Properties

Label 5120.2.a.s.1.4
Level $5120$
Weight $2$
Character 5120.1
Self dual yes
Analytic conductor $40.883$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5120,2,Mod(1,5120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5120.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5120 = 2^{10} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5120.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4,0,-8,0,4,0,8,0,-8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8834058349\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} - 8x^{5} + 21x^{4} + 12x^{3} - 10x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 80)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.602887\) of defining polynomial
Character \(\chi\) \(=\) 5120.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.01919 q^{3} -1.00000 q^{5} +4.02840 q^{7} -1.96126 q^{9} -0.914766 q^{11} -6.95074 q^{13} +1.01919 q^{15} +2.70862 q^{17} +0.619987 q^{19} -4.10569 q^{21} +3.60080 q^{23} +1.00000 q^{25} +5.05645 q^{27} +2.84146 q^{29} +4.30994 q^{31} +0.932316 q^{33} -4.02840 q^{35} +1.05212 q^{37} +7.08410 q^{39} -0.603979 q^{41} -7.11363 q^{43} +1.96126 q^{45} -10.8177 q^{47} +9.22800 q^{49} -2.76059 q^{51} +5.76178 q^{53} +0.914766 q^{55} -0.631882 q^{57} -1.73729 q^{59} -9.88410 q^{61} -7.90074 q^{63} +6.95074 q^{65} +7.41357 q^{67} -3.66988 q^{69} -13.7940 q^{71} -1.30876 q^{73} -1.01919 q^{75} -3.68504 q^{77} -0.611127 q^{79} +0.730326 q^{81} -1.83100 q^{83} -2.70862 q^{85} -2.89597 q^{87} +10.9236 q^{89} -28.0004 q^{91} -4.39263 q^{93} -0.619987 q^{95} -12.7571 q^{97} +1.79409 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 8 q^{5} + 4 q^{7} + 8 q^{9} - 8 q^{11} + 4 q^{15} - 16 q^{19} + 12 q^{23} + 8 q^{25} - 16 q^{27} - 4 q^{35} - 28 q^{43} - 8 q^{45} + 20 q^{47} + 8 q^{49} - 24 q^{51} + 8 q^{55} - 16 q^{59}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.01919 −0.588427 −0.294214 0.955740i \(-0.595058\pi\)
−0.294214 + 0.955740i \(0.595058\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.02840 1.52259 0.761296 0.648405i \(-0.224563\pi\)
0.761296 + 0.648405i \(0.224563\pi\)
\(8\) 0 0
\(9\) −1.96126 −0.653754
\(10\) 0 0
\(11\) −0.914766 −0.275812 −0.137906 0.990445i \(-0.544037\pi\)
−0.137906 + 0.990445i \(0.544037\pi\)
\(12\) 0 0
\(13\) −6.95074 −1.92779 −0.963895 0.266283i \(-0.914204\pi\)
−0.963895 + 0.266283i \(0.914204\pi\)
\(14\) 0 0
\(15\) 1.01919 0.263153
\(16\) 0 0
\(17\) 2.70862 0.656938 0.328469 0.944515i \(-0.393467\pi\)
0.328469 + 0.944515i \(0.393467\pi\)
\(18\) 0 0
\(19\) 0.619987 0.142235 0.0711174 0.997468i \(-0.477344\pi\)
0.0711174 + 0.997468i \(0.477344\pi\)
\(20\) 0 0
\(21\) −4.10569 −0.895934
\(22\) 0 0
\(23\) 3.60080 0.750819 0.375410 0.926859i \(-0.377502\pi\)
0.375410 + 0.926859i \(0.377502\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.05645 0.973113
\(28\) 0 0
\(29\) 2.84146 0.527645 0.263823 0.964571i \(-0.415017\pi\)
0.263823 + 0.964571i \(0.415017\pi\)
\(30\) 0 0
