Properties

Label 2880.3.e.a.2431.2
Level $2880$
Weight $3$
Character 2880.2431
Analytic conductor $78.474$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2880,3,Mod(2431,2880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2880.2431"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2880.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,-64,0,0,0,40,0,0,0,0,0,0,0,20,0,0,0, -72,0,0,0,0,0,0,0,-112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.4743161358\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2431.2
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 2880.2431
Dual form 2880.3.e.a.2431.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{5} +12.1803i q^{7} +5.52786i q^{11} -20.4721 q^{13} +1.05573 q^{17} +12.0000i q^{19} -31.5967i q^{23} +5.00000 q^{25} -44.8328 q^{29} +27.4164i q^{31} -27.2361i q^{35} -23.5279 q^{37} -8.69505 q^{41} +26.6525i q^{43} +44.5410i q^{47} -99.3607 q^{49} +0.695048 q^{53} -12.3607i q^{55} -94.6099i q^{59} +33.1935 q^{61} +45.7771 q^{65} -82.2067i q^{67} +122.249i q^{71} +132.164 q^{73} -67.3313 q^{77} -134.833i q^{79} +19.4590i q^{83} -2.36068 q^{85} +30.0000 q^{89} -249.358i q^{91} -26.8328i q^{95} +12.3344 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{13} + 40 q^{17} + 20 q^{25} - 72 q^{29} - 112 q^{37} - 160 q^{41} - 308 q^{49} + 128 q^{53} - 64 q^{61} + 40 q^{65} - 8 q^{73} + 160 q^{77} + 80 q^{85} + 120 q^{89} + 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) 12.1803i 1.74005i 0.493009 + 0.870024i \(0.335897\pi\)
−0.493009 + 0.870024i \(0.664103\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.52786i 0.502533i 0.967918 + 0.251267i \(0.0808471\pi\)
−0.967918 + 0.251267i \(0.919153\pi\)
\(12\) 0 0
\(13\) −20.4721 −1.57478 −0.787390 0.616455i \(-0.788568\pi\)
−0.787390 + 0.616455i \(0.788568\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.05573 0.0621017 0.0310508 0.999518i \(-0.490115\pi\)
0.0310508 + 0.999518i \(0.490115\pi\)
\(18\) 0 0
\(19\) 12.0000i 0.631579i 0.948829 + 0.315789i \(0.102269\pi\)
−0.948829 + 0.315789i \(0.897731\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 31.5967i − 1.37377i −0.726765 0.686886i \(-0.758977\pi\)
0.726765 0.686886i \(-0.241023\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −44.8328 −1.54596 −0.772980 0.634431i \(-0.781235\pi\)
−0.772980 + 0.634431i \(0.781235\pi\)
\(30\) 0 0
\(31\) 27.4164i 0.884400i 0.896916 + 0.442200i \(0.145802\pi\)
−0.896916 + 0.442200i \(0.854198\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 27.2361i − 0.778173i
\(36\) 0 0
\(37\) −23.5279 −0.635888 −0.317944 0.948109i \(-0.602992\pi\)
−0.317944 + 0.948109i \(0.602992\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.69505 −0.212074 −0.106037 0.994362i \(-0.533816\pi\)
−0.106037 + 0.994362i \(0.533816\pi\)
\(42\) 0 0
\(43\) 26.6525i 0.619825i 0.950765 + 0.309913i \(0.100300\pi\)
−0.950765 + 0.309913i \(0.899700\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 44.5410i 0.947681i 0.880611 + 0.473841i \(0.157133\pi\)
−0.880611 + 0.473841i \(0.842867\pi\)
\(48\) 0 0
\(49\) −99.3607 −2.02777
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.695048 0.0131141 0.00655706 0.999979i \(-0.497913\pi\)
0.00655706 + 0.999979i \(0.497913\pi\)
\(54\) 0 0
\(55\) − 12.3607i − 0.224740i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 94.6099i − 1.60356i −0.597621 0.801779i \(-0.703887\pi\)
0.597621 0.801779i \(-0.296113\pi\)
\(60\) 0 0
\(61\) 33.1935 0.544156 0.272078 0.962275i \(-0.412289\pi\)
0.272078 + 0.962275i \(0.412289\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 45.7771 0.704263
\(66\) 0 0
\(67\) − 82.2067i − 1.22696i −0.789708 0.613482i \(-0.789768\pi\)
0.789708 0.613482i \(-0.210232\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 122.249i 1.72182i 0.508757 + 0.860910i \(0.330105\pi\)
−0.508757 + 0.860910i \(0.669895\pi\)
\(72\) 0 0
\(73\) 132.164 1.81047 0.905233 0.424915i \(-0.139696\pi\)
0.905233 + 0.424915i \(0.139696\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −67.3313 −0.874432
\(78\) 0 0
\(79\) − 134.833i − 1.70674i −0.521302 0.853372i \(-0.674553\pi\)
0.521302 0.853372i \(-0.325447\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 19.4590i 0.234446i 0.993106 + 0.117223i \(0.0373992\pi\)
