Properties

Label 2880.2.t.c.721.4
Level $2880$
Weight $2$
Character 2880.721
Analytic conductor $22.997$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2880,2,Mod(721,2880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2880, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2880.721"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.t (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 721.4
Root \(1.26868 - 0.624862i\) of defining polynomial
Character \(\chi\) \(=\) 2880.721
Dual form 2880.2.t.c.2161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{5} +4.02840i q^{7} +(-0.646837 + 0.646837i) q^{11} +(4.91492 + 4.91492i) q^{13} +2.70862 q^{17} +(0.438397 + 0.438397i) q^{19} +3.60080i q^{23} -1.00000i q^{25} +(-2.00921 - 2.00921i) q^{29} -4.30994 q^{31} +(-2.84851 - 2.84851i) q^{35} +(-0.743961 + 0.743961i) q^{37} +0.603979i q^{41} +(5.03010 - 5.03010i) q^{43} +10.8177 q^{47} -9.22800 q^{49} +(-4.07420 + 4.07420i) q^{53} -0.914766i q^{55} +(1.22845 - 1.22845i) q^{59} +(-6.98912 - 6.98912i) q^{61} -6.95074 q^{65} +(-5.24219 - 5.24219i) q^{67} +13.7940i q^{71} -1.30876i q^{73} +(-2.60572 - 2.60572i) q^{77} -0.611127 q^{79} +(1.29471 + 1.29471i) q^{83} +(-1.91529 + 1.91529i) q^{85} +10.9236i q^{89} +(-19.7993 + 19.7993i) q^{91} -0.619987 q^{95} -12.7571 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{11} + 8 q^{19} + 16 q^{29} - 16 q^{37} - 8 q^{43} - 40 q^{47} - 16 q^{49} - 16 q^{53} - 8 q^{59} + 16 q^{61} - 40 q^{67} - 16 q^{77} - 16 q^{79} + 40 q^{83} - 16 q^{85} - 32 q^{91} + 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) 4.02840i 1.52259i 0.648405 + 0.761296i \(0.275437\pi\)
−0.648405 + 0.761296i \(0.724563\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.646837 + 0.646837i −0.195029 + 0.195029i −0.797865 0.602836i \(-0.794037\pi\)
0.602836 + 0.797865i \(0.294037\pi\)
\(12\) 0 0
\(13\) 4.91492 + 4.91492i 1.36315 + 1.36315i 0.869867 + 0.493286i \(0.164204\pi\)
0.493286 + 0.869867i \(0.335796\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.70862 0.656938 0.328469 0.944515i \(-0.393467\pi\)
0.328469 + 0.944515i \(0.393467\pi\)
\(18\) 0 0
\(19\) 0.438397 + 0.438397i 0.100575 + 0.100575i 0.755604 0.655029i \(-0.227344\pi\)
−0.655029 + 0.755604i \(0.727344\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.60080i 0.750819i 0.926859 + 0.375410i \(0.122498\pi\)
−0.926859 + 0.375410i \(0.877502\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00921 2.00921i −0.373102 0.373102i 0.495504 0.868606i \(-0.334983\pi\)
−0.868606 + 0.495504i \(0.834983\pi\)
\(30\) 0 0
\(31\) −4.30994 −0.774087 −0.387044 0.922061i \(-0.626504\pi\)
−0.387044 + 0.922061i \(0.626504\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.84851 2.84851i −0.481486 0.481486i
\(36\) 0 0
\(37\) −0.743961 + 0.743961i −0.122306 + 0.122306i −0.765611 0.643304i \(-0.777563\pi\)
0.643304 + 0.765611i \(0.277563\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.603979i 0.0943256i 0.998887 + 0.0471628i \(0.0150180\pi\)
−0.998887 + 0.0471628i \(0.984982\pi\)
\(42\) 0 0
\(43\) 5.03010 5.03010i 0.767083 0.767083i −0.210509 0.977592i \(-0.567512\pi\)
0.977592 + 0.210509i \(0.0675121\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.8177 1.57793 0.788963 0.614440i \(-0.210618\pi\)
0.788963 + 0.614440i \(0.210618\pi\)
\(48\) 0 0
\(49\) −9.22800 −1.31829
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.07420 + 4.07420i −0.559634 + 0.559634i −0.929203 0.369569i \(-0.879505\pi\)
0.369569 + 0.929203i \(0.379505\pi\)
\(54\) 0 0
\(55\) 0.914766i 0.123347i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.22845 1.22845i 0.159931 0.159931i −0.622605 0.782536i \(-0.713926\pi\)
0.782536 + 0.622605i \(0.213926\pi\)
\(60\) 0 0
\(61\) −6.98912 6.98912i −0.894865 0.894865i 0.100112 0.994976i \(-0.468080\pi\)
−0.994976 + 0.100112i \(0.968080\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.95074 −0.862134
\(66\) 0 0
\(67\) −5.24219 5.24219i −0.640435 0.640435i 0.310227 0.950662i \(-0.399595\pi\)
−0.950662 + 0.310227i \(0.899595\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.7940i 1.63704i 0.574475 + 0.818522i \(0.305206\pi\)
−0.574475 + 0.818522i \(0.694794\pi\)
\(72\) 0 0
\(73\) 1.30876i 0.153179i −0.997063 0.0765895i \(-0.975597\pi\)
0.997063 0.0765895i \(-0.0244031\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.60572 2.60572i −0.296949 0.296949i
\(78\) 0 0
\(79\) −0.611127 −0.0687571 −0.0343786 0.999409i \(-0.510945\pi\)
−0.0343786 + 0.999409i \(0.510945\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.29471 + 1.29471i 0.142113 + 0.142113i 0.774584 0.632471i \(-0.217959\pi\)
