gp: [N,k,chi] = [2880,3,Mod(2431,2880)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2880.2431");
S:= CuspForms(chi, 3);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2880, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
N = Newforms(chi, 3, names="a")
Newform invariants
sage: traces = [8,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,16,0,0,0,0,0,0,0,40,0,0,0,-96,
0,0,0,0,0,0,0,112]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − 3 x 6 + 8 x 4 − 3 x 2 + 1 x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 x 8 − 3 x 6 + 8 x 4 − 3 x 2 + 1
x^8 - 3*x^6 + 8*x^4 - 3*x^2 + 1
:
β 1 \beta_{1} β 1 = = =
( ν 6 + 9 ) / 4 ( \nu^{6} + 9 ) / 4 ( ν 6 + 9 ) / 4
(v^6 + 9) / 4
β 2 \beta_{2} β 2 = = =
( − 3 ν 7 + 8 ν 5 − 24 ν 3 + ν ) / 2 ( -3\nu^{7} + 8\nu^{5} - 24\nu^{3} + \nu ) / 2 ( − 3 ν 7 + 8 ν 5 − 2 4 ν 3 + ν ) / 2
(-3*v^7 + 8*v^5 - 24*v^3 + v) / 2
β 3 \beta_{3} β 3 = = =
( − 3 ν 7 + 8 ν 5 − 24 ν 3 + 17 ν ) / 2 ( -3\nu^{7} + 8\nu^{5} - 24\nu^{3} + 17\nu ) / 2 ( − 3 ν 7 + 8 ν 5 − 2 4 ν 3 + 1 7 ν ) / 2
(-3*v^7 + 8*v^5 - 24*v^3 + 17*v) / 2
β 4 \beta_{4} β 4 = = =
− 3 ν 7 + 8 ν 5 − 20 ν 3 + ν -3\nu^{7} + 8\nu^{5} - 20\nu^{3} + \nu − 3 ν 7 + 8 ν 5 − 2 0 ν 3 + ν
-3*v^7 + 8*v^5 - 20*v^3 + v
β 5 \beta_{5} β 5 = = =
( − 5 ν 6 + 16 ν 4 − 32 ν 2 + 7 ) / 2 ( -5\nu^{6} + 16\nu^{4} - 32\nu^{2} + 7 ) / 2 ( − 5 ν 6 + 1 6 ν 4 − 3 2 ν 2 + 7 ) / 2
(-5*v^6 + 16*v^4 - 32*v^2 + 7) / 2
β 6 \beta_{6} β 6 = = =
− 3 ν 6 + 8 ν 4 − 24 ν 2 + 5 -3\nu^{6} + 8\nu^{4} - 24\nu^{2} + 5 − 3 ν 6 + 8 ν 4 − 2 4 ν 2 + 5
-3*v^6 + 8*v^4 - 24*v^2 + 5
β 7 \beta_{7} β 7 = = =
( − 11 ν 7 + 40 ν 5 − 104 ν 3 + 73 ν ) / 2 ( -11\nu^{7} + 40\nu^{5} - 104\nu^{3} + 73\nu ) / 2 ( − 1 1 ν 7 + 4 0 ν 5 − 1 0 4 ν 3 + 7 3 ν ) / 2
(-11*v^7 + 40*v^5 - 104*v^3 + 73*v) / 2
ν \nu ν = = =
( β 3 − β 2 ) / 8 ( \beta_{3} - \beta_{2} ) / 8 ( β 3 − β 2 ) / 8
(b3 - b2) / 8
ν 2 \nu^{2} ν 2 = = =
( − β 6 + β 5 − 2 β 1 + 6 ) / 8 ( -\beta_{6} + \beta_{5} - 2\beta _1 + 6 ) / 8 ( − β 6 + β 5 − 2 β 1 + 6 ) / 8
(-b6 + b5 - 2*b1 + 6) / 8
ν 3 \nu^{3} ν 3 = = =
( β 4 − 2 β 2 ) / 4 ( \beta_{4} - 2\beta_{2} ) / 4 ( β 4 − 2 β 2 ) / 4
(b4 - 2*b2) / 4
ν 4 \nu^{4} ν 4 = = =
( − 2 β 6 + 3 β 5 + 6 β 1 − 14 ) / 8 ( -2\beta_{6} + 3\beta_{5} + 6\beta _1 - 14 ) / 8 ( − 2 β 6 + 3 β 5 + 6 β 1 − 1 4 ) / 8
(-2*b6 + 3*b5 + 6*b1 - 14) / 8
ν 5 \nu^{5} ν 5 = = =
( 3 β 7 + 6 β 4 − 13 β 3 − 10 β 2 ) / 16 ( 3\beta_{7} + 6\beta_{4} - 13\beta_{3} - 10\beta_{2} ) / 16 ( 3 β 7 + 6 β 4 − 1 3 β 3 − 1 0 β 2 ) / 1 6
(3*b7 + 6*b4 - 13*b3 - 10*b2) / 16
ν 6 \nu^{6} ν 6 = = =
4 β 1 − 9 4\beta _1 - 9 4 β 1 − 9
4*b1 - 9
ν 7 \nu^{7} ν 7 = = =
( 4 β 7 − 8 β 4 − 17 β 3 + 13 β 2 ) / 8 ( 4\beta_{7} - 8\beta_{4} - 17\beta_{3} + 13\beta_{2} ) / 8 ( 4 β 7 − 8 β 4 − 1 7 β 3 + 1 3 β 2 ) / 8
(4*b7 - 8*b4 - 17*b3 + 13*b2) / 8
Character values
We give the values of χ \chi χ on generators for ( Z / 2880 Z ) × \left(\mathbb{Z}/2880\mathbb{Z}\right)^\times ( Z / 2 8 8 0 Z ) × .
