Properties

Label 2880.3.e.n
Level 28802880
Weight 33
Character orbit 2880.e
Analytic conductor 78.47478.474
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2880,3,Mod(2431,2880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2880.2431"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: N N == 2880=26325 2880 = 2^{6} \cdot 3^{2} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 2880.e (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,16,0,0,0,0,0,0,0,40,0,0,0,-96, 0,0,0,0,0,0,0,112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 78.474316135878.4743161358
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.12960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x83x6+8x43x2+1 x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a23]\Z[a_1, \ldots, a_{23}]
Coefficient ring index: 218 2^{18}
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q5+(β6+β4+β2)q7+(β53β42β2)q11+(β34β1+2)q13+(β72β34β1+2)q17++(4β7+4β3+66)q97+O(q100) q - \beta_1 q^{5} + ( - \beta_{6} + \beta_{4} + \beta_{2}) q^{7} + (\beta_{5} - 3 \beta_{4} - 2 \beta_{2}) q^{11} + ( - \beta_{3} - 4 \beta_1 + 2) q^{13} + ( - \beta_{7} - 2 \beta_{3} - 4 \beta_1 + 2) q^{17}+ \cdots + ( - 4 \beta_{7} + 4 \beta_{3} + 66) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+16q13+16q17+40q2596q29+112q37112q41184q49+224q5380q61+160q65+272q73+256q77+160q85+48q89+528q97+O(q100) 8 q + 16 q^{13} + 16 q^{17} + 40 q^{25} - 96 q^{29} + 112 q^{37} - 112 q^{41} - 184 q^{49} + 224 q^{53} - 80 q^{61} + 160 q^{65} + 272 q^{73} + 256 q^{77} + 160 q^{85} + 48 q^{89} + 528 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x83x6+8x43x2+1 x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== (ν6+9)/4 ( \nu^{6} + 9 ) / 4 Copy content Toggle raw display
β2\beta_{2}== (3ν7+8ν524ν3+ν)/2 ( -3\nu^{7} + 8\nu^{5} - 24\nu^{3} + \nu ) / 2 Copy content Toggle raw display
β3\beta_{3}== (3ν7+8ν524ν3+17ν)/2 ( -3\nu^{7} + 8\nu^{5} - 24\nu^{3} + 17\nu ) / 2 Copy content Toggle raw display
β4\beta_{4}== 3ν7+8ν520ν3+ν -3\nu^{7} + 8\nu^{5} - 20\nu^{3} + \nu Copy content Toggle raw display
β5\beta_{5}== (5ν6+16ν432ν2+7)/2 ( -5\nu^{6} + 16\nu^{4} - 32\nu^{2} + 7 ) / 2 Copy content Toggle raw display
β6\beta_{6}== 3ν6+8ν424ν2+5 -3\nu^{6} + 8\nu^{4} - 24\nu^{2} + 5 Copy content Toggle raw display
β7\beta_{7}== (11ν7+40ν5104ν3+73ν)/2 ( -11\nu^{7} + 40\nu^{5} - 104\nu^{3} + 73\nu ) / 2 Copy content Toggle raw display
ν\nu== (β3β2)/8 ( \beta_{3} - \beta_{2} ) / 8 Copy content Toggle raw display
ν2\nu^{2}== (β6+β52β1+6)/8 ( -\beta_{6} + \beta_{5} - 2\beta _1 + 6 ) / 8 Copy content Toggle raw display
ν3\nu^{3}== (β42β2)/4 ( \beta_{4} - 2\beta_{2} ) / 4 Copy content Toggle raw display
ν4\nu^{4}== (2β6+3β5+6β114)/8 ( -2\beta_{6} + 3\beta_{5} + 6\beta _1 - 14 ) / 8 Copy content Toggle raw display
ν5\nu^{5}== (3β7+6β413β310β2)/16 ( 3\beta_{7} + 6\beta_{4} - 13\beta_{3} - 10\beta_{2} ) / 16 Copy content Toggle raw display
ν6\nu^{6}== 4β19 4\beta _1 - 9 Copy content Toggle raw display
ν7\nu^{7}== (4β78β417β3+13β2)/8 ( 4\beta_{7} - 8\beta_{4} - 17\beta_{3} + 13\beta_{2} ) / 8 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2880Z)×\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times.