−0.632471 + 0.774584i \(0.717959\pi\)
\(84\) 0 0
\(85\) −1.91529 + 1.91529i −0.207742 + 0.207742i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.9236i 1.15790i 0.815363 + 0.578950i \(0.196537\pi\)
−0.815363 + 0.578950i \(0.803463\pi\)
\(90\) 0 0
\(91\) −19.7993 + 19.7993i −2.07553 + 2.07553i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.619987 −0.0636093
\(96\) 0 0
\(97\) −12.7571 −1.29528 −0.647642 0.761945i \(-0.724245\pi\)
−0.647642 + 0.761945i \(0.724245\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.59804 8.59804i 0.855537 0.855537i −0.135272 0.990809i \(-0.543191\pi\)
0.990809 + 0.135272i \(0.0431908\pi\)
\(102\) 0 0
\(103\) 12.0328i 1.18563i 0.805338 + 0.592815i \(0.201984\pi\)
−0.805338 + 0.592815i \(0.798016\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.37309 + 2.37309i −0.229415 + 0.229415i −0.812448 0.583033i \(-0.801866\pi\)
0.583033 + 0.812448i \(0.301866\pi\)
\(108\) 0 0
\(109\) −3.24479 3.24479i −0.310794 0.310794i 0.534423 0.845217i \(-0.320529\pi\)
−0.845217 + 0.534423i \(0.820529\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −17.3173 −1.62907 −0.814536 0.580114i \(-0.803008\pi\)
−0.814536 + 0.580114i \(0.803008\pi\)
\(114\) 0 0
\(115\) −2.54615 2.54615i −0.237430 0.237430i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.9114i 1.00025i
\(120\) 0 0
\(121\) 10.1632i 0.923928i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 15.5438 1.37929 0.689645 0.724147i \(-0.257766\pi\)
0.689645 + 0.724147i \(0.257766\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −11.2770 11.2770i −0.985280 0.985280i 0.0146129 0.999893i \(-0.495348\pi\)
−0.999893 + 0.0146129i \(0.995348\pi\)
\(132\) 0 0
\(133\) −1.76604 + 1.76604i −0.153135 + 0.153135i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.67273i 0.313782i −0.987616 0.156891i \(-0.949853\pi\)
0.987616 0.156891i \(-0.0501472\pi\)
\(138\) 0 0
\(139\) 5.23552 5.23552i 0.444071 0.444071i −0.449307 0.893378i \(-0.648329\pi\)
0.893378 + 0.449307i \(0.148329\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.35830 −0.531708
\(144\) 0 0
\(145\) 2.84146 0.235970
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.29391 3.29391i 0.269848 0.269848i −0.559191 0.829039i \(-0.688888\pi\)
0.829039 + 0.559191i \(0.188888\pi\)
\(150\) 0 0
\(151\) 6.93206i 0.564123i −0.959396 0.282061i \(-0.908982\pi\)
0.959396 0.282061i \(-0.0910182\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.04759 3.04759i 0.244788 0.244788i
\(156\) 0 0
\(157\) 5.65633 + 5.65633i 0.451425 + 0.451425i 0.895827 0.444403i \(-0.146584\pi\)
−0.444403 + 0.895827i \(0.646584\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −14.5055 −1.14319
\(162\) 0 0
\(163\) 10.9746 + 10.9746i 0.859593 + 0.859593i 0.991290 0.131697i \(-0.0420425\pi\)
−0.131697 + 0.991290i \(0.542043\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.7686i 0.910685i −0.890316 0.455343i \(-0.849517\pi\)
0.890316 0.455343i \(-0.150483\pi\)
\(168\) 0 0
\(169\) 35.3128i 2.71637i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.40225 + 1.40225i 0.106611 + 0.106611i 0.758400 0.651789i \(-0.225981\pi\)
−0.651789 + 0.758400i \(0.725981\pi\)
\(174\) 0 0
\(175\) 4.02840 0.304518
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.66131 + 9.66131i 0.722120 + 0.722120i 0.969037 0.246917i \(-0.0794174\pi\)
−0.246917 + 0.969037i \(0.579417\pi\)
\(180\) 0 0
\(181\) 0.294844 0.294844i 0.0219156 0.0219156i −0.696064 0.717980i \(-0.745067\pi\)
0.717980 + 0.696064i \(0.245067\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.05212i 0.0773533i
\(186\) 0 0
\(187\) −1.75204 + 1.75204i −0.128122 + 0.128122i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.9352 −1.22539 −0.612694 0.790320i \(-0.709914\pi\)
−0.612694 + 0.790320i \(0.709914\pi\)
\(192\) 0 0
\(193\) −16.5927 −1.19437 −0.597185 0.802103i \(-0.703714\pi\)
−0.597185 + 0.802103i \(0.703714\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.38392 2.38392i 0.169847 0.169847i −0.617065 0.786912i \(-0.711678\pi\)
0.786912 + 0.617065i \(0.211678\pi\)
\(198\) 0 0
\(199\) 10.1411i 0.718883i 0.933168 + 0.359442i \(0.117033\pi\)
−0.933168 + 0.359442i \(0.882967\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.09392 8.09392i 0.568082 0.568082i
\(204\) 0 0
\(205\) −0.427078 0.427078i −0.0298284 0.0298284i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.567143 −0.0392301
\(210\) 0 0
\(211\) 2.81171 + 2.81171i 0.193566 + 0.193566i 0.797235 0.603669i \(-0.206295\pi\)
−0.603669 + 0.797235i \(0.706295\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.11363i 0.485146i