\(31\) 4.30994 0.774087 0.387044 0.922061i \(-0.373496\pi\)
0.387044 + 0.922061i \(0.373496\pi\)
\(32\) 0 0
\(33\) 0.932316 0.162295
\(34\) 0 0
\(35\) −4.02840 −0.680924
\(36\) 0 0
\(37\) 1.05212 0.172967 0.0864837 0.996253i \(-0.472437\pi\)
0.0864837 + 0.996253i \(0.472437\pi\)
\(38\) 0 0
\(39\) 7.08410 1.13436
\(40\) 0 0
\(41\) −0.603979 −0.0943256 −0.0471628 0.998887i \(-0.515018\pi\)
−0.0471628 + 0.998887i \(0.515018\pi\)
\(42\) 0 0
\(43\) −7.11363 −1.08482 −0.542409 0.840114i \(-0.682488\pi\)
−0.542409 + 0.840114i \(0.682488\pi\)
\(44\) 0 0
\(45\) 1.96126 0.292367
\(46\) 0 0
\(47\) −10.8177 −1.57793 −0.788963 0.614440i \(-0.789382\pi\)
−0.788963 + 0.614440i \(0.789382\pi\)
\(48\) 0 0
\(49\) 9.22800 1.31829
\(50\) 0 0
\(51\) −2.76059 −0.386560
\(52\) 0 0
\(53\) 5.76178 0.791442 0.395721 0.918371i \(-0.370495\pi\)
0.395721 + 0.918371i \(0.370495\pi\)
\(54\) 0 0
\(55\) 0.914766 0.123347
\(56\) 0 0
\(57\) −0.631882 −0.0836948
\(58\) 0 0
\(59\) −1.73729 −0.226177 −0.113088 0.993585i \(-0.536074\pi\)
−0.113088 + 0.993585i \(0.536074\pi\)
\(60\) 0 0
\(61\) −9.88410 −1.26553 −0.632765 0.774344i \(-0.718080\pi\)
−0.632765 + 0.774344i \(0.718080\pi\)
\(62\) 0 0
\(63\) −7.90074 −0.995400
\(64\) 0 0
\(65\) 6.95074 0.862134
\(66\) 0 0
\(67\) 7.41357 0.905712 0.452856 0.891584i \(-0.350405\pi\)
0.452856 + 0.891584i \(0.350405\pi\)
\(68\) 0 0
\(69\) −3.66988 −0.441802
\(70\) 0 0
\(71\) −13.7940 −1.63704 −0.818522 0.574475i \(-0.805206\pi\)
−0.818522 + 0.574475i \(0.805206\pi\)
\(72\) 0 0
\(73\) −1.30876 −0.153179 −0.0765895 0.997063i \(-0.524403\pi\)
−0.0765895 + 0.997063i \(0.524403\pi\)
\(74\) 0 0
\(75\) −1.01919 −0.117685
\(76\) 0 0
\(77\) −3.68504 −0.419950
\(78\) 0 0
\(79\) −0.611127 −0.0687571 −0.0343786 0.999409i \(-0.510945\pi\)
−0.0343786 + 0.999409i \(0.510945\pi\)
\(80\) 0 0
\(81\) 0.730326 0.0811473
\(82\) 0 0
\(83\) −1.83100 −0.200978 −0.100489 0.994938i \(-0.532041\pi\)
−0.100489 + 0.994938i \(0.532041\pi\)
\(84\) 0 0
\(85\) −2.70862 −0.293792
\(86\) 0 0
\(87\) −2.89597 −0.310481
\(88\) 0 0
\(89\) 10.9236 1.15790 0.578950 0.815363i \(-0.303463\pi\)
0.578950 + 0.815363i \(0.303463\pi\)
\(90\) 0 0
\(91\) −28.0004 −2.93524
\(92\) 0 0
\(93\) −4.39263 −0.455494
\(94\) 0 0
\(95\) −0.619987 −0.0636093
\(96\) 0 0
\(97\) −12.7571 −1.29528 −0.647642 0.761945i \(-0.724245\pi\)
−0.647642 + 0.761945i \(0.724245\pi\)
\(98\) 0 0
\(99\) 1.79409 0.180313
\(100\) 0 0
\(101\) 12.1595 1.20991 0.604956 0.796259i \(-0.293191\pi\)
0.604956 + 0.796259i \(0.293191\pi\)
\(102\) 0 0
\(103\) 12.0328 1.18563 0.592815 0.805338i \(-0.298016\pi\)
0.592815 + 0.805338i \(0.298016\pi\)
\(104\) 0 0
\(105\) 4.10569 0.400674
\(106\) 0 0
\(107\) −3.35605 −0.324442 −0.162221 0.986754i \(-0.551866\pi\)
−0.162221 + 0.986754i \(0.551866\pi\)
\(108\) 0 0
\(109\) 4.58882 0.439529 0.219765 0.975553i \(-0.429471\pi\)
0.219765 + 0.975553i \(0.429471\pi\)
\(110\) 0 0
\(111\) −1.07230 −0.101779
\(112\) 0 0
\(113\) −17.3173 −1.62907 −0.814536 0.580114i \(-0.803008\pi\)
