678299i \(0.762717\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 530.329 1.32252 0.661259 0.750158i \(-0.270023\pi\)
0.661259 + 0.750158i \(0.270023\pi\)
\(402\) 0 0
\(403\) − 109.537i − 0.271803i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1147.46i 2.81932i
\(408\) 0 0
\(409\) 215.526 0.526958 0.263479 0.964665i \(-0.415130\pi\)
0.263479 + 0.964665i \(0.415130\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −412.811 −0.999542
\(414\) 0 0
\(415\) − 267.753i − 0.645189i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 190.248i − 0.454052i −0.973889 0.227026i \(-0.927100\pi\)
0.973889 0.227026i \(-0.0729002\pi\)
\(420\) 0 0
\(421\) 442.383 1.05079 0.525395 0.850858i \(-0.323917\pi\)
0.525395 + 0.850858i \(0.323917\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 98.7886 0.232444
\(426\) 0 0
\(427\) − 362.313i − 0.848509i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 99.5817i 0.231048i 0.993305 + 0.115524i \(0.0368547\pi\)
−0.993305 + 0.115524i \(0.963145\pi\)
\(432\) 0 0
\(433\) 269.237 0.621795 0.310897 0.950444i \(-0.399370\pi\)
0.310897 + 0.950444i \(0.399370\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −543.574 −1.24388
\(438\) 0 0
\(439\) 494.556i 1.12655i 0.826269 + 0.563275i \(0.190459\pi\)
−0.826269 + 0.563275i \(0.809541\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 469.538i − 1.05991i −0.848027 0.529953i \(-0.822210\pi\)
0.848027 0.529953i \(-0.177790\pi\)
\(444\) 0 0
\(445\) −160.436 −0.360531
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −210.693 −0.469250 −0.234625 0.972086i \(-0.575386\pi\)
−0.234625 + 0.972086i \(0.575386\pi\)
\(450\) 0 0
\(451\) 58.3065i 0.129283i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 79.7765i − 0.175333i
\(456\) 0 0
\(457\) −125.599 −0.274833 −0.137416 0.990513i \(-0.543880\pi\)
−0.137416 + 0.990513i \(0.543880\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 320.080 0.694316 0.347158 0.937807i \(-0.387147\pi\)
0.347158 + 0.937807i \(0.387147\pi\)
\(462\) 0 0
\(463\) − 589.987i − 1.27427i −0.770752 0.637135i \(-0.780119\pi\)
0.770752 0.637135i \(-0.219881\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 841.638i 1.80222i 0.433589 + 0.901111i \(0.357247\pi\)
−0.433589 + 0.901111i \(0.642753\pi\)
\(468\) 0 0
\(469\) −1388.32 −2.96017
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −481.263 −1.01747
\(474\) 0 0
\(475\) − 67.7734i − 0.142681i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 306.414i 0.639695i 0.947469 + 0.319847i \(0.103632\pi\)
−0.947469 + 0.319847i \(0.896368\pi\)
\(480\) 0 0
\(481\) −143.927 −0.299224
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −271.516 −0.559827
\(486\) 0 0
\(487\) 323.935i 0.665164i 0.943074 + 0.332582i \(0.107920\pi\)
−0.943074 + 0.332582i \(0.892080\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 707.651i 1.44124i 0.693328 + 0.720622i \(0.256144\pi\)
−0.693328 + 0.720622i \(0.743856\pi\)
\(492\) 0 0
\(493\) 27.9850 0.0567647
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1184.23 −2.38275
\(498\) 0 0
\(499\) 677.962i 1.35864i 0.733841 + 0.679321i \(0.237726\pi\)
−0.733841 + 0.679321i \(0.762274\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 816.510i 1.62328i 0.584158 + 0.811640i \(0.301425\pi\)
−0.584158 + 0.811640i \(0.698575\pi\)
\(504\) 0 0
\(505\) 69.9451 0.138505
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 460.885 0.905472 0.452736 0.891645i \(-0.350448\pi\)
0.452736 + 0.891645i \(0.350448\pi\)
\(510\) 0 0
\(511\) − 482.702i − 0.944622i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 274.614i 0.533230i
\(516\) 0 0
\(517\) −968.975 −1.87423
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −190.738 −0.366100 −0.183050 0.983104i \(-0.558597\pi\)