\(216\) 0 0
\(217\) 17.3621i 1.17862i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.3127 + 13.3127i 0.895507 + 0.895507i
\(222\) 0 0
\(223\) −14.0502 −0.940871 −0.470436 0.882434i \(-0.655903\pi\)
−0.470436 + 0.882434i \(0.655903\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.3495 13.3495i −0.886037 0.886037i 0.108103 0.994140i \(-0.465522\pi\)
−0.994140 + 0.108103i \(0.965522\pi\)
\(228\) 0 0
\(229\) 8.78589 8.78589i 0.580588 0.580588i −0.354477 0.935065i \(-0.615341\pi\)
0.935065 + 0.354477i \(0.115341\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.1472i 0.992329i 0.868229 + 0.496165i \(0.165259\pi\)
−0.868229 + 0.496165i \(0.834741\pi\)
\(234\) 0 0
\(235\) −7.64928 + 7.64928i −0.498984 + 0.498984i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 17.9151 1.15883 0.579414 0.815033i \(-0.303281\pi\)
0.579414 + 0.815033i \(0.303281\pi\)
\(240\) 0 0
\(241\) 25.6594 1.65287 0.826433 0.563035i \(-0.190366\pi\)
0.826433 + 0.563035i \(0.190366\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.52518 6.52518i 0.416879 0.416879i
\(246\) 0 0
\(247\) 4.30937i 0.274199i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.95195 + 5.95195i −0.375684 + 0.375684i −0.869542 0.493858i \(-0.835586\pi\)
0.493858 + 0.869542i \(0.335586\pi\)
\(252\) 0 0
\(253\) −2.32913 2.32913i −0.146431 0.146431i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.17369 0.260348 0.130174 0.991491i \(-0.458446\pi\)
0.130174 + 0.991491i \(0.458446\pi\)
\(258\) 0 0
\(259\) −2.99697 2.99697i −0.186223 0.186223i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.14469i 0.563885i −0.959431 0.281943i \(-0.909021\pi\)
0.959431 0.281943i \(-0.0909788\pi\)
\(264\) 0 0
\(265\) 5.76178i 0.353944i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.40029 + 8.40029i 0.512175 + 0.512175i 0.915192 0.403017i \(-0.132039\pi\)
−0.403017 + 0.915192i \(0.632039\pi\)
\(270\) 0 0
\(271\) −18.7794 −1.14077 −0.570383 0.821379i \(-0.693205\pi\)
−0.570383 + 0.821379i \(0.693205\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.646837 + 0.646837i 0.0390057 + 0.0390057i
\(276\) 0 0
\(277\) −3.54167 + 3.54167i −0.212798 + 0.212798i −0.805455 0.592657i \(-0.798079\pi\)
0.592657 + 0.805455i \(0.298079\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.31811i 0.138287i −0.997607 0.0691433i \(-0.977973\pi\)
0.997607 0.0691433i \(-0.0220266\pi\)
\(282\) 0 0
\(283\) 1.63197 1.63197i 0.0970108 0.0970108i −0.656936 0.753947i \(-0.728148\pi\)
0.753947 + 0.656936i \(0.228148\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.43307 −0.143619
\(288\) 0 0
\(289\) −9.66335 −0.568433
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.5789 11.5789i 0.676444 0.676444i −0.282750 0.959194i \(-0.591247\pi\)
0.959194 + 0.282750i \(0.0912466\pi\)
\(294\) 0 0
\(295\) 1.73729i 0.101149i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −17.6976 + 17.6976i −1.02348 + 1.02348i
\(300\) 0 0
\(301\) 20.2632 + 20.2632i 1.16795 + 1.16795i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.88410 0.565962
\(306\) 0 0
\(307\) −11.7116 11.7116i −0.668415 0.668415i 0.288934 0.957349i \(-0.406699\pi\)
−0.957349 + 0.288934i \(0.906699\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.2068i 0.635477i 0.948178 + 0.317739i \(0.102923\pi\)
−0.948178 + 0.317739i \(0.897077\pi\)
\(312\) 0 0
\(313\) 7.50635i 0.424284i 0.977239 + 0.212142i \(0.0680439\pi\)
−0.977239 + 0.212142i \(0.931956\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.2854 16.2854i −0.914680 0.914680i 0.0819564 0.996636i \(-0.473883\pi\)
−0.996636 + 0.0819564i \(0.973883\pi\)
\(318\) 0 0
\(319\) 2.59927 0.145531
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.18745 + 1.18745i 0.0660716 + 0.0660716i
\(324\) 0 0
\(325\) 4.91492 4.91492i 0.272631 0.272631i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 43.5781i 2.40254i
\(330\) 0 0
\(331\) 19.3846 19.3846i 1.06547 1.06547i 0.0677707 0.997701i \(-0.478411\pi\)
0.997701 0.0677707i \(-0.0215886\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.41357 0.405047
\(336\) 0 0
\(337\) −7.82991 −0.426522 −0.213261 0.976995i \(-0.568408\pi\)
−0.213261 + 0.976995i \(0.568408\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.78783 2.78783i 0.150969 0.150969i
\(342\) 0 0
\(343\) 8.97529i 0.484620i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.91753 8.91753i 0.478718 0.478718i −0.426004 0.904721i \(-0.640079\pi\)
0.904721 + 0.426004i \(0.140079\pi\)
\(348\) 0 0
\(349\) −6.69072 6.69072i −0.358146 0.358146i 0.504983 0.863129i \(-0.331499\pi\)