−0.993106 + 0.117223i \(0.962601\pi\)
\(84\) 0 0
\(85\) −2.36068 −0.0277727
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 30.0000 0.337079 0.168539 0.985695i \(-0.446095\pi\)
0.168539 + 0.985695i \(0.446095\pi\)
\(90\) 0 0
\(91\) − 249.358i − 2.74019i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 26.8328i − 0.282451i
\(96\) 0 0
\(97\) 12.3344 0.127158 0.0635792 0.997977i \(-0.479748\pi\)
0.0635792 + 0.997977i \(0.479748\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 105.554 1.04509 0.522545 0.852611i \(-0.324983\pi\)
0.522545 + 0.852611i \(0.324983\pi\)
\(102\) 0 0
\(103\) 100.987i 0.980455i 0.871595 + 0.490227i \(0.163086\pi\)
−0.871595 + 0.490227i \(0.836914\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 22.8754i 0.213789i 0.994270 + 0.106894i \(0.0340907\pi\)
−0.994270 + 0.106894i \(0.965909\pi\)
\(108\) 0 0
\(109\) 35.5279 0.325944 0.162972 0.986631i \(-0.447892\pi\)
0.162972 + 0.986631i \(0.447892\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 70.7214 0.625853 0.312926 0.949777i \(-0.398691\pi\)
0.312926 + 0.949777i \(0.398691\pi\)
\(114\) 0 0
\(115\) 70.6525i 0.614369i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12.8591i 0.108060i
\(120\) 0 0
\(121\) 90.4427 0.747460
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) − 148.541i − 1.16961i −0.811172 0.584807i \(-0.801170\pi\)
0.811172 0.584807i \(-0.198830\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 34.9180i 0.266549i 0.991079 + 0.133275i \(0.0425492\pi\)
−0.991079 + 0.133275i \(0.957451\pi\)
\(132\) 0 0
\(133\) −146.164 −1.09898
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −100.610 −0.734379 −0.367189 0.930146i \(-0.619680\pi\)
−0.367189 + 0.930146i \(0.619680\pi\)
\(138\) 0 0
\(139\) − 198.610i − 1.42885i −0.699713 0.714424i \(-0.746689\pi\)
0.699713 0.714424i \(-0.253311\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 113.167i − 0.791379i
\(144\) 0 0
\(145\) 100.249 0.691374
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −203.082 −1.36297 −0.681483 0.731834i \(-0.738665\pi\)
−0.681483 + 0.731834i \(0.738665\pi\)
\(150\) 0 0
\(151\) − 113.803i − 0.753665i −0.926281 0.376832i \(-0.877013\pi\)
0.926281 0.376832i \(-0.122987\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 61.3050i − 0.395516i
\(156\) 0 0
\(157\) 144.918 0.923044 0.461522 0.887129i \(-0.347303\pi\)
0.461522 + 0.887129i \(0.347303\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 384.859 2.39043
\(162\) 0 0
\(163\) 203.374i 1.24769i 0.781547 + 0.623846i \(0.214431\pi\)
−0.781547 + 0.623846i \(0.785569\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 88.7639i 0.531521i 0.964039 + 0.265760i \(0.0856230\pi\)
−0.964039 + 0.265760i \(0.914377\pi\)
\(168\) 0 0
\(169\) 250.108 1.47993
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −135.580 −0.783702 −0.391851 0.920029i \(-0.628165\pi\)
−0.391851 + 0.920029i \(0.628165\pi\)
\(174\) 0 0
\(175\) 60.9017i 0.348010i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 203.830i − 1.13871i −0.822091 0.569357i \(-0.807192\pi\)
0.822091 0.569357i \(-0.192808\pi\)
\(180\) 0 0
\(181\) −22.6687 −0.125242 −0.0626208 0.998037i \(-0.519946\pi\)
−0.0626208 + 0.998037i \(0.519946\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 52.6099 0.284378
\(186\) 0 0
\(187\) 5.83592i 0.0312081i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 150.748i 0.789255i 0.918841 + 0.394627i \(0.129126\pi\)
−0.918841 + 0.394627i \(0.870874\pi\)
\(192\) 0 0
\(193\) −210.498 −1.09067 −0.545333 0.838220i \(-0.683597\pi\)
−0.545333 + 0.838220i \(0.683597\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −97.0232 −0.492504 −0.246252 0.969206i \(-0.579199\pi\)
−0.246252 + 0.969206i \(0.579199\pi\)
\(198\) 0 0
\(199\) 104.892i 0.527094i 0.964647 + 0.263547i \(0.0848924\pi\)
−0.964647 + 0.263547i \(0.915108\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 546.079i − 2.69004i
\(204\) 0 0
\(205\) 19.4427 0.0948425
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −66.3344 −0.317389
\(210\) 0 0
\(211\) − 240.584i − 1.14021i −0.821573 0.570103i \(-0.806903\pi\)
