Properties

Label 2880.3.e
Level 28802880
Weight 33
Character orbit 2880.e
Rep. character χ2880(2431,)\chi_{2880}(2431,\cdot)
Character field Q\Q
Dimension 8080
Newform subspaces 1414
Sturm bound 17281728
Trace bound 3737

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2880=26325 2880 = 2^{6} \cdot 3^{2} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 2880.e (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 4 4
Character field: Q\Q
Newform subspaces: 14 14
Sturm bound: 17281728
Trace bound: 3737
Distinguishing TpT_p: 77, 1313, 1717

Dimensions

The following table gives the dimensions of various subspaces of M3(2880,[χ])M_{3}(2880, [\chi]).

Total New Old
Modular forms 1200 80 1120
Cusp forms 1104 80 1024
Eisenstein series 96 0 96

Trace form

80q+32q13+400q25+32q29+64q3796q41560q49+160q53256q61224q77160q8596q89+O(q100) 80 q + 32 q^{13} + 400 q^{25} + 32 q^{29} + 64 q^{37} - 96 q^{41} - 560 q^{49} + 160 q^{53} - 256 q^{61} - 224 q^{77} - 160 q^{85} - 96 q^{89}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(2880,[χ])S_{3}^{\mathrm{new}}(2880, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
2880.3.e.a 2880.e 4.b 44 78.47478.474 Q(i,5)\Q(i, \sqrt{5}) None 160.3.b.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ3q5+(β14β2)q7+(3β1β2+)q11+q-\beta _{3}q^{5}+(\beta _{1}-4\beta _{2})q^{7}+(-3\beta _{1}-\beta _{2}+\cdots)q^{11}+\cdots
2880.3.e.b 2880.e 4.b 44 78.47478.474 Q(3,5)\Q(\sqrt{-3}, \sqrt{5}) None 80.3.b.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q5+β2q7+2β3q11+(4+)q13+q-\beta _{1}q^{5}+\beta _{2}q^{7}+2\beta _{3}q^{11}+(-4+\cdots)q^{13}+\cdots
2880.3.e.c 2880.e 4.b 44 78.47478.474 Q(3,5)\Q(\sqrt{-3}, \sqrt{5}) None 720.3.e.d 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q5+β2q7β3q114q13+q-\beta _{1}q^{5}+\beta _{2}q^{7}-\beta _{3}q^{11}-4q^{13}+\cdots
2880.3.e.d 2880.e 4.b 44 78.47478.474 Q(3,5)\Q(\sqrt{-3}, \sqrt{5}) None 240.3.e.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q5+β2q7+β2q11+(4+6β1+)q13+q-\beta _{1}q^{5}+\beta _{2}q^{7}+\beta _{2}q^{11}+(-4+6\beta _{1}+\cdots)q^{13}+\cdots
2880.3.e.e 2880.e 4.b 44 78.47478.474 Q(ζ10)\Q(\zeta_{10}) None 20.3.b.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β2q5+(β3β1)q7+(2β32β1)q11+q+\beta_{2} q^{5}+(-\beta_{3}-\beta_1)q^{7}+(2\beta_{3}-2\beta_1)q^{11}+\cdots
2880.3.e.f 2880.e 4.b 44 78.47478.474 Q(3,5)\Q(\sqrt{-3}, \sqrt{5}) None 240.3.e.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q5+β2q7+(β2β3)q11+(8+)q13+q+\beta _{1}q^{5}+\beta _{2}q^{7}+(\beta _{2}-\beta _{3})q^{11}+(8+\cdots)q^{13}+\cdots
2880.3.e.g 2880.e 4.b 44 78.47478.474 Q(3,5)\Q(\sqrt{-3}, \sqrt{5}) None 720.3.e.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q5+β2q7β3q11+8q13+q+\beta _{1}q^{5}+\beta _{2}q^{7}-\beta _{3}q^{11}+8q^{13}+\cdots
2880.3.e.h 2880.e 4.b 44 78.47478.474 Q(i,5)\Q(i, \sqrt{5}) None 160.3.b.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β2q5+β1q7+(5β1+β3)q11+q+\beta _{2}q^{5}+\beta _{1}q^{7}+(5\beta _{1}+\beta _{3})q^{11}+\cdots
2880.3.e.i 2880.e 4.b 88 78.47478.474 8.0.\cdots.1 None 180.3.c.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q5β5q7β4q11+(2β7)q13+q-\beta _{1}q^{5}-\beta _{5}q^{7}-\beta _{4}q^{11}+(-2-\beta _{7})q^{13}+\cdots
2880.3.e.j 2880.e 4.b 88 78.47478.474 8.0.85100625.1 None 60.3.c.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ2q5+(β1+β6)q7+(β1+β7)q11+q-\beta _{2}q^{5}+(-\beta _{1}+\beta _{6})q^{7}+(-\beta _{1}+\beta _{7})q^{11}+\cdots
2880.3.e.k 2880.e 4.b 88 78.47478.474 8.0.12960000.1 None 480.3.e.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q5+(β2+β4)q7+(β4β5+)q11+q+\beta _{1}q^{5}+(\beta _{2}+\beta _{4})q^{7}+(-\beta _{4}-\beta _{5}+\cdots)q^{11}+\cdots
2880.3.e.l 2880.e 4.b 88 78.47478.474 8.0.3364000000.3 None 1440.3.e.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q5β6q7+(β22β5β6+)q11+q+\beta _{1}q^{5}-\beta _{6}q^{7}+(\beta _{2}-2\beta _{5}-\beta _{6}+\cdots)q^{11}+\cdots
2880.3.e.m 2880.e 4.b 88 78.47478.474 8.0.3364000000.3 None 1440.3.e.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q5β6q7+(β2+2β5+β6+)q11+q-\beta _{1}q^{5}-\beta _{6}q^{7}+(-\beta _{2}+2\beta _{5}+\beta _{6}+\cdots)q^{11}+\cdots
2880.3.e.n 2880.e 4.b 88 78.47478.474 8.0.12960000.1 None 480.3.e.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q5+(β2+β4β6)q7+(2β2+)q11+q-\beta _{1}q^{5}+(\beta _{2}+\beta _{4}-\beta _{6})q^{7}+(-2\beta _{2}+\cdots)q^{11}+\cdots