−0.863129 + 0.504983i \(0.831499\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.05215 0.109225 0.0546126 0.998508i \(-0.482608\pi\)
0.0546126 + 0.998508i \(0.482608\pi\)
\(354\) 0 0
\(355\) −9.75382 9.75382i −0.517679 0.517679i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.52634i 0.502781i 0.967886 + 0.251391i \(0.0808879\pi\)
−0.967886 + 0.251391i \(0.919112\pi\)
\(360\) 0 0
\(361\) 18.6156i 0.979769i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.925435 + 0.925435i 0.0484395 + 0.0484395i
\(366\) 0 0
\(367\) 3.39736 0.177341 0.0886703 0.996061i \(-0.471738\pi\)
0.0886703 + 0.996061i \(0.471738\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.4125 16.4125i −0.852094 0.852094i
\(372\) 0 0
\(373\) −22.4895 + 22.4895i −1.16446 + 1.16446i −0.180971 + 0.983488i \(0.557924\pi\)
−0.983488 + 0.180971i \(0.942076\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.7502i 1.01719i
\(378\) 0 0
\(379\) −14.9819 + 14.9819i −0.769567 + 0.769567i −0.978030 0.208463i \(-0.933154\pi\)
0.208463 + 0.978030i \(0.433154\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 26.1197 1.33466 0.667328 0.744764i \(-0.267438\pi\)
0.667328 + 0.744764i \(0.267438\pi\)
\(384\) 0 0
\(385\) 3.68504 0.187807
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.08395 2.08395i 0.105660 0.105660i −0.652300 0.757961i \(-0.726196\pi\)
0.757961 + 0.652300i \(0.226196\pi\)
\(390\) 0 0
\(391\) 9.75322i 0.493241i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.432132 0.432132i 0.0217429 0.0217429i
\(396\) 0 0
\(397\) 1.43282 + 1.43282i 0.0719114 + 0.0719114i 0.742148 0.670236i \(-0.233807\pi\)
−0.670236 + 0.742148i \(0.733807\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 29.9853 1.49739 0.748697 0.662912i \(-0.230680\pi\)
0.748697 + 0.662912i \(0.230680\pi\)
\(402\) 0 0
\(403\) −21.1830 21.1830i −1.05520 1.05520i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.962443i 0.0477065i
\(408\) 0 0
\(409\) 4.17833i 0.206605i −0.994650 0.103302i \(-0.967059\pi\)
0.994650 0.103302i \(-0.0329410\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.94870 + 4.94870i 0.243510 + 0.243510i
\(414\) 0 0
\(415\) −1.83100 −0.0898801
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −24.4667 24.4667i −1.19528 1.19528i −0.975565 0.219712i \(-0.929488\pi\)
−0.219712 0.975565i \(-0.570512\pi\)
\(420\) 0 0
\(421\) 25.6017 25.6017i 1.24775 1.24775i 0.291039 0.956711i \(-0.405999\pi\)
0.956711 0.291039i \(-0.0940008\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.70862i 0.131388i
\(426\) 0 0
\(427\) 28.1550 28.1550i 1.36251 1.36251i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.6126 0.848367 0.424184 0.905576i \(-0.360561\pi\)
0.424184 + 0.905576i \(0.360561\pi\)
\(432\) 0 0
\(433\) 27.0568 1.30027 0.650133 0.759820i \(-0.274713\pi\)
0.650133 + 0.759820i \(0.274713\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.57858 + 1.57858i −0.0755138 + 0.0755138i
\(438\) 0 0
\(439\) 22.9965i 1.09756i 0.835967 + 0.548780i \(0.184908\pi\)
−0.835967 + 0.548780i \(0.815092\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.7715 + 13.7715i −0.654303 + 0.654303i −0.954026 0.299723i \(-0.903106\pi\)
0.299723 + 0.954026i \(0.403106\pi\)
\(444\) 0 0
\(445\) −7.72415 7.72415i −0.366160 0.366160i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.88838 −0.325083 −0.162541 0.986702i \(-0.551969\pi\)
−0.162541 + 0.986702i \(0.551969\pi\)
\(450\) 0 0
\(451\) −0.390676 0.390676i −0.0183962 0.0183962i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 28.0004i 1.31268i
\(456\) 0 0
\(457\) 2.52622i 0.118171i 0.998253 + 0.0590857i \(0.0188185\pi\)
−0.998253 + 0.0590857i \(0.981181\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −9.23502 9.23502i −0.430118 0.430118i 0.458550 0.888668i \(-0.348369\pi\)
−0.888668 + 0.458550i \(0.848369\pi\)
\(462\) 0 0
\(463\) 11.2676 0.523652 0.261826 0.965115i \(-0.415675\pi\)
0.261826 + 0.965115i \(0.415675\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −25.8291 25.8291i −1.19523 1.19523i −0.975579 0.219650i \(-0.929508\pi\)
−0.219650 0.975579i \(-0.570492\pi\)
\(468\) 0 0
\(469\) 21.1176 21.1176i 0.975122 0.975122i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.50731i 0.299206i
\(474\) 0 0
\(475\) 0.438397 0.438397i 0.0201150 0.0201150i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.7261 −0.718545 −0.359273 0.933233i \(-0.616975\pi\)
−0.359273 + 0.933233i \(0.616975\pi\)
\(480\) 0 0
\(481\) −7.31301 −0.333445
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.02061 9.02061i 0.409605 0.409605i
\(486\) 0 0
\(487\) 35.3717i 1.60284i −0.598100 0.801422i \(-0.704077\pi\)