−0.814536 + 0.580114i \(0.803008\pi\)
\(114\) 0 0
\(115\) −3.60080 −0.335776
\(116\) 0 0
\(117\) 13.6322 1.26030
\(118\) 0 0
\(119\) 10.9114 1.00025
\(120\) 0 0
\(121\) −10.1632 −0.923928
\(122\) 0 0
\(123\) 0.615566 0.0555038
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −15.5438 −1.37929 −0.689645 0.724147i \(-0.742234\pi\)
−0.689645 + 0.724147i \(0.742234\pi\)
\(128\) 0 0
\(129\) 7.25011 0.638337
\(130\) 0 0
\(131\) −15.9482 −1.39340 −0.696698 0.717364i \(-0.745348\pi\)
−0.696698 + 0.717364i \(0.745348\pi\)
\(132\) 0 0
\(133\) 2.49756 0.216566
\(134\) 0 0
\(135\) −5.05645 −0.435190
\(136\) 0 0
\(137\) 3.67273 0.313782 0.156891 0.987616i \(-0.449853\pi\)
0.156891 + 0.987616i \(0.449853\pi\)
\(138\) 0 0
\(139\) −7.40414 −0.628011 −0.314006 0.949421i \(-0.601671\pi\)
−0.314006 + 0.949421i \(0.601671\pi\)
\(140\) 0 0
\(141\) 11.0253 0.928495
\(142\) 0 0
\(143\) 6.35830 0.531708
\(144\) 0 0
\(145\) −2.84146 −0.235970
\(146\) 0 0
\(147\) −9.40505 −0.775715
\(148\) 0 0
\(149\) −4.65829 −0.381622 −0.190811 0.981627i \(-0.561112\pi\)
−0.190811 + 0.981627i \(0.561112\pi\)
\(150\) 0 0
\(151\) 6.93206 0.564123 0.282061 0.959396i \(-0.408982\pi\)
0.282061 + 0.959396i \(0.408982\pi\)
\(152\) 0 0
\(153\) −5.31232 −0.429475
\(154\) 0 0
\(155\) −4.30994 −0.346182
\(156\) 0 0
\(157\) 7.99926 0.638411 0.319205 0.947686i \(-0.396584\pi\)
0.319205 + 0.947686i \(0.396584\pi\)
\(158\) 0 0
\(159\) −5.87233 −0.465706
\(160\) 0 0
\(161\) 14.5055 1.14319
\(162\) 0 0
\(163\) −15.5204 −1.21565 −0.607824 0.794072i \(-0.707957\pi\)
−0.607824 + 0.794072i \(0.707957\pi\)
\(164\) 0 0
\(165\) −0.932316 −0.0725807
\(166\) 0 0
\(167\) 11.7686 0.910685 0.455343 0.890316i \(-0.349517\pi\)
0.455343 + 0.890316i \(0.349517\pi\)
\(168\) 0 0
\(169\) 35.3128 2.71637
\(170\) 0 0
\(171\) −1.21596 −0.0929865
\(172\) 0 0
\(173\) 1.98309 0.150771 0.0753856 0.997154i \(-0.475981\pi\)
0.0753856 + 0.997154i \(0.475981\pi\)
\(174\) 0 0
\(175\) 4.02840 0.304518
\(176\) 0 0
\(177\) 1.77063 0.133088
\(178\) 0 0
\(179\) −13.6632 −1.02123 −0.510616 0.859809i \(-0.670583\pi\)
−0.510616 + 0.859809i \(0.670583\pi\)
\(180\) 0 0
\(181\) 0.416973 0.0309933 0.0154967 0.999880i \(-0.495067\pi\)
0.0154967 + 0.999880i \(0.495067\pi\)
\(182\) 0 0
\(183\) 10.0737 0.744672
\(184\) 0 0
\(185\) −1.05212 −0.0773533
\(186\) 0 0
\(187\) −2.47776 −0.181192
\(188\) 0 0
\(189\) 20.3694 1.48165
\(190\) 0 0
\(191\) −16.9352 −1.22539 −0.612694 0.790320i \(-0.709914\pi\)
−0.612694 + 0.790320i \(0.709914\pi\)
\(192\) 0 0
\(193\) −16.5927 −1.19437 −0.597185 0.802103i \(-0.703714\pi\)
−0.597185 + 0.802103i \(0.703714\pi\)
\(194\) 0 0
\(195\) −7.08410 −0.507303
\(196\) 0 0
\(197\) 3.37137 0.240200 0.120100 0.992762i \(-0.461678\pi\)
0.120100 + 0.992762i \(0.461678\pi\)
\(198\) 0 0
\(199\) 10.1411 0.718883 0.359442 0.933168i \(-0.382967\pi\)
0.359442 + 0.933168i \(0.382967\pi\)
\(200\) 0 0
\(201\) −7.55581 −0.532946
\(202\) 0 0
\(203\) 11.4465 0.803389
\(204\) 0 0
\(205\) 0.603979 0.0421837