0.821573 0.570103i \(-0.193097\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 59.5967i − 0.277194i
\(216\) 0 0
\(217\) −333.941 −1.53890
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −21.6130 −0.0977964
\(222\) 0 0
\(223\) − 18.2918i − 0.0820260i −0.999159 0.0410130i \(-0.986941\pi\)
0.999159 0.0410130i \(-0.0130585\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 92.4559i − 0.407295i −0.979044 0.203647i \(-0.934720\pi\)
0.979044 0.203647i \(-0.0652796\pi\)
\(228\) 0 0
\(229\) −165.161 −0.721227 −0.360613 0.932715i \(-0.617433\pi\)
−0.360613 + 0.932715i \(0.617433\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −37.3313 −0.160220 −0.0801100 0.996786i \(-0.525527\pi\)
−0.0801100 + 0.996786i \(0.525527\pi\)
\(234\) 0 0
\(235\) − 99.5967i − 0.423816i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 397.495i − 1.66316i −0.555405 0.831580i \(-0.687437\pi\)
0.555405 0.831580i \(-0.312563\pi\)
\(240\) 0 0
\(241\) 237.915 0.987199 0.493599 0.869689i \(-0.335681\pi\)
0.493599 + 0.869689i \(0.335681\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 222.177 0.906846
\(246\) 0 0
\(247\) − 245.666i − 0.994598i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 277.803i − 1.10679i −0.832920 0.553393i \(-0.813333\pi\)
0.832920 0.553393i \(-0.186667\pi\)
\(252\) 0 0
\(253\) 174.663 0.690366
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −446.498 −1.73735 −0.868674 0.495384i \(-0.835027\pi\)
−0.868674 + 0.495384i \(0.835027\pi\)
\(258\) 0 0
\(259\) − 286.577i − 1.10648i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 105.039i − 0.399390i −0.979858 0.199695i \(-0.936005\pi\)
0.979858 0.199695i \(-0.0639951\pi\)
\(264\) 0 0
\(265\) −1.55418 −0.00586481
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 504.354 1.87492 0.937462 0.348088i \(-0.113169\pi\)
0.937462 + 0.348088i \(0.113169\pi\)
\(270\) 0 0
\(271\) − 164.413i − 0.606691i −0.952881 0.303346i \(-0.901896\pi\)
0.952881 0.303346i \(-0.0981037\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 27.6393i 0.100507i
\(276\) 0 0
\(277\) −315.580 −1.13928 −0.569640 0.821894i \(-0.692917\pi\)
−0.569640 + 0.821894i \(0.692917\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 207.410 0.738115 0.369057 0.929407i \(-0.379681\pi\)
0.369057 + 0.929407i \(0.379681\pi\)
\(282\) 0 0
\(283\) − 438.895i − 1.55087i −0.631429 0.775434i \(-0.717531\pi\)
0.631429 0.775434i \(-0.282469\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 105.909i − 0.369020i
\(288\) 0 0
\(289\) −287.885 −0.996143
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −272.918 −0.931461 −0.465730 0.884927i \(-0.654208\pi\)
−0.465730 + 0.884927i \(0.654208\pi\)
\(294\) 0 0
\(295\) 211.554i 0.717133i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 646.853i 2.16339i
\(300\) 0 0
\(301\) −324.636 −1.07853
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −74.2229 −0.243354
\(306\) 0 0
\(307\) 251.459i 0.819085i 0.912291 + 0.409542i \(0.134312\pi\)
−0.912291 + 0.409542i \(0.865688\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 352.912i − 1.13476i −0.823455 0.567382i \(-0.807956\pi\)
0.823455 0.567382i \(-0.192044\pi\)
\(312\) 0 0
\(313\) −435.220 −1.39048 −0.695239 0.718778i \(-0.744702\pi\)
−0.695239 + 0.718778i \(0.744702\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 41.4164 0.130651 0.0653256 0.997864i \(-0.479191\pi\)
0.0653256 + 0.997864i \(0.479191\pi\)
\(318\) 0 0
\(319\) − 247.830i − 0.776896i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 12.6687i 0.0392221i
\(324\) 0 0
\(325\) −102.361 −0.314956
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −542.525 −1.64901
\(330\) 0 0
\(331\) 103.416i 0.312436i 0.987723 + 0.156218i \(0.0499303\pi\)
−0.987723 + 0.156218i \(0.950070\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 183.820i 0.548715i
\(336\) 0 0
\(337\) 106.997 0.317498 0.158749 0.987319i \(-0.449254\pi\)
0.158749 + 0.987319i \(0.449254\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −151.554 −0.444440
\(342\) 0 0
\(343\) − 613.410i − 1.78837i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 511.426i 1.47385i 0.675974 + 0.736926i \(0.263723\pi\)
−0.675974 + 0.736926i \(0.736277\pi\)
\(348\) 0 0