n n n
577 577 5 7 7
641 641 6 4 1
901 901 9 0 1
2431 2431 2 4 3 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 3 n e w ( 2880 , [ χ ] ) S_{3}^{\mathrm{new}}(2880, [\chi]) S 3 n e w ( 2 8 8 0 , [ χ ] ) :
T 7 8 + 288 T 7 6 + 21248 T 7 4 + 319488 T 7 2 + 65536 T_{7}^{8} + 288T_{7}^{6} + 21248T_{7}^{4} + 319488T_{7}^{2} + 65536 T 7 8 + 2 8 8 T 7 6 + 2 1 2 4 8 T 7 4 + 3 1 9 4 8 8 T 7 2 + 6 5 5 3 6
T7^8 + 288*T7^6 + 21248*T7^4 + 319488*T7^2 + 65536
T 13 4 − 8 T 13 3 − 280 T 13 2 − 736 T 13 − 176 T_{13}^{4} - 8T_{13}^{3} - 280T_{13}^{2} - 736T_{13} - 176 T 1 3 4 − 8 T 1 3 3 − 2 8 0 T 1 3 2 − 7 3 6 T 1 3 − 1 7 6
T13^4 - 8*T13^3 - 280*T13^2 - 736*T13 - 176
T 17 4 − 8 T 17 3 − 1240 T 17 2 + 10784 T 17 + 180304 T_{17}^{4} - 8T_{17}^{3} - 1240T_{17}^{2} + 10784T_{17} + 180304 T 1 7 4 − 8 T 1 7 3 − 1 2 4 0 T 1 7 2 + 1 0 7 8 4 T 1 7 + 1 8 0 3 0 4
T17^4 - 8*T17^3 - 1240*T17^2 + 10784*T17 + 180304
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 T^{8} T 8
T^8
5 5 5
( T 2 − 5 ) 4 (T^{2} - 5)^{4} ( T 2 − 5 ) 4
(T^2 - 5)^4
7 7 7
T 8 + 288 T 6 + ⋯ + 65536 T^{8} + 288 T^{6} + \cdots + 65536 T 8 + 2 8 8 T 6 + ⋯ + 6 5 5 3 6
T^8 + 288*T^6 + 21248*T^4 + 319488*T^2 + 65536
11 11 1 1
T 8 + ⋯ + 1124663296 T^{8} + \cdots + 1124663296 T 8 + ⋯ + 1 1 2 4 6 6 3 2 9 6
T^8 + 864*T^6 + 242432*T^4 + 27795456*T^2 + 1124663296
13 13 1 3
( T 4 − 8 T 3 + ⋯ − 176 ) 2 (T^{4} - 8 T^{3} + \cdots - 176)^{2} ( T 4 − 8 T 3 + ⋯ − 1 7 6 ) 2
(T^4 - 8*T^3 - 280*T^2 - 736*T - 176)^2
17 17 1 7
( T 4 − 8 T 3 + ⋯ + 180304 ) 2 (T^{4} - 8 T^{3} + \cdots + 180304)^{2} ( T 4 − 8 T 3 + ⋯ + 1 8 0 3 0 4 ) 2
(T^4 - 8*T^3 - 1240*T^2 + 10784*T + 180304)^2
19 19 1 9
T 8 + ⋯ + 91097726976 T^{8} + \cdots + 91097726976 T 8 + ⋯ + 9 1 0 9 7 7 2 6 9 7 6
T^8 + 2688*T^6 + 2446848*T^4 + 860848128*T^2 + 91097726976
23 23 2 3
T 8 + ⋯ + 29948379136 T^{8} + \cdots + 29948379136 T 8 + ⋯ + 2 9 9 4 8 3 7 9 1 3 6
T^8 + 2688*T^6 + 2014208*T^4 + 465174528*T^2 + 29948379136
29 29 2 9
( T 2 + 24 T − 36 ) 4 (T^{2} + 24 T - 36)^{4} ( T 2 + 2 4 T − 3 6 ) 4
(T^2 + 24*T - 36)^4
31 31 3 1
T 8 + ⋯ + 1389154533376 T^{8} + \cdots + 1389154533376 T 8 + ⋯ + 1 3 8 9 1 5 4 5 3 3 3 7 6
T^8 + 4864*T^6 + 8395776*T^4 + 5945688064*T^2 + 1389154533376
37 37 3 7
( T 4 − 56 T 3 + ⋯ + 857296 ) 2 (T^{4} - 56 T^{3} + \cdots + 857296)^{2} ( T 4 − 5 6 T 3 + ⋯ + 8 5 7 2 9 6 ) 2