\(206\) 0 0
\(207\) −7.06211 −0.490851
\(208\) 0 0
\(209\) −0.567143 −0.0392301
\(210\) 0 0
\(211\) 3.97636 0.273744 0.136872 0.990589i \(-0.456295\pi\)
0.136872 + 0.990589i \(0.456295\pi\)
\(212\) 0 0
\(213\) 14.0586 0.963281
\(214\) 0 0
\(215\) 7.11363 0.485146
\(216\) 0 0
\(217\) 17.3621 1.17862
\(218\) 0 0
\(219\) 1.33387 0.0901347
\(220\) 0 0
\(221\) −18.8270 −1.26644
\(222\) 0 0
\(223\) 14.0502 0.940871 0.470436 0.882434i \(-0.344097\pi\)
0.470436 + 0.882434i \(0.344097\pi\)
\(224\) 0 0
\(225\) −1.96126 −0.130751
\(226\) 0 0
\(227\) −18.8790 −1.25305 −0.626523 0.779403i \(-0.715522\pi\)
−0.626523 + 0.779403i \(0.715522\pi\)
\(228\) 0 0
\(229\) −12.4251 −0.821075 −0.410538 0.911844i \(-0.634659\pi\)
−0.410538 + 0.911844i \(0.634659\pi\)
\(230\) 0 0
\(231\) 3.75574 0.247110
\(232\) 0 0
\(233\) −15.1472 −0.992329 −0.496165 0.868229i \(-0.665259\pi\)
−0.496165 + 0.868229i \(0.665259\pi\)
\(234\) 0 0
\(235\) 10.8177 0.705670
\(236\) 0 0
\(237\) 0.622852 0.0404586
\(238\) 0 0
\(239\) −17.9151 −1.15883 −0.579414 0.815033i \(-0.696719\pi\)
−0.579414 + 0.815033i \(0.696719\pi\)
\(240\) 0 0
\(241\) −25.6594 −1.65287 −0.826433 0.563035i \(-0.809634\pi\)
−0.826433 + 0.563035i \(0.809634\pi\)
\(242\) 0 0
\(243\) −15.9137 −1.02086
\(244\) 0 0
\(245\) −9.22800 −0.589556
\(246\) 0 0
\(247\) −4.30937 −0.274199
\(248\) 0 0
\(249\) 1.86613 0.118261
\(250\) 0 0
\(251\) 8.41733 0.531297 0.265649 0.964070i \(-0.414414\pi\)
0.265649 + 0.964070i \(0.414414\pi\)
\(252\) 0 0
\(253\) −3.29389 −0.207085
\(254\) 0 0
\(255\) 2.76059 0.172875
\(256\) 0 0
\(257\) −4.17369 −0.260348 −0.130174 0.991491i \(-0.541554\pi\)
−0.130174 + 0.991491i \(0.541554\pi\)
\(258\) 0 0
\(259\) 4.23836 0.263359
\(260\) 0 0
\(261\) −5.57284 −0.344950
\(262\) 0 0
\(263\) 9.14469 0.563885 0.281943 0.959431i \(-0.409021\pi\)
0.281943 + 0.959431i \(0.409021\pi\)
\(264\) 0 0
\(265\) −5.76178 −0.353944
\(266\) 0 0
\(267\) −11.1332 −0.681339
\(268\) 0 0
\(269\) 11.8798 0.724325 0.362162 0.932115i \(-0.382039\pi\)
0.362162 + 0.932115i \(0.382039\pi\)
\(270\) 0 0
\(271\) −18.7794 −1.14077 −0.570383 0.821379i \(-0.693205\pi\)
−0.570383 + 0.821379i \(0.693205\pi\)
\(272\) 0 0
\(273\) 28.5376 1.72717
\(274\) 0 0
\(275\) −0.914766 −0.0551625
\(276\) 0 0
\(277\) −5.00868 −0.300942 −0.150471 0.988614i \(-0.548079\pi\)
−0.150471 + 0.988614i \(0.548079\pi\)
\(278\) 0 0
\(279\) −8.45291 −0.506062
\(280\) 0 0
\(281\) −2.31811 −0.138287 −0.0691433 0.997607i \(-0.522027\pi\)
−0.0691433 + 0.997607i \(0.522027\pi\)
\(282\) 0 0
\(283\) 2.30796 0.137194 0.0685970 0.997644i \(-0.478148\pi\)
0.0685970 + 0.997644i \(0.478148\pi\)
\(284\) 0 0
\(285\) 0.631882 0.0374295
\(286\) 0 0
\(287\) −2.43307 −0.143619
\(288\) 0 0
\(289\) −9.66335 −0.568433
\(290\) 0 0
\(291\) 13.0018 0.762180
\(292\) 0 0
\(293\) 16.3750 0.956636 0.478318 0.878187i \(-0.341247\pi\)
0.478318 + 0.878187i \(0.341247\pi\)
\(294\) 0 0
\(295\) 1.73729 0.101149
\(296\) 0 0
\(297\) −4.62546 −0.268397
\(298\) 0 0
\(299\) −25.0283 −1.44742