\(349\) 63.1672 0.180995 0.0904974 0.995897i \(-0.471154\pi\)
0.0904974 + 0.995897i \(0.471154\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −62.7740 −0.177830 −0.0889150 0.996039i \(-0.528340\pi\)
−0.0889150 + 0.996039i \(0.528340\pi\)
\(354\) 0 0
\(355\) − 273.358i − 0.770021i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 176.105i 0.490544i 0.969454 + 0.245272i \(0.0788772\pi\)
−0.969454 + 0.245272i \(0.921123\pi\)
\(360\) 0 0
\(361\) 217.000 0.601108
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −295.528 −0.809665
\(366\) 0 0
\(367\) − 190.259i − 0.518418i −0.965821 0.259209i \(-0.916538\pi\)
0.965821 0.259209i \(-0.0834618\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.46592i 0.0228192i
\(372\) 0 0
\(373\) 525.076 1.40771 0.703855 0.710344i \(-0.251460\pi\)
0.703855 + 0.710344i \(0.251460\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 917.823 2.43455
\(378\) 0 0
\(379\) 530.217i 1.39899i 0.714638 + 0.699494i \(0.246591\pi\)
−0.714638 + 0.699494i \(0.753409\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 165.177i 0.431272i 0.976474 + 0.215636i \(0.0691825\pi\)
−0.976474 + 0.215636i \(0.930818\pi\)
\(384\) 0 0
\(385\) 150.557 0.391058
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −532.079 −1.36781 −0.683906 0.729570i \(-0.739720\pi\)
−0.683906 + 0.729570i \(0.739720\pi\)
\(390\) 0 0
\(391\) − 33.3576i − 0.0853135i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 301.495i 0.763279i
\(396\) 0 0
\(397\) 512.407 1.29070 0.645349 0.763888i \(-0.276712\pi\)
0.645349 + 0.763888i \(0.276712\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −22.3282 −0.0556812 −0.0278406 0.999612i \(-0.508863\pi\)
−0.0278406 + 0.999612i \(0.508863\pi\)
\(402\) 0 0
\(403\) − 561.272i − 1.39274i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 130.059i − 0.319555i
\(408\) 0 0
\(409\) −42.4659 −0.103829 −0.0519143 0.998652i \(-0.516532\pi\)
−0.0519143 + 0.998652i \(0.516532\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1152.38 2.79027
\(414\) 0 0
\(415\) − 43.5116i − 0.104847i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 284.381i − 0.678713i −0.940658 0.339357i \(-0.889791\pi\)
0.940658 0.339357i \(-0.110209\pi\)
\(420\) 0 0
\(421\) −201.246 −0.478019 −0.239010 0.971017i \(-0.576823\pi\)
−0.239010 + 0.971017i \(0.576823\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.27864 0.0124203
\(426\) 0 0
\(427\) 404.308i 0.946857i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 81.9086i − 0.190043i −0.995475 0.0950216i \(-0.969708\pi\)
0.995475 0.0950216i \(-0.0302920\pi\)
\(432\) 0 0
\(433\) −195.325 −0.451097 −0.225549 0.974232i \(-0.572417\pi\)
−0.225549 + 0.974232i \(0.572417\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 379.161 0.867645
\(438\) 0 0
\(439\) − 466.780i − 1.06328i −0.846970 0.531640i \(-0.821576\pi\)
0.846970 0.531640i \(-0.178424\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 376.508i 0.849906i 0.905215 + 0.424953i \(0.139709\pi\)
−0.905215 + 0.424953i \(0.860291\pi\)
\(444\) 0 0
\(445\) −67.0820 −0.150746
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 247.029 0.550177 0.275088 0.961419i \(-0.411293\pi\)
0.275088 + 0.961419i \(0.411293\pi\)
\(450\) 0 0
\(451\) − 48.0650i − 0.106574i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 557.580i 1.22545i
\(456\) 0 0
\(457\) −229.003 −0.501101 −0.250550 0.968104i \(-0.580612\pi\)
−0.250550 + 0.968104i \(0.580612\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 62.7740 0.136169 0.0680846 0.997680i \(-0.478311\pi\)
0.0680846 + 0.997680i \(0.478311\pi\)
\(462\) 0 0
\(463\) − 204.075i − 0.440767i −0.975413 0.220383i \(-0.929269\pi\)
0.975413 0.220383i \(-0.0707309\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 412.371i 0.883021i 0.897256 + 0.441510i \(0.145557\pi\)
−0.897256 + 0.441510i \(0.854443\pi\)
\(468\) 0 0
\(469\) 1001.30 2.13498
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −147.331 −0.311483
\(474\) 0 0
\(475\) 60.0000i 0.126316i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 638.597i − 1.33319i −0.745421 0.666594i \(-0.767751\pi\)
0.745421 0.666594i \(-0.232249\pi\)
\(480\) 0 0
\(481\) 481.666 1.00138