−0.183050 + 0.983104i \(0.558597\pi\)
\(522\) 0 0
\(523\) − 500.450i − 0.956884i −0.878119 0.478442i \(-0.841202\pi\)
0.878119 0.478442i \(-0.158798\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 812.873i 1.54245i
\(528\) 0 0
\(529\) −1079.20 −2.04007
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.31341 −0.0137212
\(534\) 0 0
\(535\) 134.972i 0.252284i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 2771.48i − 5.14189i
\(540\) 0 0
\(541\) 261.127 0.482675 0.241338 0.970441i \(-0.422414\pi\)
0.241338 + 0.970441i \(0.422414\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 266.465 0.488927
\(546\) 0 0
\(547\) − 980.023i − 1.79163i −0.444425 0.895816i \(-0.646592\pi\)
0.444425 0.895816i \(-0.353408\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 19.1990i − 0.0348438i
\(552\) 0 0
\(553\) 316.273 0.571922
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1024.43 −1.83918 −0.919592 0.392874i \(-0.871481\pi\)
−0.919592 + 0.392874i \(0.871481\pi\)
\(558\) 0 0
\(559\) − 60.3652i − 0.107988i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 734.755i − 1.30507i −0.757758 0.652536i \(-0.773705\pi\)
0.757758 0.652536i \(-0.226295\pi\)
\(564\) 0 0
\(565\) −9.16689 −0.0162246
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 938.497 1.64938 0.824690 0.565585i \(-0.191350\pi\)
0.824690 + 0.565585i \(0.191350\pi\)
\(570\) 0 0
\(571\) 560.946i 0.982393i 0.871049 + 0.491196i \(0.163440\pi\)
−0.871049 + 0.491196i \(0.836560\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 200.512i − 0.348716i
\(576\) 0 0
\(577\) −576.150 −0.998527 −0.499264 0.866450i \(-0.666396\pi\)
−0.499264 + 0.866450i \(0.666396\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1604.60 2.76178
\(582\) 0 0
\(583\) 92.9446i 0.159425i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 251.493i − 0.428438i −0.976786 0.214219i \(-0.931279\pi\)
0.976786 0.214219i \(-0.0687207\pi\)
\(588\) 0 0
\(589\) 557.667 0.946802
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −491.708 −0.829187 −0.414594 0.910007i \(-0.636076\pi\)
−0.414594 + 0.910007i \(0.636076\pi\)
\(594\) 0 0
\(595\) 592.022i 0.994995i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 139.629i 0.233103i 0.993185 + 0.116552i \(0.0371840\pi\)
−0.993185 + 0.116552i \(0.962816\pi\)
\(600\) 0 0
\(601\) 510.946 0.850160 0.425080 0.905156i \(-0.360246\pi\)
0.425080 + 0.905156i \(0.360246\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 736.894 1.21801
\(606\) 0 0
\(607\) 438.309i 0.722091i 0.932548 + 0.361045i \(0.117580\pi\)
−0.932548 + 0.361045i \(0.882420\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 121.539i − 0.198918i
\(612\) 0 0
\(613\) −1091.72 −1.78094 −0.890470 0.455041i \(-0.849624\pi\)
−0.890470 + 0.455041i \(0.849624\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 902.138 1.46214 0.731068 0.682304i \(-0.239022\pi\)
0.731068 + 0.682304i \(0.239022\pi\)
\(618\) 0 0
\(619\) − 466.462i − 0.753573i −0.926300 0.376786i \(-0.877029\pi\)
0.926300 0.376786i \(-0.122971\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 961.466i − 1.54328i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1068.08 1.69806
\(630\) 0 0
\(631\) 1252.04i 1.98422i 0.125378 + 0.992109i \(0.459986\pi\)
−0.125378 + 0.992109i \(0.540014\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 275.956i 0.434576i
\(636\) 0 0
\(637\) 347.628 0.545727
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 321.815 0.502052 0.251026 0.967980i \(-0.419232\pi\)
0.251026 + 0.967980i \(0.419232\pi\)
\(642\) 0 0
\(643\) 1096.83i 1.70580i 0.522078 + 0.852898i \(0.325157\pi\)
−0.522078 + 0.852898i \(0.674843\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 446.564i − 0.690207i −0.938565 0.345103i \(-0.887844\pi\)