\(300\) 0 0
\(301\) −28.6566 −1.65174
\(302\) 0 0
\(303\) −12.3927 −0.711945
\(304\) 0 0
\(305\) 9.88410 0.565962
\(306\) 0 0
\(307\) −16.5627 −0.945282 −0.472641 0.881255i \(-0.656699\pi\)
−0.472641 + 0.881255i \(0.656699\pi\)
\(308\) 0 0
\(309\) −12.2637 −0.697657
\(310\) 0 0
\(311\) 11.2068 0.635477 0.317739 0.948178i \(-0.397077\pi\)
0.317739 + 0.948178i \(0.397077\pi\)
\(312\) 0 0
\(313\) −7.50635 −0.424284 −0.212142 0.977239i \(-0.568044\pi\)
−0.212142 + 0.977239i \(0.568044\pi\)
\(314\) 0 0
\(315\) 7.90074 0.445156
\(316\) 0 0
\(317\) 23.0310 1.29355 0.646776 0.762680i \(-0.276117\pi\)
0.646776 + 0.762680i \(0.276117\pi\)
\(318\) 0 0
\(319\) −2.59927 −0.145531
\(320\) 0 0
\(321\) 3.42044 0.190910
\(322\) 0 0
\(323\) 1.67931 0.0934394
\(324\) 0 0
\(325\) −6.95074 −0.385558
\(326\) 0 0
\(327\) −4.67686 −0.258631
\(328\) 0 0
\(329\) −43.5781 −2.40254
\(330\) 0 0
\(331\) −27.4139 −1.50680 −0.753402 0.657560i \(-0.771589\pi\)
−0.753402 + 0.657560i \(0.771589\pi\)
\(332\) 0 0
\(333\) −2.06348 −0.113078
\(334\) 0 0
\(335\) −7.41357 −0.405047
\(336\) 0 0
\(337\) 7.82991 0.426522 0.213261 0.976995i \(-0.431592\pi\)
0.213261 + 0.976995i \(0.431592\pi\)
\(338\) 0 0
\(339\) 17.6495 0.958590
\(340\) 0 0
\(341\) −3.94258 −0.213503
\(342\) 0 0
\(343\) 8.97529 0.484620
\(344\) 0 0
\(345\) 3.66988 0.197580
\(346\) 0 0
\(347\) −12.6113 −0.677009 −0.338505 0.940965i \(-0.609921\pi\)
−0.338505 + 0.940965i \(0.609921\pi\)
\(348\) 0 0
\(349\) −9.46211 −0.506495 −0.253247 0.967402i \(-0.581499\pi\)
−0.253247 + 0.967402i \(0.581499\pi\)
\(350\) 0 0
\(351\) −35.1461 −1.87596
\(352\) 0 0
\(353\) −2.05215 −0.109225 −0.0546126 0.998508i \(-0.517392\pi\)
−0.0546126 + 0.998508i \(0.517392\pi\)
\(354\) 0 0
\(355\) 13.7940 0.732108
\(356\) 0 0
\(357\) −11.1208 −0.588573
\(358\) 0 0
\(359\) −9.52634 −0.502781 −0.251391 0.967886i \(-0.580888\pi\)
−0.251391 + 0.967886i \(0.580888\pi\)
\(360\) 0 0
\(361\) −18.6156 −0.979769
\(362\) 0 0
\(363\) 10.3582 0.543664
\(364\) 0 0
\(365\) 1.30876 0.0685038
\(366\) 0 0
\(367\) 3.39736 0.177341 0.0886703 0.996061i \(-0.471738\pi\)
0.0886703 + 0.996061i \(0.471738\pi\)
\(368\) 0 0
\(369\) 1.18456 0.0616657
\(370\) 0 0
\(371\) 23.2108 1.20504
\(372\) 0 0
\(373\) −31.8049 −1.64679 −0.823397 0.567465i \(-0.807924\pi\)
−0.823397 + 0.567465i \(0.807924\pi\)
\(374\) 0 0
\(375\) 1.01919 0.0526305
\(376\) 0 0
\(377\) −19.7502 −1.01719
\(378\) 0 0
\(379\) −21.1876 −1.08833 −0.544166 0.838978i \(-0.683154\pi\)
−0.544166 + 0.838978i \(0.683154\pi\)
\(380\) 0 0
\(381\) 15.8420 0.811612
\(382\) 0 0
\(383\) 26.1197 1.33466 0.667328 0.744764i \(-0.267438\pi\)
0.667328 + 0.744764i \(0.267438\pi\)
\(384\) 0 0
\(385\) 3.68504 0.187807
\(386\) 0 0
\(387\) 13.9517 0.709204
\(388\) 0 0
\(389\) 2.94714 0.149426 0.0747131 0.997205i \(-0.476196\pi\)
0.0747131 + 0.997205i \(0.476196\pi\)
\(390\) 0 0
\(391\) 9.75322 0.493241
\(392\) 0 0
\(393\) 16.2541 0.819912
\(394\) 0 0
\(395\) 0.611127 0.0307491
\(396\) 0 0