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −27.5805 −0.0568670
\(486\) 0 0
\(487\) − 24.8692i − 0.0510661i −0.999674 0.0255330i \(-0.991872\pi\)
0.999674 0.0255330i \(-0.00812830\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 320.584i − 0.652920i −0.945211 0.326460i \(-0.894144\pi\)
0.945211 0.326460i \(-0.105856\pi\)
\(492\) 0 0
\(493\) −47.3313 −0.0960066
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1489.04 −2.99605
\(498\) 0 0
\(499\) 168.774i 0.338224i 0.985597 + 0.169112i \(0.0540900\pi\)
−0.985597 + 0.169112i \(0.945910\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 662.089i − 1.31628i −0.752895 0.658140i \(-0.771343\pi\)
0.752895 0.658140i \(-0.228657\pi\)
\(504\) 0 0
\(505\) −236.026 −0.467379
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 651.823 1.28060 0.640298 0.768126i \(-0.278811\pi\)
0.640298 + 0.768126i \(0.278811\pi\)
\(510\) 0 0
\(511\) 1609.80i 3.15030i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 225.813i − 0.438473i
\(516\) 0 0
\(517\) −246.217 −0.476241
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −750.984 −1.44143 −0.720714 0.693232i \(-0.756186\pi\)
−0.720714 + 0.693232i \(0.756186\pi\)
\(522\) 0 0
\(523\) − 328.128i − 0.627395i −0.949523 0.313698i \(-0.898432\pi\)
0.949523 0.313698i \(-0.101568\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28.9443i 0.0549227i
\(528\) 0 0
\(529\) −469.354 −0.887249
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 178.006 0.333970
\(534\) 0 0
\(535\) − 51.1509i − 0.0956092i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 549.252i − 1.01902i
\(540\) 0 0
\(541\) −238.563 −0.440968 −0.220484 0.975391i \(-0.570764\pi\)
−0.220484 + 0.975391i \(0.570764\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −79.4427 −0.145766
\(546\) 0 0
\(547\) 341.453i 0.624228i 0.950045 + 0.312114i \(0.101037\pi\)
−0.950045 + 0.312114i \(0.898963\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 537.994i − 0.976395i
\(552\) 0 0
\(553\) 1642.31 2.96982
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 349.574 0.627602 0.313801 0.949489i \(-0.398398\pi\)
0.313801 + 0.949489i \(0.398398\pi\)
\(558\) 0 0
\(559\) − 545.633i − 0.976088i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 746.778i 1.32643i 0.748431 + 0.663213i \(0.230808\pi\)
−0.748431 + 0.663213i \(0.769192\pi\)
\(564\) 0 0
\(565\) −158.138 −0.279890
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 660.906 1.16152 0.580761 0.814074i \(-0.302755\pi\)
0.580761 + 0.814074i \(0.302755\pi\)
\(570\) 0 0
\(571\) − 529.240i − 0.926865i −0.886132 0.463432i \(-0.846618\pi\)
0.886132 0.463432i \(-0.153382\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 157.984i − 0.274754i
\(576\) 0 0
\(577\) −677.830 −1.17475 −0.587374 0.809316i \(-0.699838\pi\)
−0.587374 + 0.809316i \(0.699838\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −237.017 −0.407947
\(582\) 0 0
\(583\) 3.84213i 0.00659028i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 80.6137i − 0.137332i −0.997640 0.0686659i \(-0.978126\pi\)
0.997640 0.0686659i \(-0.0218742\pi\)
\(588\) 0 0
\(589\) −328.997 −0.558569
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −347.548 −0.586084 −0.293042 0.956100i \(-0.594668\pi\)
−0.293042 + 0.956100i \(0.594668\pi\)
\(594\) 0 0
\(595\) − 28.7539i − 0.0483259i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 78.2817i − 0.130687i −0.997863 0.0653437i \(-0.979186\pi\)
0.997863 0.0653437i \(-0.0208144\pi\)
\(600\) 0 0
\(601\) −39.3050 −0.0653993 −0.0326996 0.999465i \(-0.510410\pi\)
−0.0326996 + 0.999465i \(0.510410\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −202.236 −0.334274
\(606\) 0 0
\(607\) 432.443i 0.712427i 0.934405 + 0.356214i \(0.115932\pi\)
−0.934405 + 0.356214i \(0.884068\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 911.850i − 1.49239i
\(612\) 0 0
\(613\) −498.413 −0.813072 −0.406536 0.913635i \(-0.633263\pi\)
−0.406536 + 0.913635i \(0.633263\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 611.325 0.990802 0.495401 0.868664i \(-0.335021\pi\)
0.495401 + 0.868664i \(0.335021\pi\)
\(618\) 0 0
\(619\) 490.663i 0.792670i 0.918106 + 0.396335i \(0.129718\pi\)