0.938565 0.345103i \(-0.112156\pi\)
\(648\) 0 0
\(649\) 653.892 1.00754
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −387.067 −0.592752 −0.296376 0.955071i \(-0.595778\pi\)
−0.296376 + 0.955071i \(0.595778\pi\)
\(654\) 0 0
\(655\) 124.590i 0.190213i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1294.49i 1.96433i 0.188019 + 0.982165i \(0.439793\pi\)
−0.188019 + 0.982165i \(0.560207\pi\)
\(660\) 0 0
\(661\) 339.882 0.514193 0.257097 0.966386i \(-0.417234\pi\)
0.257097 + 0.966386i \(0.417234\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 406.153 0.610757
\(666\) 0 0
\(667\) − 56.8013i − 0.0851593i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 573.904i 0.855297i
\(672\) 0 0
\(673\) 1144.40 1.70045 0.850225 0.526420i \(-0.176466\pi\)
0.850225 + 0.526420i \(0.176466\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −687.908 −1.01611 −0.508056 0.861324i \(-0.669636\pi\)
−0.508056 + 0.861324i \(0.669636\pi\)
\(678\) 0 0
\(679\) − 1627.14i − 2.39638i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 513.570i 0.751932i 0.926633 + 0.375966i \(0.122689\pi\)
−0.926633 + 0.375966i \(0.877311\pi\)
\(684\) 0 0
\(685\) 87.4729 0.127698
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −11.6581 −0.0169203
\(690\) 0 0
\(691\) 188.414i 0.272668i 0.990663 + 0.136334i \(0.0435320\pi\)
−0.990663 + 0.136334i \(0.956468\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 127.324i 0.183199i
\(696\) 0 0
\(697\) 54.2729 0.0778664
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1170.06 1.66913 0.834564 0.550911i \(-0.185720\pi\)
0.834564 + 0.550911i \(0.185720\pi\)
\(702\) 0 0
\(703\) − 732.752i − 1.04232i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 419.168i 0.592883i
\(708\) 0 0
\(709\) −847.689 −1.19561 −0.597806 0.801641i \(-0.703961\pi\)
−0.597806 + 0.801641i \(0.703961\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1649.89 2.31401
\(714\) 0 0
\(715\) 126.366i 0.176736i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 437.962i 0.609127i 0.952492 + 0.304563i \(0.0985106\pi\)
−0.952492 + 0.304563i \(0.901489\pi\)
\(720\) 0 0
\(721\) −1645.71 −2.28254
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.08204 0.00976833
\(726\) 0 0
\(727\) 684.271i 0.941225i 0.882340 + 0.470613i \(0.155967\pi\)
−0.882340 + 0.470613i \(0.844033\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 447.970i 0.612818i
\(732\) 0 0
\(733\) −870.642 −1.18778 −0.593889 0.804547i \(-0.702408\pi\)
−0.593889 + 0.804547i \(0.702408\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2199.10 2.98385
\(738\) 0 0
\(739\) − 482.490i − 0.652896i −0.945215 0.326448i \(-0.894148\pi\)
0.945215 0.326448i \(-0.105852\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 93.4856i − 0.125822i −0.998019 0.0629109i \(-0.979962\pi\)
0.998019 0.0629109i \(-0.0200384\pi\)
\(744\) 0 0
\(745\) −334.611 −0.449142
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −808.862 −1.07992
\(750\) 0 0
\(751\) − 621.625i − 0.827729i −0.910338 0.413865i \(-0.864179\pi\)
0.910338 0.413865i \(-0.135821\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 346.857i 0.459414i
\(756\) 0 0
\(757\) 215.708 0.284951 0.142476 0.989798i \(-0.454494\pi\)
0.142476 + 0.989798i \(0.454494\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −85.6655 −0.112570 −0.0562848 0.998415i \(-0.517925\pi\)
−0.0562848 + 0.998415i \(0.517925\pi\)
\(762\) 0 0
\(763\) 1596.88i 2.09289i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 82.0181i 0.106934i
\(768\) 0 0
\(769\) 1303.45 1.69499 0.847496 0.530802i \(-0.178109\pi\)
0.847496 + 0.530802i \(0.178109\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 95.5749 0.123641 0.0618207 0.998087i \(-0.480309\pi\)