Decomposition of S3old(2880,[χ])S_{3}^{\mathrm{old}}(2880, [\chi]) into lower level spaces

S3old(2880,[χ]) S_{3}^{\mathrm{old}}(2880, [\chi]) \simeq S3new(12,[χ])S_{3}^{\mathrm{new}}(12, [\chi])20^{\oplus 20}\oplusS3new(16,[χ])S_{3}^{\mathrm{new}}(16, [\chi])18^{\oplus 18}\oplusS3new(20,[χ])S_{3}^{\mathrm{new}}(20, [\chi])15^{\oplus 15}\oplusS3new(32,[χ])S_{3}^{\mathrm{new}}(32, [\chi])12^{\oplus 12}\oplusS3new(36,[χ])S_{3}^{\mathrm{new}}(36, [\chi])10^{\oplus 10}\oplusS3new(48,[χ])S_{3}^{\mathrm{new}}(48, [\chi])12^{\oplus 12}\oplusS3new(60,[χ])S_{3}^{\mathrm{new}}(60, [\chi])10^{\oplus 10}\oplusS3new(64,[χ])S_{3}^{\mathrm{new}}(64, [\chi])6^{\oplus 6}\oplusS3new(80,[χ])S_{3}^{\mathrm{new}}(80, [\chi])9^{\oplus 9}\oplusS3new(96,[χ])S_{3}^{\mathrm{new}}(96, [\chi])8^{\oplus 8}\oplusS3new(144,[χ])S_{3}^{\mathrm{new}}(144, [\chi])6^{\oplus 6}\oplusS3new(160,[χ])S_{3}^{\mathrm{new}}(160, [\chi])6^{\oplus 6}\oplusS3new(180,[χ])S_{3}^{\mathrm{new}}(180, [\chi])5^{\oplus 5}\oplusS3new(192,[χ])S_{3}^{\mathrm{new}}(192, [\chi])4^{\oplus 4}\oplusS3new(240,[χ])S_{3}^{\mathrm{new}}(240, [\chi])6^{\oplus 6}\oplusS3new(288,[χ])S_{3}^{\mathrm{new}}(288, [\chi])4^{\oplus 4}\oplusS3new(320,[χ])S_{3}^{\mathrm{new}}(320, [\chi])3^{\oplus 3}\oplusS3new(480,[χ])S_{3}^{\mathrm{new}}(480, [\chi])4^{\oplus 4}\oplusS3new(576,[χ])S_{3}^{\mathrm{new}}(576, [\chi])2^{\oplus 2}\oplusS3new(720,[χ])S_{3}^{\mathrm{new}}(720, [\chi])3^{\oplus 3}\oplusS3new(960,[χ])S_{3}^{\mathrm{new}}(960, [\chi])2^{\oplus 2}\oplusS3new(1440,[χ])S_{3}^{\mathrm{new}}(1440, [\chi])2^{\oplus 2}