Properties

Label 2-2880-4.3-c2-0-70
Degree $2$
Conductor $2880$
Sign $i$
Analytic cond. $78.4743$
Root an. cond. $8.85857$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.23·5-s − 9.40i·7-s − 10.2i·11-s + 22.1·13-s + 30.7·17-s − 34.0i·19-s + 10.3i·23-s + 5.00·25-s − 25.4·29-s − 33.3i·31-s − 21.0i·35-s − 10.5·37-s + 62.2·41-s + 54.6i·43-s − 37.8i·47-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.34i·7-s − 0.933i·11-s + 1.70·13-s + 1.80·17-s − 1.79i·19-s + 0.451i·23-s + 0.200·25-s − 0.876·29-s − 1.07i·31-s − 0.600i·35-s − 0.285·37-s + 1.51·41-s + 1.27i·43-s − 0.805i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2880\)    =    \(2^{6} \cdot 3^{2} \cdot 5\)
Sign: $i$
Analytic conductor: \(78.4743\)
Root analytic conductor: \(8.85857\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2880} (2431, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2880,\ (\ :1),\ i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.781266337\)
\(L(\frac12)\) \(\approx\) \(2.781266337\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 2.23T \)
good7 \( 1 + 9.40iT - 49T^{2} \)
11 \( 1 + 10.2iT - 121T^{2} \)
13 \( 1 - 22.1T + 169T^{2} \)
17 \( 1 - 30.7T + 289T^{2} \)
19 \( 1 + 34.0iT - 361T^{2} \)
23 \( 1 - 10.3iT - 529T^{2} \)
29 \( 1 + 25.4T + 841T^{2} \)
31 \( 1 + 33.3iT - 961T^{2} \)
37 \( 1 + 10.5T + 1.36e3T^{2} \)
41 \( 1 - 62.2T + 1.68e3T^{2} \)
43 \( 1 - 54.6iT - 1.84e3T^{2} \)
47 \( 1 + 37.8iT - 2.20e3T^{2} \)
53 \( 1 - 82.6T + 2.80e3T^{2} \)
59 \( 1 - 33.7iT - 3.48e3T^{2} \)
61 \( 1 + 78.0T + 3.72e3T^{2} \)
67 \( 1 - 131. iT - 4.48e3T^{2} \)
71 \( 1 - 22.6iT - 5.04e3T^{2} \)
73 \( 1 + 60.9T + 5.32e3T^{2} \)
79 \( 1 + 27.8iT - 6.24e3T^{2} \)
83 \( 1 - 70.7iT - 6.88e3T^{2} \)
89 \( 1 + 28.7T + 7.92e3T^{2} \)
97 \( 1 - 10.5T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.410190569163028417100325734351, −7.58753604527320551560659721798, −6.99396330061072564487121650211, −5.95224556134219485021470742634, −5.58449828499848219467428034564, −4.29713306731102139053465991122, −3.64511263960483734515732924541, −2.82853600069821117506701530278, −1.25140878535868171215481572246, −0.73448051291791613868486703403, 1.30059084921506572289581911696, 2.00072238525990775280315266031, 3.17784899820245997143735195678, 3.90549692820450249920692732769, 5.16177305710964171249743546585, 5.84945249413500036625336582399, 6.15313910723910665796643845044, 7.39127466256452567481555625961, 8.104785406637423765568328789890, 8.829540279576041534436080510320

Graph of the $Z$-function along the critical line