0.0618207 + 0.998087i \(0.480309\pi\)
\(774\) 0 0
\(775\) 205.710i 0.265432i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 37.2336i − 0.0477967i
\(780\) 0 0
\(781\) 1875.82 2.40181
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 131.770 0.167860
\(786\) 0 0
\(787\) 758.917i 0.964317i 0.876084 + 0.482158i \(0.160147\pi\)
−0.876084 + 0.482158i \(0.839853\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 54.9354i − 0.0694506i
\(792\) 0 0
\(793\) −71.9852 −0.0907757
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 415.809 0.521717 0.260859 0.965377i \(-0.415994\pi\)
0.260859 + 0.965377i \(0.415994\pi\)
\(798\) 0 0
\(799\) 901.942i 1.12884i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 764.600i 0.952179i
\(804\) 0 0
\(805\) 1201.63 1.49271
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −874.754 −1.08128 −0.540639 0.841255i \(-0.681817\pi\)
−0.540639 + 0.841255i \(0.681817\pi\)
\(810\) 0 0
\(811\) − 644.197i − 0.794324i −0.917748 0.397162i \(-0.869995\pi\)
0.917748 0.397162i \(-0.130005\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 468.285i 0.574583i
\(816\) 0 0
\(817\) 307.327 0.376166
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −224.881 −0.273911 −0.136956 0.990577i \(-0.543732\pi\)
−0.136956 + 0.990577i \(0.543732\pi\)
\(822\) 0 0
\(823\) 378.145i 0.459472i 0.973253 + 0.229736i \(0.0737862\pi\)
−0.973253 + 0.229736i \(0.926214\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 989.341i 1.19630i 0.801384 + 0.598151i \(0.204098\pi\)
−0.801384 + 0.598151i \(0.795902\pi\)
\(828\) 0 0
\(829\) −1441.57 −1.73893 −0.869466 0.493993i \(-0.835537\pi\)
−0.869466 + 0.493993i \(0.835537\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2579.75 −3.09694
\(834\) 0 0
\(835\) 10.3993i 0.0124542i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 1261.59i − 1.50369i −0.659343 0.751843i \(-0.729165\pi\)
0.659343 0.751843i \(-0.270835\pi\)
\(840\) 0 0
\(841\) −838.994 −0.997614
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 362.045 0.428456
\(846\) 0 0
\(847\) 4416.07i 5.21377i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 2167.89i − 2.54746i
\(852\) 0 0
\(853\) 854.061 1.00124 0.500622 0.865666i \(-0.333105\pi\)
0.500622 + 0.865666i \(0.333105\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1585.26 −1.84978 −0.924891 0.380231i \(-0.875844\pi\)
−0.924891 + 0.380231i \(0.875844\pi\)
\(858\) 0 0
\(859\) − 694.468i − 0.808460i −0.914657 0.404230i \(-0.867539\pi\)
0.914657 0.404230i \(-0.132461\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 698.741i − 0.809665i −0.914391 0.404832i \(-0.867330\pi\)
0.914391 0.404832i \(-0.132670\pi\)
\(864\) 0 0
\(865\) 314.501 0.363585
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −500.976 −0.576498
\(870\) 0 0
\(871\) 275.834i 0.316687i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 149.820i 0.171223i
\(876\) 0 0
\(877\) 1300.63 1.48304 0.741520 0.670930i \(-0.234105\pi\)
0.741520 + 0.670930i \(0.234105\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −629.171 −0.714156 −0.357078 0.934075i \(-0.616227\pi\)
−0.357078 + 0.934075i \(0.616227\pi\)
\(882\) 0 0
\(883\) − 940.453i − 1.06507i −0.846409 0.532533i \(-0.821240\pi\)
0.846409 0.532533i \(-0.178760\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 660.503i − 0.744649i −0.928103 0.372324i \(-0.878561\pi\)
0.928103 0.372324i \(-0.121439\pi\)
\(888\) 0 0
\(889\) −1653.75 −1.86024
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 618.772 0.692914
\(894\) 0 0
\(895\) − 269.922i − 0.301589i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 58.2739i 0.0648207i
\(900\) 0 0
\(901\) 86.5148 0.0960208
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.2685 −0.0135563