0.598100 0.801422i \(-0.295923\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.95703 7.95703i 0.359096 0.359096i −0.504384 0.863480i \(-0.668280\pi\)
0.863480 + 0.504384i \(0.168280\pi\)
\(492\) 0 0
\(493\) −5.44221 5.44221i −0.245105 0.245105i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −55.5677 −2.49255
\(498\) 0 0
\(499\) −11.5864 11.5864i −0.518677 0.518677i 0.398494 0.917171i \(-0.369533\pi\)
−0.917171 + 0.398494i \(0.869533\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 23.5051i 1.04804i 0.851706 + 0.524020i \(0.175568\pi\)
−0.851706 + 0.524020i \(0.824432\pi\)
\(504\) 0 0
\(505\) 12.1595i 0.541089i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.08381 + 3.08381i 0.136687 + 0.136687i 0.772140 0.635452i \(-0.219186\pi\)
−0.635452 + 0.772140i \(0.719186\pi\)
\(510\) 0 0
\(511\) 5.27222 0.233229
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.50850 8.50850i −0.374929 0.374929i
\(516\) 0 0
\(517\) −6.99730 + 6.99730i −0.307741 + 0.307741i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.5762i 0.507161i −0.967314 0.253580i \(-0.918392\pi\)
0.967314 0.253580i \(-0.0816083\pi\)
\(522\) 0 0
\(523\) −3.97900 + 3.97900i −0.173990 + 0.173990i −0.788730 0.614740i \(-0.789261\pi\)
0.614740 + 0.788730i \(0.289261\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11.6740 −0.508527
\(528\) 0 0
\(529\) 10.0342 0.436271
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.96851 + 2.96851i −0.128580 + 0.128580i
\(534\) 0 0
\(535\) 3.35605i 0.145095i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.96902 5.96902i 0.257104 0.257104i
\(540\) 0 0
\(541\) 17.2148 + 17.2148i 0.740123 + 0.740123i 0.972602 0.232478i \(-0.0746835\pi\)
−0.232478 + 0.972602i \(0.574684\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.58882 0.196564
\(546\) 0 0
\(547\) 20.3610 + 20.3610i 0.870573 + 0.870573i 0.992535 0.121962i \(-0.0389187\pi\)
−0.121962 + 0.992535i \(0.538919\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.76167i 0.0750495i
\(552\) 0 0
\(553\) 2.46186i 0.104689i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.7029 + 22.7029i 0.961954 + 0.961954i 0.999302 0.0373478i \(-0.0118910\pi\)
−0.0373478 + 0.999302i \(0.511891\pi\)
\(558\) 0 0
\(559\) 49.4451 2.09130
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 15.4153 + 15.4153i 0.649676 + 0.649676i 0.952915 0.303238i \(-0.0980678\pi\)
−0.303238 + 0.952915i \(0.598068\pi\)
\(564\) 0 0
\(565\) 12.2452 12.2452i 0.515158 0.515158i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.6529i 0.949660i −0.880078 0.474830i \(-0.842510\pi\)
0.880078 0.474830i \(-0.157490\pi\)
\(570\) 0 0
\(571\) 13.4941 13.4941i 0.564710 0.564710i −0.365931 0.930642i \(-0.619250\pi\)
0.930642 + 0.365931i \(0.119250\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.60080 0.150164
\(576\) 0 0
\(577\) 6.08684 0.253398 0.126699 0.991941i \(-0.459562\pi\)
0.126699 + 0.991941i \(0.459562\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5.21561 + 5.21561i −0.216380 + 0.216380i
\(582\) 0 0
\(583\) 5.27068i 0.218289i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21.4418 21.4418i 0.884999 0.884999i −0.109039 0.994038i \(-0.534777\pi\)
0.994038 + 0.109039i \(0.0347772\pi\)
\(588\) 0 0
\(589\) −1.88946 1.88946i −0.0778540 0.0778540i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.2005 1.15806 0.579028 0.815308i \(-0.303432\pi\)
0.579028 + 0.815308i \(0.303432\pi\)
\(594\) 0 0
\(595\) −7.71554 7.71554i −0.316306 0.316306i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 38.0516i 1.55475i 0.629039 + 0.777374i \(0.283449\pi\)
−0.629039 + 0.777374i \(0.716551\pi\)
\(600\) 0 0
\(601\) 19.0716i 0.777947i −0.921249 0.388974i \(-0.872830\pi\)
0.921249 0.388974i \(-0.127170\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.18647 7.18647i −0.292172 0.292172i
\(606\) 0 0
\(607\) −5.73433 −0.232749 −0.116375 0.993205i \(-0.537127\pi\)
−0.116375 + 0.993205i \(0.537127\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 53.1682 + 53.1682i 2.15096 + 2.15096i
\(612\) 0 0
\(613\) 5.36917 5.36917i 0.216859 0.216859i −0.590315 0.807173i \(-0.700996\pi\)
0.807173 + 0.590315i \(0.200996\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 28.2915i 1.13897i −0.822000 0.569487i \(-0.807142\pi\)
0.822000 0.569487i \(-0.192858\pi\)
\(618\) 0 0
\(619\) −18.9669 + 18.9669i −0.762345 + 0.762345i −0.976746 0.214401i \(-0.931220\pi\)
0.214401 + 0.976746i \(0.431220\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −44.0046 −1.76301
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.01511 + 2.01511i −0.0803477 + 0.0803477i
\(630\) 0 0
