Properties

Label 2-2880-4.3-c2-0-46
Degree $2$
Conductor $2880$
Sign $i$
Analytic cond. $78.4743$
Root an. cond. $8.85857$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·5-s + 12.1i·7-s + 5.52i·11-s − 20.4·13-s + 1.05·17-s + 12i·19-s − 31.5i·23-s + 5.00·25-s − 44.8·29-s + 27.4i·31-s − 27.2i·35-s − 23.5·37-s − 8.69·41-s + 26.6i·43-s + 44.5i·47-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.74i·7-s + 0.502i·11-s − 1.57·13-s + 0.0621·17-s + 0.631i·19-s − 1.37i·23-s + 0.200·25-s − 1.54·29-s + 0.884i·31-s − 0.778i·35-s − 0.635·37-s − 0.212·41-s + 0.619i·43-s + 0.947i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2880\)    =    \(2^{6} \cdot 3^{2} \cdot 5\)
Sign: $i$
Analytic conductor: \(78.4743\)
Root analytic conductor: \(8.85857\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2880} (2431, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2880,\ (\ :1),\ i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.1933539791\)
\(L(\frac12)\) \(\approx\) \(0.1933539791\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 2.23T \)
good7 \( 1 - 12.1iT - 49T^{2} \)
11 \( 1 - 5.52iT - 121T^{2} \)
13 \( 1 + 20.4T + 169T^{2} \)
17 \( 1 - 1.05T + 289T^{2} \)
19 \( 1 - 12iT - 361T^{2} \)
23 \( 1 + 31.5iT - 529T^{2} \)
29 \( 1 + 44.8T + 841T^{2} \)
31 \( 1 - 27.4iT - 961T^{2} \)
37 \( 1 + 23.5T + 1.36e3T^{2} \)
41 \( 1 + 8.69T + 1.68e3T^{2} \)
43 \( 1 - 26.6iT - 1.84e3T^{2} \)
47 \( 1 - 44.5iT - 2.20e3T^{2} \)
53 \( 1 - 0.695T + 2.80e3T^{2} \)
59 \( 1 + 94.6iT - 3.48e3T^{2} \)
61 \( 1 - 33.1T + 3.72e3T^{2} \)
67 \( 1 + 82.2iT - 4.48e3T^{2} \)
71 \( 1 - 122. iT - 5.04e3T^{2} \)
73 \( 1 - 132.T + 5.32e3T^{2} \)
79 \( 1 + 134. iT - 6.24e3T^{2} \)
83 \( 1 - 19.4iT - 6.88e3T^{2} \)
89 \( 1 - 30T + 7.92e3T^{2} \)
97 \( 1 - 12.3T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.385149198320983410948491997804, −7.76103339247069631552486763314, −6.90457082374542512703490444704, −6.09922371775244839076416165084, −5.17020793827745118575324840159, −4.74594286892136054846177623555, −3.49413803290195172382841587122, −2.53024355242762390826059544053, −1.89728733934897548838526232046, −0.05532850939668133257867376504, 0.803606050887960966620139997088, 2.11459734154683915736418630298, 3.40090868965120492212228267721, 3.94799710009694289020138540346, 4.83574969735825827300035103029, 5.60022282226047836491450202577, 6.83544389017754698631301792455, 7.40365203956779492509965346134, 7.67750196632857743791935468544, 8.779136497457735048428607300756

Graph of the $Z$-function along the critical line