\(397\) −2.02632 −0.101698 −0.0508490 0.998706i \(-0.516193\pi\)
−0.0508490 + 0.998706i \(0.516193\pi\)
\(398\) 0 0
\(399\) −2.54547 −0.127433
\(400\) 0 0
\(401\) 29.9853 1.49739 0.748697 0.662912i \(-0.230680\pi\)
0.748697 + 0.662912i \(0.230680\pi\)
\(402\) 0 0
\(403\) −29.9573 −1.49228
\(404\) 0 0
\(405\) −0.730326 −0.0362902
\(406\) 0 0
\(407\) −0.962443 −0.0477065
\(408\) 0 0
\(409\) 4.17833 0.206605 0.103302 0.994650i \(-0.467059\pi\)
0.103302 + 0.994650i \(0.467059\pi\)
\(410\) 0 0
\(411\) −3.74319 −0.184638
\(412\) 0 0
\(413\) −6.99852 −0.344375
\(414\) 0 0
\(415\) 1.83100 0.0898801
\(416\) 0 0
\(417\) 7.54620 0.369539
\(418\) 0 0
\(419\) −34.6012 −1.69038 −0.845189 0.534468i \(-0.820512\pi\)
−0.845189 + 0.534468i \(0.820512\pi\)
\(420\) 0 0
\(421\) −36.2063 −1.76458 −0.882292 0.470702i \(-0.844001\pi\)
−0.882292 + 0.470702i \(0.844001\pi\)
\(422\) 0 0
\(423\) 21.2164 1.03158
\(424\) 0 0
\(425\) 2.70862 0.131388
\(426\) 0 0
\(427\) −39.8171 −1.92689
\(428\) 0 0
\(429\) −6.48029 −0.312871
\(430\) 0 0
\(431\) −17.6126 −0.848367 −0.424184 0.905576i \(-0.639439\pi\)
−0.424184 + 0.905576i \(0.639439\pi\)
\(432\) 0 0
\(433\) −27.0568 −1.30027 −0.650133 0.759820i \(-0.725287\pi\)
−0.650133 + 0.759820i \(0.725287\pi\)
\(434\) 0 0
\(435\) 2.89597 0.138851
\(436\) 0 0
\(437\) 2.23245 0.106793
\(438\) 0 0
\(439\) −22.9965 −1.09756 −0.548780 0.835967i \(-0.684908\pi\)
−0.548780 + 0.835967i \(0.684908\pi\)
\(440\) 0 0
\(441\) −18.0985 −0.861834
\(442\) 0 0
\(443\) 19.4758 0.925325 0.462662 0.886535i \(-0.346894\pi\)
0.462662 + 0.886535i \(0.346894\pi\)
\(444\) 0 0
\(445\) −10.9236 −0.517828
\(446\) 0 0
\(447\) 4.74766 0.224557
\(448\) 0 0
\(449\) 6.88838 0.325083 0.162541 0.986702i \(-0.448031\pi\)
0.162541 + 0.986702i \(0.448031\pi\)
\(450\) 0 0
\(451\) 0.552499 0.0260162
\(452\) 0 0
\(453\) −7.06505 −0.331945
\(454\) 0 0
\(455\) 28.0004 1.31268
\(456\) 0 0
\(457\) 2.52622 0.118171 0.0590857 0.998253i \(-0.481181\pi\)
0.0590857 + 0.998253i \(0.481181\pi\)
\(458\) 0 0
\(459\) 13.6960 0.639275
\(460\) 0 0
\(461\) −13.0603 −0.608279 −0.304139 0.952628i \(-0.598369\pi\)
−0.304139 + 0.952628i \(0.598369\pi\)
\(462\) 0 0
\(463\) 11.2676 0.523652 0.261826 0.965115i \(-0.415675\pi\)
0.261826 + 0.965115i \(0.415675\pi\)
\(464\) 0 0
\(465\) 4.39263 0.203703
\(466\) 0 0
\(467\) 36.5279 1.69031 0.845154 0.534522i \(-0.179508\pi\)
0.845154 + 0.534522i \(0.179508\pi\)
\(468\) 0 0
\(469\) 29.8648 1.37903
\(470\) 0 0
\(471\) −8.15273 −0.375658
\(472\) 0 0
\(473\) 6.50731 0.299206
\(474\) 0 0
\(475\) 0.619987 0.0284470
\(476\) 0 0
\(477\) −11.3004 −0.517408
\(478\) 0 0
\(479\) −15.7261 −0.718545 −0.359273 0.933233i \(-0.616975\pi\)
−0.359273 + 0.933233i \(0.616975\pi\)
\(480\) 0 0
\(481\) −7.31301 −0.333445
\(482\) 0 0
\(483\) −14.7838 −0.672685
\(484\) 0 0
\(485\) 12.7571 0.579268
\(486\) 0 0
\(487\) −35.3717 −1.60284 −0.801422 0.598100i \(-0.795923\pi\)
−0.801422 + 0.598100i \(0.795923\pi\)
\(488\) 0 0
\(489\) 15.8181 0.715320
\(490\) 0 0