−0.918106 + 0.396335i \(0.870282\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 365.410i 0.586533i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −24.8390 −0.0394897
\(630\) 0 0
\(631\) 104.636i 0.165826i 0.996557 + 0.0829130i \(0.0264224\pi\)
−0.996557 + 0.0829130i \(0.973578\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 332.148i 0.523067i
\(636\) 0 0
\(637\) 2034.13 3.19329
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −150.020 −0.234041 −0.117020 0.993130i \(-0.537334\pi\)
−0.117020 + 0.993130i \(0.537334\pi\)
\(642\) 0 0
\(643\) 646.810i 1.00593i 0.864308 + 0.502963i \(0.167757\pi\)
−0.864308 + 0.502963i \(0.832243\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 694.450i − 1.07334i −0.843793 0.536669i \(-0.819682\pi\)
0.843793 0.536669i \(-0.180318\pi\)
\(648\) 0 0
\(649\) 522.991 0.805841
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −698.361 −1.06947 −0.534733 0.845021i \(-0.679588\pi\)
−0.534733 + 0.845021i \(0.679588\pi\)
\(654\) 0 0
\(655\) − 78.0789i − 0.119204i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 834.282i − 1.26598i −0.774159 0.632991i \(-0.781827\pi\)
0.774159 0.632991i \(-0.218173\pi\)
\(660\) 0 0
\(661\) −978.584 −1.48046 −0.740230 0.672354i \(-0.765283\pi\)
−0.740230 + 0.672354i \(0.765283\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 326.833 0.491478
\(666\) 0 0
\(667\) 1416.57i 2.12379i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 183.489i 0.273456i
\(672\) 0 0
\(673\) −682.669 −1.01437 −0.507183 0.861838i \(-0.669313\pi\)
−0.507183 + 0.861838i \(0.669313\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 948.067 1.40039 0.700197 0.713950i \(-0.253096\pi\)
0.700197 + 0.713950i \(0.253096\pi\)
\(678\) 0 0
\(679\) 150.237i 0.221262i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 341.688i 0.500275i 0.968210 + 0.250138i \(0.0804759\pi\)
−0.968210 + 0.250138i \(0.919524\pi\)
\(684\) 0 0
\(685\) 224.971 0.328424
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.2291 −0.0206518
\(690\) 0 0
\(691\) − 215.416i − 0.311746i −0.987777 0.155873i \(-0.950181\pi\)
0.987777 0.155873i \(-0.0498190\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 444.105i 0.639000i
\(696\) 0 0
\(697\) −9.17961 −0.0131702
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1137.40 −1.62254 −0.811272 0.584668i \(-0.801225\pi\)
−0.811272 + 0.584668i \(0.801225\pi\)
\(702\) 0 0
\(703\) − 282.334i − 0.401614i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1285.69i 1.81851i
\(708\) 0 0
\(709\) 853.149 1.20331 0.601656 0.798755i \(-0.294508\pi\)
0.601656 + 0.798755i \(0.294508\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 866.269 1.21496
\(714\) 0 0
\(715\) 253.050i 0.353915i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 696.616i − 0.968868i −0.874828 0.484434i \(-0.839026\pi\)
0.874828 0.484434i \(-0.160974\pi\)
\(720\) 0 0
\(721\) −1230.05 −1.70604
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −224.164 −0.309192
\(726\) 0 0
\(727\) − 588.265i − 0.809168i −0.914501 0.404584i \(-0.867416\pi\)
0.914501 0.404584i \(-0.132584\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 28.1378i 0.0384922i
\(732\) 0 0
\(733\) −1106.86 −1.51004 −0.755020 0.655702i \(-0.772373\pi\)
−0.755020 + 0.655702i \(0.772373\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 454.427 0.616590
\(738\) 0 0
\(739\) − 720.053i − 0.974361i −0.873301 0.487180i \(-0.838025\pi\)
0.873301 0.487180i \(-0.161975\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 317.793i 0.427716i 0.976865 + 0.213858i \(0.0686031\pi\)
−0.976865 + 0.213858i \(0.931397\pi\)
\(744\) 0 0
\(745\) 454.105 0.609537
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −278.630 −0.372003
\(750\) 0 0
\(751\) 606.512i 0.807606i 0.914846 + 0.403803i \(0.132312\pi\)
−0.914846 + 0.403803i \(0.867688\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 254.472i 0.337049i
\(756\) 0 0
\(757\) −359.463 −0.474852 −0.237426 0.971406i \(-0.576304\pi\)
−0.237426 + 0.971406i \(0.576304\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −239.876 −0.315212 −0.157606 0.987502i \(-0.550378\pi\)
−0.157606 + 0.987502i \(0.550378\pi\)
\(762\) 0 0
\(763\) 432.741i 0.567158i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1936.87i 2.52525i