nn 577577 641641 901901 24312431
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2431.1
−0.535233 + 0.309017i
0.535233 0.309017i
0.535233 + 0.309017i
−0.535233 0.309017i
−1.40126 + 0.809017i
1.40126 0.809017i
1.40126 + 0.809017i
−1.40126 0.809017i
0 0 0 −2.23607 0 13.4003i 0 0 0
2431.2 0 0 0 −2.23607 0 0.456067i 0 0 0
2431.3 0 0 0 −2.23607 0 0.456067i 0 0 0
2431.4 0 0 0 −2.23607 0 13.4003i 0 0 0
2431.5 0 0 0 2.23607 0 9.40034i 0 0 0
2431.6 0 0 0 2.23607 0 4.45607i 0 0 0
2431.7 0 0 0 2.23607 0 4.45607i 0 0 0
2431.8 0 0 0 2.23607 0 9.40034i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2431.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.3.e.n 8
3.b odd 2 1 960.3.e.d 8
4.b odd 2 1 inner 2880.3.e.n 8
8.b even 2 1 1440.3.e.e 8
8.d odd 2 1 1440.3.e.e 8
12.b even 2 1 960.3.e.d 8
24.f even 2 1 480.3.e.a 8
24.h odd 2 1 480.3.e.a 8
120.i odd 2 1 2400.3.e.g 8
120.m even 2 1 2400.3.e.g 8
120.q odd 4 1 2400.3.j.d 8
120.q odd 4 1 2400.3.j.j 8
120.w even 4 1 2400.3.j.d 8
120.w even 4 1 2400.3.j.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.3.e.a 8 24.f even 2 1
480.3.e.a 8 24.h odd 2 1
960.3.e.d 8 3.b odd 2 1
960.3.e.d 8 12.b even 2 1
1440.3.e.e 8 8.b even 2 1
1440.3.e.e 8 8.d odd 2 1
2400.3.e.g 8 120.i odd 2 1
2400.3.e.g 8 120.m even 2 1
2400.3.j.d 8 120.q odd 4 1
2400.3.j.d 8 120.w even 4 1
2400.3.j.j 8 120.q odd 4 1
2400.3.j.j 8 120.w even 4 1
2880.3.e.n 8 1.a even 1 1 trivial
2880.3.e.n 8 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(2880,[χ])S_{3}^{\mathrm{new}}(2880, [\chi]):

T78+288T76+21248T74+319488T72+65536 T_{7}^{8} + 288T_{7}^{6} + 21248T_{7}^{4} + 319488T_{7}^{2} + 65536 Copy content Toggle raw display
T1348T133280T132736T13176 T_{13}^{4} - 8T_{13}^{3} - 280T_{13}^{2} - 736T_{13} - 176 Copy content Toggle raw display
T1748T1731240T172+10784T17+180304 T_{17}^{4} - 8T_{17}^{3} - 1240T_{17}^{2} + 10784T_{17} + 180304 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T25)4 (T^{2} - 5)^{4} Copy content Toggle raw display
77 T8+288T6++65536 T^{8} + 288 T^{6} + \cdots + 65536 Copy content Toggle raw display
1111 T8++1124663296 T^{8} + \cdots + 1124663296 Copy content Toggle raw display
1313 (T48T3+176)2 (T^{4} - 8 T^{3} + \cdots - 176)^{2} Copy content Toggle raw display
1717 (T48T3++180304)2 (T^{4} - 8 T^{3} + \cdots + 180304)^{2} Copy content Toggle raw display
1919 T8++91097726976 T^{8} + \cdots + 91097726976 Copy content Toggle raw display
2323 T8++29948379136 T^{8} + \cdots + 29948379136 Copy content Toggle raw display
2929 (T2+24T36)4 (T^{2} + 24 T - 36)^{4} Copy content Toggle raw display
3131 T8++1389154533376 T^{8} + \cdots + 1389154533376 Copy content Toggle raw display
3737 (T456T3++857296)2 (T^{4} - 56 T^{3} + \cdots + 857296)^{2} Copy content Toggle raw display
4141 (T4+56T3++600976)2 (T^{4} + 56 T^{3} + \cdots + 600976)^{2} Copy content Toggle raw display
4343 T8++94214619136 T^{8} + \cdots + 94214619136 Copy content Toggle raw display
4747 T8++194784526336 T^{8} + \cdots + 194784526336 Copy content Toggle raw display
5353 (T4112T3+272624)2 (T^{4} - 112 T^{3} + \cdots - 272624)^{2} Copy content Toggle raw display
5959 T8++3914952933376 T^{8} + \cdots + 3914952933376 Copy content Toggle raw display
6161 (T4+40T3++528400)2 (T^{4} + 40 T^{3} + \cdots + 528400)^{2} Copy content Toggle raw display
6767 T8++271539775799296 T^{8} + \cdots + 271539775799296 Copy content Toggle raw display
7171 T8++97524631207936 T^{8} + \cdots + 97524631207936 Copy content Toggle raw display
7373 (T4136T3+9058544)2 (T^{4} - 136 T^{3} + \cdots - 9058544)^{2} Copy content Toggle raw display
7979 T8++15777546633216 T^{8} + \cdots + 15777546633216 Copy content Toggle raw display
8383 T8++617022420484096 T^{8} + \cdots + 617022420484096 Copy content Toggle raw display
8989 (T424T3++51069456)2 (T^{4} - 24 T^{3} + \cdots + 51069456)^{2} Copy content Toggle raw display
9797 (T2132T+1284)4 (T^{2} - 132 T + 1284)^{4} Copy content Toggle raw display
show more
show less