\(491\) 11.2529 0.507838 0.253919 0.967225i \(-0.418280\pi\)
0.253919 + 0.967225i \(0.418280\pi\)
\(492\) 0 0
\(493\) 7.69644 0.346630
\(494\) 0 0
\(495\) −1.79409 −0.0806385
\(496\) 0 0
\(497\) −55.5677 −2.49255
\(498\) 0 0
\(499\) −16.3856 −0.733520 −0.366760 0.930316i \(-0.619533\pi\)
−0.366760 + 0.930316i \(0.619533\pi\)
\(500\) 0 0
\(501\) −11.9944 −0.535872
\(502\) 0 0
\(503\) 23.5051 1.04804 0.524020 0.851706i \(-0.324432\pi\)
0.524020 + 0.851706i \(0.324432\pi\)
\(504\) 0 0
\(505\) −12.1595 −0.541089
\(506\) 0 0
\(507\) −35.9903 −1.59839
\(508\) 0 0
\(509\) −4.36117 −0.193305 −0.0966527 0.995318i \(-0.530814\pi\)
−0.0966527 + 0.995318i \(0.530814\pi\)
\(510\) 0 0
\(511\) −5.27222 −0.233229
\(512\) 0 0
\(513\) 3.13493 0.138411
\(514\) 0 0
\(515\) −12.0328 −0.530230
\(516\) 0 0
\(517\) 9.89568 0.435212
\(518\) 0 0
\(519\) −2.02113 −0.0887178
\(520\) 0 0
\(521\) 11.5762 0.507161 0.253580 0.967314i \(-0.418392\pi\)
0.253580 + 0.967314i \(0.418392\pi\)
\(522\) 0 0
\(523\) 5.62716 0.246059 0.123029 0.992403i \(-0.460739\pi\)
0.123029 + 0.992403i \(0.460739\pi\)
\(524\) 0 0
\(525\) −4.10569 −0.179187
\(526\) 0 0
\(527\) 11.6740 0.508527
\(528\) 0 0
\(529\) −10.0342 −0.436271
\(530\) 0 0
\(531\) 3.40729 0.147864
\(532\) 0 0
\(533\) 4.19810 0.181840
\(534\) 0 0
\(535\) 3.35605 0.145095
\(536\) 0 0
\(537\) 13.9253 0.600921
\(538\) 0 0
\(539\) −8.44146 −0.363600
\(540\) 0 0
\(541\) 24.3454 1.04669 0.523346 0.852120i \(-0.324684\pi\)
0.523346 + 0.852120i \(0.324684\pi\)
\(542\) 0 0
\(543\) −0.424973 −0.0182373
\(544\) 0 0
\(545\) −4.58882 −0.196564
\(546\) 0 0
\(547\) −28.7948 −1.23118 −0.615588 0.788068i \(-0.711081\pi\)
−0.615588 + 0.788068i \(0.711081\pi\)
\(548\) 0 0
\(549\) 19.3853 0.827344
\(550\) 0 0
\(551\) 1.76167 0.0750495
\(552\) 0 0
\(553\) −2.46186 −0.104689
\(554\) 0 0
\(555\) 1.07230 0.0455168
\(556\) 0 0
\(557\) 32.1068 1.36041 0.680205 0.733022i \(-0.261891\pi\)
0.680205 + 0.733022i \(0.261891\pi\)
\(558\) 0 0
\(559\) 49.4451 2.09130
\(560\) 0 0
\(561\) 2.52529 0.106618
\(562\) 0 0
\(563\) −21.8005 −0.918781 −0.459391 0.888234i \(-0.651932\pi\)
−0.459391 + 0.888234i \(0.651932\pi\)
\(564\) 0 0
\(565\) 17.3173 0.728543
\(566\) 0 0
\(567\) 2.94204 0.123554
\(568\) 0 0
\(569\) −22.6529 −0.949660 −0.474830 0.880078i \(-0.657490\pi\)
−0.474830 + 0.880078i \(0.657490\pi\)
\(570\) 0 0
\(571\) 19.0835 0.798621 0.399311 0.916816i \(-0.369250\pi\)
0.399311 + 0.916816i \(0.369250\pi\)
\(572\) 0 0
\(573\) 17.2601 0.721051
\(574\) 0 0
\(575\) 3.60080 0.150164
\(576\) 0 0
\(577\) 6.08684 0.253398 0.126699 0.991941i \(-0.459562\pi\)
0.126699 + 0.991941i \(0.459562\pi\)
\(578\) 0 0
\(579\) 16.9111 0.702800
\(580\) 0 0
\(581\) −7.37599 −0.306007
\(582\) 0 0
\(583\) −5.27068 −0.218289
\(584\) 0 0
\(585\) −13.6322 −0.563623
\(586\) 0 0
\(587\) 30.3233 1.25158 0.625789 0.779993i \(-0.284777\pi\)
0.625789 + 0.779993i \(0.284777\pi\)
\(588\) 0 0
\(589\) 2.67210 0.110102
\(590\) 0 0
\(591\) −3.43605 −0.141340
\(592\) 0 0