\(768\) 0 0
\(769\) −768.885 −0.999851 −0.499926 0.866068i \(-0.666639\pi\)
−0.499926 + 0.866068i \(0.666639\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −33.5743 −0.0434337 −0.0217169 0.999764i \(-0.506913\pi\)
−0.0217169 + 0.999764i \(0.506913\pi\)
\(774\) 0 0
\(775\) 137.082i 0.176880i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 104.341i − 0.133942i
\(780\) 0 0
\(781\) −675.777 −0.865272
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −324.046 −0.412798
\(786\) 0 0
\(787\) 426.738i 0.542233i 0.962546 + 0.271117i \(0.0873929\pi\)
−0.962546 + 0.271117i \(0.912607\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 861.410i 1.08901i
\(792\) 0 0
\(793\) −679.542 −0.856925
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 194.203 0.243667 0.121834 0.992551i \(-0.461123\pi\)
0.121834 + 0.992551i \(0.461123\pi\)
\(798\) 0 0
\(799\) 47.0232i 0.0588526i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 730.585i 0.909819i
\(804\) 0 0
\(805\) −860.571 −1.06903
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1446.33 −1.78780 −0.893899 0.448269i \(-0.852041\pi\)
−0.893899 + 0.448269i \(0.852041\pi\)
\(810\) 0 0
\(811\) − 23.3112i − 0.0287437i −0.999897 0.0143719i \(-0.995425\pi\)
0.999897 0.0143719i \(-0.00457486\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 454.758i − 0.557985i
\(816\) 0 0
\(817\) −319.830 −0.391468
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −701.416 −0.854344 −0.427172 0.904170i \(-0.640490\pi\)
−0.427172 + 0.904170i \(0.640490\pi\)
\(822\) 0 0
\(823\) − 270.961i − 0.329235i −0.986357 0.164618i \(-0.947361\pi\)
0.986357 0.164618i \(-0.0526390\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1035.10i 1.25163i 0.779971 + 0.625815i \(0.215234\pi\)
−0.779971 + 0.625815i \(0.784766\pi\)
\(828\) 0 0
\(829\) 332.735 0.401369 0.200685 0.979656i \(-0.435683\pi\)
0.200685 + 0.979656i \(0.435683\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −104.898 −0.125928
\(834\) 0 0
\(835\) − 198.482i − 0.237703i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 102.177i − 0.121784i −0.998144 0.0608918i \(-0.980606\pi\)
0.998144 0.0608918i \(-0.0193945\pi\)
\(840\) 0 0
\(841\) 1168.98 1.38999
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −559.259 −0.661845
\(846\) 0 0
\(847\) 1101.62i 1.30062i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 743.404i 0.873565i
\(852\) 0 0
\(853\) −358.401 −0.420165 −0.210083 0.977684i \(-0.567373\pi\)
−0.210083 + 0.977684i \(0.567373\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −33.3839 −0.0389544 −0.0194772 0.999810i \(-0.506200\pi\)
−0.0194772 + 0.999810i \(0.506200\pi\)
\(858\) 0 0
\(859\) − 989.483i − 1.15190i −0.817485 0.575950i \(-0.804632\pi\)
0.817485 0.575950i \(-0.195368\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 767.341i 0.889156i 0.895740 + 0.444578i \(0.146646\pi\)
−0.895740 + 0.444578i \(0.853354\pi\)
\(864\) 0 0
\(865\) 303.167 0.350482
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 745.337 0.857696
\(870\) 0 0
\(871\) 1682.95i 1.93220i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 136.180i − 0.155635i
\(876\) 0 0
\(877\) 1013.80 1.15598 0.577992 0.816043i \(-0.303837\pi\)
0.577992 + 0.816043i \(0.303837\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 280.748 0.318669 0.159335 0.987225i \(-0.449065\pi\)
0.159335 + 0.987225i \(0.449065\pi\)
\(882\) 0 0
\(883\) 1096.87i 1.24221i 0.783728 + 0.621104i \(0.213315\pi\)
−0.783728 + 0.621104i \(0.786685\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1164.82i 1.31321i 0.754235 + 0.656605i \(0.228008\pi\)
−0.754235 + 0.656605i \(0.771992\pi\)
\(888\) 0 0
\(889\) 1809.28 2.03519
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −534.492 −0.598536
\(894\) 0 0
\(895\) 455.777i 0.509248i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 1229.15i − 1.36725i
\(900\) 0 0
\(901\) 0.733782 0.000814408 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 50.6888 0.0560098
\(906\) 0 0
\(907\) − 1132.82i − 1.24897i −0.781036 0.624485i \(-0.785309\pi\)
0.781036 0.624485i \(-0.214691\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1793.23i 1.96842i 0.177014 + 0.984208i \(0.443356\pi\)