(T^4 - 56*T^3 - 1528*T^2 + 72416*T + 857296)^2
41 41 4 1
( T 4 + 56 T 3 + ⋯ + 600976 ) 2 (T^{4} + 56 T^{3} + \cdots + 600976)^{2} ( T 4 + 5 6 T 3 + ⋯ + 6 0 0 9 7 6 ) 2
(T^4 + 56*T^3 - 4168*T^2 - 207776*T + 600976)^2
43 43 4 3
T 8 + ⋯ + 94214619136 T^{8} + \cdots + 94214619136 T 8 + ⋯ + 9 4 2 1 4 6 1 9 1 3 6
T^8 + 4032*T^6 + 3450368*T^4 + 1027325952*T^2 + 94214619136
47 47 4 7
T 8 + ⋯ + 194784526336 T^{8} + \cdots + 194784526336 T 8 + ⋯ + 1 9 4 7 8 4 5 2 6 3 3 6
T^8 + 6784*T^6 + 14539776*T^4 + 9982050304*T^2 + 194784526336
53 53 5 3
( T 4 − 112 T 3 + ⋯ − 272624 ) 2 (T^{4} - 112 T^{3} + \cdots - 272624)^{2} ( T 4 − 1 1 2 T 3 + ⋯ − 2 7 2 6 2 4 ) 2
(T^4 - 112*T^3 + 1784*T^2 + 56512*T - 272624)^2
59 59 5 9
T 8 + ⋯ + 3914952933376 T^{8} + \cdots + 3914952933376 T 8 + ⋯ + 3 9 1 4 9 5 2 9 3 3 3 7 6
T^8 + 7392*T^6 + 15774464*T^4 + 13292740608*T^2 + 3914952933376
61 61 6 1
( T 4 + 40 T 3 + ⋯ + 528400 ) 2 (T^{4} + 40 T^{3} + \cdots + 528400)^{2} ( T 4 + 4 0 T 3 + ⋯ + 5 2 8 4 0 0 ) 2
(T^4 + 40*T^3 - 2920*T^2 + 10400*T + 528400)^2
67 67 6 7
T 8 + ⋯ + 271539775799296 T^{8} + \cdots + 271539775799296 T 8 + ⋯ + 2 7 1 5 3 9 7 7 5 7 9 9 2 9 6
T^8 + 31168*T^6 + 275817984*T^4 + 631565565952*T^2 + 271539775799296
71 71 7 1
T 8 + ⋯ + 97524631207936 T^{8} + \cdots + 97524631207936 T 8 + ⋯ + 9 7 5 2 4 6 3 1 2 0 7 9 3 6
T^8 + 20608*T^6 + 130658304*T^4 + 252302589952*T^2 + 97524631207936
73 73 7 3
( T 4 − 136 T 3 + ⋯ − 9058544 ) 2 (T^{4} - 136 T^{3} + \cdots - 9058544)^{2} ( T 4 − 1 3 6 T 3 + ⋯ − 9 0 5 8 5 4 4 ) 2
(T^4 - 136*T^3 - 2088*T^2 + 456416*T - 9058544)^2
79 79 7 9
T 8 + ⋯ + 15777546633216 T^{8} + \cdots + 15777546633216 T 8 + ⋯ + 1 5 7 7 7 5 4 6 6 3 3 2 1 6
T^8 + 13824*T^6 + 53517312*T^4 + 54018441216*T^2 + 15777546633216
83 83 8 3
T 8 + ⋯ + 617022420484096 T^{8} + \cdots + 617022420484096 T 8 + ⋯ + 6 1 7 0 2 2 4 2 0 4 8 4 0 9 6
T^8 + 25792*T^6 + 205100544*T^4 + 629101477888*T^2 + 617022420484096
89 89 8 9
( T 4 − 24 T 3 + ⋯ + 51069456 ) 2 (T^{4} - 24 T^{3} + \cdots + 51069456)^{2} ( T 4 − 2 4 T 3 + ⋯ + 5 1 0 6 9 4 5 6 ) 2
(T^4 - 24*T^3 - 27624*T^2 + 1024416*T + 51069456)^2
97 97 9 7
( T 2 − 132 T + 1284 ) 4 (T^{2} - 132 T + 1284)^{4} ( T 2 − 1 3 2 T + 1 2 8 4 ) 4
(T^2 - 132*T + 1284)^4
show more
show less