\(906\) 0 0
\(907\) 412.583i 0.454888i 0.973791 + 0.227444i \(0.0730369\pi\)
−0.973791 + 0.227444i \(0.926963\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 160.140i − 0.175785i −0.996130 0.0878927i \(-0.971987\pi\)
0.996130 0.0878927i \(-0.0280133\pi\)
\(912\) 0 0
\(913\) −2541.68 −2.78388
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −746.642 −0.814222
\(918\) 0 0
\(919\) − 655.200i − 0.712949i −0.934305 0.356474i \(-0.883979\pi\)
0.934305 0.356474i \(-0.116021\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 235.285i 0.254913i
\(924\) 0 0
\(925\) 270.295 0.292211
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1502.84 −1.61770 −0.808851 0.588014i \(-0.799910\pi\)
−0.808851 + 0.588014i \(0.799910\pi\)
\(930\) 0 0
\(931\) 1769.82i 1.90099i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 937.763i − 1.00295i
\(936\) 0 0
\(937\) 1559.91 1.66479 0.832395 0.554182i \(-0.186969\pi\)
0.832395 + 0.554182i \(0.186969\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −101.791 −0.108173 −0.0540865 0.998536i \(-0.517225\pi\)
−0.0540865 + 0.998536i \(0.517225\pi\)
\(942\) 0 0
\(943\) − 110.158i − 0.116816i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1567.59i 1.65532i 0.561228 + 0.827661i \(0.310329\pi\)
−0.561228 + 0.827661i \(0.689671\pi\)
\(948\) 0 0
\(949\) −95.9042 −0.101058
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1469.65 1.54213 0.771063 0.636759i \(-0.219726\pi\)
0.771063 + 0.636759i \(0.219726\pi\)
\(954\) 0 0
\(955\) − 4.03055i − 0.00422047i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 524.209i 0.546620i
\(960\) 0 0
\(961\) −731.664 −0.761357
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 268.808 0.278557
\(966\) 0 0
\(967\) − 218.682i − 0.226145i −0.993587 0.113073i \(-0.963931\pi\)
0.993587 0.113073i \(-0.0360693\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1602.56i 1.65042i 0.564823 + 0.825212i \(0.308944\pi\)
−0.564823 + 0.825212i \(0.691056\pi\)
\(972\) 0 0
\(973\) −763.027 −0.784200
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −170.494 −0.174508 −0.0872538 0.996186i \(-0.527809\pi\)
−0.0872538 + 0.996186i \(0.527809\pi\)
\(978\) 0 0
\(979\) 1522.96i 1.55563i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1780.88i 1.81168i 0.423622 + 0.905839i \(0.360758\pi\)
−0.423622 + 0.905839i \(0.639242\pi\)
\(984\) 0 0
\(985\) 65.2946 0.0662889
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 909.247 0.919359
\(990\) 0 0
\(991\) − 1174.41i − 1.18508i −0.805541 0.592539i \(-0.798125\pi\)
0.805541 0.592539i \(-0.201875\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 279.565i 0.280970i
\(996\) 0 0
\(997\) −279.730 −0.280572 −0.140286 0.990111i \(-0.544802\pi\)
−0.140286 + 0.990111i \(0.544802\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2880.3.e.n.2431.1 8
3.2 odd 2 960.3.e.d.511.3 8
4.3 odd 2 inner 2880.3.e.n.2431.4 8
8.3 odd 2 1440.3.e.e.991.8 8
8.5 even 2 1440.3.e.e.991.5 8
12.11 even 2 960.3.e.d.511.8 8
24.5 odd 2 480.3.e.a.31.5 yes 8
24.11 even 2 480.3.e.a.31.2 8
120.29 odd 2 2400.3.e.g.1951.4 8
120.53 even 4 2400.3.j.d.799.2 8
120.59 even 2 2400.3.e.g.1951.5 8
120.77 even 4 2400.3.j.j.799.8 8
120.83 odd 4 2400.3.j.j.799.7 8
120.107 odd 4 2400.3.j.d.799.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.3.e.a.31.2 8 24.11 even 2
480.3.e.a.31.5 yes 8 24.5 odd 2
960.3.e.d.511.3 8 3.2 odd 2
960.3.e.d.511.8 8 12.11 even 2
1440.3.e.e.991.5 8 8.5 even 2
1440.3.e.e.991.8 8 8.3 odd 2
2400.3.e.g.1951.4 8 120.29 odd 2
2400.3.e.g.1951.5 8 120.59 even 2
2400.3.j.d.799.1 8 120.107 odd 4
2400.3.j.d.799.2 8 120.53 even 4
2400.3.j.j.799.7 8 120.83 odd 4
2400.3.j.j.799.8 8 120.77 even 4
2880.3.e.n.2431.1 8 1.1 even 1 trivial
2880.3.e.n.2431.4 8 4.3 odd 2 inner