\(631\) 41.7662i 1.66269i 0.555758 + 0.831344i \(0.312428\pi\)
−0.555758 + 0.831344i \(0.687572\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −10.9911 + 10.9911i −0.436170 + 0.436170i
\(636\) 0 0
\(637\) −45.3549 45.3549i −1.79703 1.79703i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.85195 0.112645 0.0563227 0.998413i \(-0.482062\pi\)
0.0563227 + 0.998413i \(0.482062\pi\)
\(642\) 0 0
\(643\) 31.8921 + 31.8921i 1.25770 + 1.25770i 0.952187 + 0.305516i \(0.0988288\pi\)
0.305516 + 0.952187i \(0.401171\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.83402i 0.307987i −0.988072 0.153994i \(-0.950786\pi\)
0.988072 0.153994i \(-0.0492135\pi\)
\(648\) 0 0
\(649\) 1.58922i 0.0623823i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.6822 + 12.6822i 0.496292 + 0.496292i 0.910282 0.413989i \(-0.135865\pi\)
−0.413989 + 0.910282i \(0.635865\pi\)
\(654\) 0 0
\(655\) 15.9482 0.623146
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.9694 + 12.9694i 0.505217 + 0.505217i 0.913055 0.407837i \(-0.133717\pi\)
−0.407837 + 0.913055i \(0.633717\pi\)
\(660\) 0 0
\(661\) −6.85796 + 6.85796i −0.266744 + 0.266744i −0.827787 0.561043i \(-0.810400\pi\)
0.561043 + 0.827787i \(0.310400\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.49756i 0.0968511i
\(666\) 0 0
\(667\) 7.23478 7.23478i 0.280132 0.280132i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.04164 0.349049
\(672\) 0 0
\(673\) 23.1277 0.891508 0.445754 0.895155i \(-0.352936\pi\)
0.445754 + 0.895155i \(0.352936\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.2521 20.2521i 0.778352 0.778352i −0.201199 0.979550i \(-0.564484\pi\)
0.979550 + 0.201199i \(0.0644837\pi\)
\(678\) 0 0
\(679\) 51.3905i 1.97219i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 26.2957 26.2957i 1.00618 1.00618i 0.00619708 0.999981i \(-0.498027\pi\)
0.999981 0.00619708i \(-0.00197260\pi\)
\(684\) 0 0
\(685\) 2.59701 + 2.59701i 0.0992267 + 0.0992267i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −40.0487 −1.52573
\(690\) 0 0
\(691\) 4.91230 + 4.91230i 0.186873 + 0.186873i 0.794343 0.607470i \(-0.207815\pi\)
−0.607470 + 0.794343i \(0.707815\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.40414i 0.280855i
\(696\) 0 0
\(697\) 1.63595i 0.0619661i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.3598 + 12.3598i 0.466824 + 0.466824i 0.900884 0.434060i \(-0.142919\pi\)
−0.434060 + 0.900884i \(0.642919\pi\)
\(702\) 0 0
\(703\) −0.652300 −0.0246020
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 34.6363 + 34.6363i 1.30263 + 1.30263i
\(708\) 0 0
\(709\) −26.6076 + 26.6076i −0.999270 + 0.999270i −1.00000 0.000729493i \(-0.999768\pi\)
0.000729493 1.00000i \(0.499768\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 15.5192i 0.581200i
\(714\) 0 0
\(715\) 4.49600 4.49600i 0.168141 0.168141i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 50.9765 1.90110 0.950551 0.310570i \(-0.100520\pi\)
0.950551 + 0.310570i \(0.100520\pi\)
\(720\) 0 0
\(721\) −48.4731 −1.80523
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.00921 + 2.00921i −0.0746203 + 0.0746203i
\(726\) 0 0
\(727\) 13.2824i 0.492616i −0.969192 0.246308i \(-0.920782\pi\)
0.969192 0.246308i \(-0.0792175\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 13.6246 13.6246i 0.503926 0.503926i
\(732\) 0 0
\(733\) 21.3075 + 21.3075i 0.787012 + 0.787012i 0.981003 0.193991i \(-0.0621434\pi\)
−0.193991 + 0.981003i \(0.562143\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.78168 0.249807
\(738\) 0 0
\(739\) −5.83841 5.83841i −0.214769 0.214769i 0.591521 0.806290i \(-0.298528\pi\)
−0.806290 + 0.591521i \(0.798528\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.25778i 0.119516i −0.998213 0.0597582i \(-0.980967\pi\)
0.998213 0.0597582i \(-0.0190330\pi\)
\(744\) 0 0
\(745\) 4.65829i 0.170667i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.55975 9.55975i −0.349306 0.349306i
\(750\) 0 0
\(751\) −20.7322 −0.756530 −0.378265 0.925697i \(-0.623479\pi\)
−0.378265 + 0.925697i \(0.623479\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.90171 + 4.90171i 0.178391 + 0.178391i
\(756\) 0 0
\(757\) 23.3278 23.3278i 0.847862 0.847862i −0.142004 0.989866i \(-0.545355\pi\)
0.989866 + 0.142004i \(0.0453547\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 24.0242i 0.870878i 0.900218 + 0.435439i \(0.143407\pi\)
−0.900218 + 0.435439i \(0.856593\pi\)
\(762\) 0 0
\(763\) 13.0713 13.0713i 0.473213 0.473213i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.0755 0.436021
\(768\) 0 0
\(769\) −2.70862 −0.0976754 −0.0488377 0.998807i \(-0.515552\pi\)