−0.177014 + 0.984208i \(0.556644\pi\)
\(912\) 0 0
\(913\) −107.567 −0.117817
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −425.313 −0.463809
\(918\) 0 0
\(919\) − 205.390i − 0.223493i −0.993737 0.111747i \(-0.964356\pi\)
0.993737 0.111747i \(-0.0356445\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 2502.70i − 2.71149i
\(924\) 0 0
\(925\) −117.639 −0.127178
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 736.237 0.792505 0.396252 0.918142i \(-0.370311\pi\)
0.396252 + 0.918142i \(0.370311\pi\)
\(930\) 0 0
\(931\) − 1192.33i − 1.28070i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 13.0495i − 0.0139567i
\(936\) 0 0
\(937\) −40.3344 −0.0430463 −0.0215231 0.999768i \(-0.506852\pi\)
−0.0215231 + 0.999768i \(0.506852\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 447.115 0.475148 0.237574 0.971369i \(-0.423648\pi\)
0.237574 + 0.971369i \(0.423648\pi\)
\(942\) 0 0
\(943\) 274.735i 0.291342i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 144.553i 0.152644i 0.997083 + 0.0763218i \(0.0243176\pi\)
−0.997083 + 0.0763218i \(0.975682\pi\)
\(948\) 0 0
\(949\) −2705.68 −2.85109
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −432.006 −0.453312 −0.226656 0.973975i \(-0.572779\pi\)
−0.226656 + 0.973975i \(0.572779\pi\)
\(954\) 0 0
\(955\) − 337.082i − 0.352965i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 1225.46i − 1.27785i
\(960\) 0 0
\(961\) 209.341 0.217836
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 470.689 0.487760
\(966\) 0 0
\(967\) 1472.95i 1.52322i 0.648035 + 0.761610i \(0.275591\pi\)
−0.648035 + 0.761610i \(0.724409\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 308.190i − 0.317395i −0.987327 0.158697i \(-0.949271\pi\)
0.987327 0.158697i \(-0.0507294\pi\)
\(972\) 0 0
\(973\) 2419.14 2.48627
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1376.78 1.40919 0.704596 0.709609i \(-0.251128\pi\)
0.704596 + 0.709609i \(0.251128\pi\)
\(978\) 0 0
\(979\) 165.836i 0.169393i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1250.38i − 1.27200i −0.771689 0.636000i \(-0.780588\pi\)
0.771689 0.636000i \(-0.219412\pi\)
\(984\) 0 0
\(985\) 216.950 0.220254
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 842.132 0.851498
\(990\) 0 0
\(991\) − 1727.44i − 1.74313i −0.490278 0.871566i \(-0.663105\pi\)
0.490278 0.871566i \(-0.336895\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 234.545i − 0.235723i
\(996\) 0 0
\(997\) −1131.90 −1.13530 −0.567651 0.823269i \(-0.692148\pi\)
−0.567651 + 0.823269i \(0.692148\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2880.3.e.a.2431.2 4
3.2 odd 2 320.3.b.b.191.3 4
4.3 odd 2 inner 2880.3.e.a.2431.1 4
8.3 odd 2 1440.3.e.b.991.3 4
8.5 even 2 1440.3.e.b.991.4 4
12.11 even 2 320.3.b.b.191.2 4
15.2 even 4 1600.3.h.m.1599.1 4
15.8 even 4 1600.3.h.d.1599.3 4
15.14 odd 2 1600.3.b.n.1151.2 4
24.5 odd 2 160.3.b.a.31.2 4
24.11 even 2 160.3.b.a.31.3 yes 4
48.5 odd 4 1280.3.g.d.1151.2 4
48.11 even 4 1280.3.g.a.1151.4 4
48.29 odd 4 1280.3.g.a.1151.3 4
48.35 even 4 1280.3.g.d.1151.1 4
60.23 odd 4 1600.3.h.m.1599.2 4
60.47 odd 4 1600.3.h.d.1599.4 4
60.59 even 2 1600.3.b.n.1151.3 4
120.29 odd 2 800.3.b.d.351.3 4
120.53 even 4 800.3.h.j.799.2 4
120.59 even 2 800.3.b.d.351.2 4
120.77 even 4 800.3.h.c.799.4 4
120.83 odd 4 800.3.h.c.799.3 4
120.107 odd 4 800.3.h.j.799.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.3.b.a.31.2 4 24.5 odd 2
160.3.b.a.31.3 yes 4 24.11 even 2
320.3.b.b.191.2 4 12.11 even 2
320.3.b.b.191.3 4 3.2 odd 2
800.3.b.d.351.2 4 120.59 even 2
800.3.b.d.351.3 4 120.29 odd 2
800.3.h.c.799.3 4 120.83 odd 4
800.3.h.c.799.4 4 120.77 even 4
800.3.h.j.799.1 4 120.107 odd 4
800.3.h.j.799.2 4 120.53 even 4
1280.3.g.a.1151.3 4 48.29 odd 4
1280.3.g.a.1151.4 4 48.11 even 4
1280.3.g.d.1151.1 4 48.35 even 4
1280.3.g.d.1151.2 4 48.5 odd 4
1440.3.e.b.991.3 4 8.3 odd 2
1440.3.e.b.991.4 4 8.5 even 2
1600.3.b.n.1151.2 4 15.14 odd 2
1600.3.b.n.1151.3 4 60.59 even 2
1600.3.h.d.1599.3 4 15.8 even 4
1600.3.h.d.1599.4 4 60.47 odd 4
1600.3.h.m.1599.1 4 15.2 even 4
1600.3.h.m.1599.2 4 60.23 odd 4
2880.3.e.a.2431.1 4 4.3 odd 2 inner
2880.3.e.a.2431.2 4 1.1 even 1 trivial