−0.0488377 + 0.998807i \(0.515552\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −22.9473 + 22.9473i −0.825358 + 0.825358i −0.986871 0.161513i \(-0.948363\pi\)
0.161513 + 0.986871i \(0.448363\pi\)
\(774\) 0 0
\(775\) 4.30994i 0.154817i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.264783 + 0.264783i −0.00948682 + 0.00948682i
\(780\) 0 0
\(781\) −8.92246 8.92246i −0.319271 0.319271i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.99926 −0.285506
\(786\) 0 0
\(787\) 14.0592 + 14.0592i 0.501157 + 0.501157i 0.911797 0.410641i \(-0.134695\pi\)
−0.410641 + 0.911797i \(0.634695\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 69.7609i 2.48041i
\(792\) 0 0
\(793\) 68.7019i 2.43967i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −35.4258 35.4258i −1.25485 1.25485i −0.953521 0.301326i \(-0.902571\pi\)
−0.301326 0.953521i \(-0.597429\pi\)
\(798\) 0 0
\(799\) 29.3011 1.03660
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.846556 + 0.846556i 0.0298743 + 0.0298743i
\(804\) 0 0
\(805\) 10.2569 10.2569i 0.361509 0.361509i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 16.9217i 0.594935i 0.954732 + 0.297467i \(0.0961420\pi\)
−0.954732 + 0.297467i \(0.903858\pi\)
\(810\) 0 0
\(811\) 20.4270 20.4270i 0.717288 0.717288i −0.250761 0.968049i \(-0.580681\pi\)
0.968049 + 0.250761i \(0.0806807\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.5204 −0.543655
\(816\) 0 0
\(817\) 4.41036 0.154299
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −32.4563 + 32.4563i −1.13273 + 1.13273i −0.143013 + 0.989721i \(0.545679\pi\)
−0.989721 + 0.143013i \(0.954321\pi\)
\(822\) 0 0
\(823\) 6.50705i 0.226821i 0.993548 + 0.113411i \(0.0361776\pi\)
−0.993548 + 0.113411i \(0.963822\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.0528 27.0528i 0.940718 0.940718i −0.0576204 0.998339i \(-0.518351\pi\)
0.998339 + 0.0576204i \(0.0183513\pi\)
\(828\) 0 0
\(829\) −8.54216 8.54216i −0.296682 0.296682i 0.543031 0.839713i \(-0.317277\pi\)
−0.839713 + 0.543031i \(0.817277\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −24.9952 −0.866032
\(834\) 0 0
\(835\) 8.32169 + 8.32169i 0.287984 + 0.287984i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24.4138i 0.842860i −0.906861 0.421430i \(-0.861528\pi\)
0.906861 0.421430i \(-0.138472\pi\)
\(840\) 0 0
\(841\) 20.9261i 0.721590i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −24.9700 24.9700i −0.858993 0.858993i
\(846\) 0 0
\(847\) −40.9414 −1.40676
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.67885 2.67885i −0.0918299 0.0918299i
\(852\) 0 0
\(853\) 8.23270 8.23270i 0.281882 0.281882i −0.551977 0.833859i \(-0.686126\pi\)
0.833859 + 0.551977i \(0.186126\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.73909i 0.161884i −0.996719 0.0809421i \(-0.974207\pi\)
0.996719 0.0809421i \(-0.0257929\pi\)
\(858\) 0 0
\(859\) 9.65120 9.65120i 0.329295 0.329295i −0.523024 0.852318i \(-0.675196\pi\)
0.852318 + 0.523024i \(0.175196\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.80368 −0.129479 −0.0647393 0.997902i \(-0.520622\pi\)
−0.0647393 + 0.997902i \(0.520622\pi\)
\(864\) 0 0
\(865\) −1.98309 −0.0674269
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.395300 0.395300i 0.0134096 0.0134096i
\(870\) 0 0
\(871\) 51.5299i 1.74602i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.84851 + 2.84851i −0.0962972 + 0.0962972i
\(876\) 0 0
\(877\) 2.38917 + 2.38917i 0.0806765 + 0.0806765i 0.746294 0.665617i \(-0.231832\pi\)
−0.665617 + 0.746294i \(0.731832\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 23.6195 0.795762 0.397881 0.917437i \(-0.369746\pi\)
0.397881 + 0.917437i \(0.369746\pi\)
\(882\) 0 0
\(883\) 9.64752 + 9.64752i 0.324665 + 0.324665i 0.850553 0.525889i \(-0.176267\pi\)
−0.525889 + 0.850553i \(0.676267\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.91140i 0.299215i −0.988745 0.149608i \(-0.952199\pi\)
0.988745 0.149608i \(-0.0478011\pi\)
\(888\) 0 0
\(889\) 62.6167i 2.10010i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.74246 + 4.74246i 0.158700 + 0.158700i
\(894\) 0 0
\(895\) −13.6632 −0.456709
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.65959 + 8.65959i 0.288813 + 0.288813i
\(900\) 0 0
\(901\) −11.0355 + 11.0355i −0.367645 + 0.367645i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.416973i 0.0138606i
\(906\) 0 0
\(907\) −23.4874 + 23.4874i −0.779886 + 0.779886i −0.979811 0.199925i \(-0.935930\pi\)
0.199925 + 0.979811i \(0.435930\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.77171 −0.0586993 −0.0293497 0.999569i \(-0.509344\pi\)
−0.0293497 + 0.999569i \(0.509344\pi\)
\(912\) 0 0
\(913\) −1.67493 −0.0554322
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 45.4285 45.4285i 1.50018 1.50018i
\(918\) 0 0
\(919\) 46.2001i 1.52400i 0.647576 + 0.762001i \(0.275783\pi\)
−0.647576 + 0.762001i \(0.724217\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −67.7963 + 67.7963i −2.23154 + 2.23154i
\(924\) 0 0
\(925\) 0.743961 + 0.743961i 0.0244613 + 0.0244613i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 35.5011 1.16475 0.582376 0.812920i \(-0.302123\pi\)
0.582376 + 0.812920i \(0.302123\pi\)
\(930\) 0 0
\(931\) −4.04553 4.04553i −0.132587 0.132587i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.47776i 0.0810313i
\(936\) 0 0
\(937\) 10.0385i 0.327945i 0.986465 + 0.163972i \(0.0524308\pi\)
−0.986465 + 0.163972i \(0.947569\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −42.3367 42.3367i −1.38014 1.38014i −0.844359 0.535777i \(-0.820019\pi\)
−0.535777 0.844359i \(-0.679981\pi\)
\(942\) 0 0
\(943\) −2.17481 −0.0708215
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.3384 36.3384i −1.18084 1.18084i −0.979527 0.201313i \(-0.935479\pi\)
−0.201313 0.979527i \(-0.564521\pi\)
\(948\) 0 0
\(949\) 6.43246 6.43246i 0.208807 0.208807i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.7338i 1.06035i −0.847888 0.530176i \(-0.822126\pi\)
0.847888 0.530176i \(-0.177874\pi\)
\(954\) 0 0
\(955\) 11.9750 11.9750i 0.387502 0.387502i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.7952 0.477762
\(960\) 0 0
\(961\) −12.4244 −0.400789
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11.7328 11.7328i 0.377693 0.377693i
\(966\) 0 0
\(967\) 49.7169i 1.59879i −0.600807 0.799394i \(-0.705154\pi\)
0.600807 0.799394i \(-0.294846\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −24.7937 + 24.7937i −0.795667 + 0.795667i −0.982409 0.186742i \(-0.940207\pi\)
0.186742 + 0.982409i \(0.440207\pi\)
\(972\) 0 0
\(973\) 21.0908 + 21.0908i 0.676139 + 0.676139i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 49.4546 1.58219 0.791096 0.611692i \(-0.209511\pi\)
0.791096 + 0.611692i \(0.209511\pi\)
\(978\) 0 0
\(979\) −7.06579 7.06579i −0.225824 0.225824i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 23.9656i 0.764383i −0.924083 0.382191i \(-0.875170\pi\)
0.924083 0.382191i \(-0.124830\pi\)
\(984\) 0 0
\(985\) 3.37137i 0.107421i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.1124 + 18.1124i 0.575940 + 0.575940i
\(990\) 0 0
\(991\) −28.8345 −0.915957 −0.457978 0.888963i \(-0.651426\pi\)
−0.457978 + 0.888963i \(0.651426\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −7.17084 7.17084i −0.227331 0.227331i
\(996\) 0 0
\(997\) 6.03212 6.03212i 0.191039 0.191039i −0.605106 0.796145i \(-0.706869\pi\)
0.796145 + 0.605106i \(0.206869\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2880.2.t.c.721.4 16
3.2 odd 2 320.2.l.a.81.6 16
4.3 odd 2 720.2.t.c.541.8 16
12.11 even 2 80.2.l.a.61.1 yes 16
15.2 even 4 1600.2.q.g.849.6 16
15.8 even 4 1600.2.q.h.849.3 16
15.14 odd 2 1600.2.l.i.401.3 16
16.5 even 4 inner 2880.2.t.c.2161.1 16
16.11 odd 4 720.2.t.c.181.8 16
24.5 odd 2 640.2.l.a.161.3 16
24.11 even 2 640.2.l.b.161.6 16
48.5 odd 4 320.2.l.a.241.6 16
48.11 even 4 80.2.l.a.21.1 16
48.29 odd 4 640.2.l.a.481.3 16
48.35 even 4 640.2.l.b.481.6 16
60.23 odd 4 400.2.q.g.349.5 16
60.47 odd 4 400.2.q.h.349.4 16
60.59 even 2 400.2.l.h.301.8 16
96.5 odd 8 5120.2.a.t.1.4 8
96.11 even 8 5120.2.a.s.1.4 8
96.53 odd 8 5120.2.a.u.1.5 8
96.59 even 8 5120.2.a.v.1.5 8
240.53 even 4 1600.2.q.g.49.6 16
240.59 even 4 400.2.l.h.101.8 16
240.107 odd 4 400.2.q.g.149.5 16
240.149 odd 4 1600.2.l.i.1201.3 16
240.197 even 4 1600.2.q.h.49.3 16
240.203 odd 4 400.2.q.h.149.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.1 16 48.11 even 4
80.2.l.a.61.1 yes 16 12.11 even 2
320.2.l.a.81.6 16 3.2 odd 2
320.2.l.a.241.6 16 48.5 odd 4
400.2.l.h.101.8 16 240.59 even 4
400.2.l.h.301.8 16 60.59 even 2
400.2.q.g.149.5 16 240.107 odd 4
400.2.q.g.349.5 16 60.23 odd 4
400.2.q.h.149.4 16 240.203 odd 4
400.2.q.h.349.4 16 60.47 odd 4
640.2.l.a.161.3 16 24.5 odd 2
640.2.l.a.481.3 16 48.29 odd 4
640.2.l.b.161.6 16 24.11 even 2
640.2.l.b.481.6 16 48.35 even 4
720.2.t.c.181.8 16 16.11 odd 4
720.2.t.c.541.8 16 4.3 odd 2
1600.2.l.i.401.3 16 15.14 odd 2
1600.2.l.i.1201.3 16 240.149 odd 4
1600.2.q.g.49.6 16 240.53 even 4
1600.2.q.g.849.6 16 15.2 even 4
1600.2.q.h.49.3 16 240.197 even 4
1600.2.q.h.849.3 16 15.8 even 4
2880.2.t.c.721.4 16 1.1 even 1 trivial
2880.2.t.c.2161.1 16 16.5 even 4 inner
5120.2.a.s.1.4 8 96.11 even 8
5120.2.a.t.1.4 8 96.5 odd 8
5120.2.a.u.1.5 8 96.53 odd 8
5120.2.a.v.1.5 8 96.59 even 8