\(593\) 28.2005 1.15806 0.579028 0.815308i \(-0.303432\pi\)
0.579028 + 0.815308i \(0.303432\pi\)
\(594\) 0 0
\(595\) −10.9114 −0.447325
\(596\) 0 0
\(597\) −10.3357 −0.423010
\(598\) 0 0
\(599\) 38.0516 1.55475 0.777374 0.629039i \(-0.216551\pi\)
0.777374 + 0.629039i \(0.216551\pi\)
\(600\) 0 0
\(601\) 19.0716 0.777947 0.388974 0.921249i \(-0.372830\pi\)
0.388974 + 0.921249i \(0.372830\pi\)
\(602\) 0 0
\(603\) −14.5400 −0.592113
\(604\) 0 0
\(605\) 10.1632 0.413193
\(606\) 0 0
\(607\) 5.73433 0.232749 0.116375 0.993205i \(-0.462873\pi\)
0.116375 + 0.993205i \(0.462873\pi\)
\(608\) 0 0
\(609\) −11.6661 −0.472736
\(610\) 0 0
\(611\) 75.1912 3.04191
\(612\) 0 0
\(613\) −7.59316 −0.306685 −0.153342 0.988173i \(-0.549004\pi\)
−0.153342 + 0.988173i \(0.549004\pi\)
\(614\) 0 0
\(615\) −0.615566 −0.0248220
\(616\) 0 0
\(617\) 28.2915 1.13897 0.569487 0.822000i \(-0.307142\pi\)
0.569487 + 0.822000i \(0.307142\pi\)
\(618\) 0 0
\(619\) 26.8233 1.07812 0.539059 0.842268i \(-0.318780\pi\)
0.539059 + 0.842268i \(0.318780\pi\)
\(620\) 0 0
\(621\) 18.2073 0.730632
\(622\) 0 0
\(623\) 44.0046 1.76301
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0.578024 0.0230841
\(628\) 0 0
\(629\) 2.84980 0.113629
\(630\) 0 0
\(631\) −41.7662 −1.66269 −0.831344 0.555758i \(-0.812428\pi\)
−0.831344 + 0.555758i \(0.812428\pi\)
\(632\) 0 0
\(633\) −4.05265 −0.161078
\(634\) 0 0
\(635\) 15.5438 0.616837
\(636\) 0 0
\(637\) −64.1415 −2.54138
\(638\) 0 0
\(639\) 27.0536 1.07022
\(640\) 0 0
\(641\) −2.85195 −0.112645 −0.0563227 0.998413i \(-0.517938\pi\)
−0.0563227 + 0.998413i \(0.517938\pi\)
\(642\) 0 0
\(643\) −45.1023 −1.77866 −0.889330 0.457266i \(-0.848829\pi\)
−0.889330 + 0.457266i \(0.848829\pi\)
\(644\) 0 0
\(645\) −7.25011 −0.285473
\(646\) 0 0
\(647\) 7.83402 0.307987 0.153994 0.988072i \(-0.450786\pi\)
0.153994 + 0.988072i \(0.450786\pi\)
\(648\) 0 0
\(649\) 1.58922 0.0623823
\(650\) 0 0
\(651\) −17.6952 −0.693532
\(652\) 0 0
\(653\) 17.9353 0.701863 0.350932 0.936401i \(-0.385865\pi\)
0.350932 + 0.936401i \(0.385865\pi\)
\(654\) 0 0
\(655\) 15.9482 0.623146
\(656\) 0 0
\(657\) 2.56682 0.100141
\(658\) 0 0
\(659\) −18.3415 −0.714485 −0.357243 0.934012i \(-0.616283\pi\)
−0.357243 + 0.934012i \(0.616283\pi\)
\(660\) 0 0
\(661\) −9.69862 −0.377232 −0.188616 0.982051i \(-0.560400\pi\)
−0.188616 + 0.982051i \(0.560400\pi\)
\(662\) 0 0
\(663\) 19.1882 0.745206
\(664\) 0 0
\(665\) −2.49756 −0.0968511
\(666\) 0 0
\(667\) 10.2315 0.396166
\(668\) 0 0
\(669\) −14.3198 −0.553634
\(670\) 0 0
\(671\) 9.04164 0.349049
\(672\) 0 0
\(673\) 23.1277 0.891508 0.445754 0.895155i \(-0.352936\pi\)
0.445754 + 0.895155i \(0.352936\pi\)
\(674\) 0 0
\(675\) 5.05645 0.194623
\(676\) 0 0
\(677\) 28.6408 1.10076 0.550378 0.834916i \(-0.314484\pi\)
0.550378 + 0.834916i \(0.314484\pi\)
\(678\) 0 0
\(679\) −51.3905 −1.97219
\(680\) 0 0
\(681\) 19.2412 0.737326
\(682\) 0 0
\(683\) 37.1878 1.42295 0.711475 0.702711i \(-0.248027\pi\)
0.711475 + 0.702711i \(0.248027\pi\)
\(684\) 0 0
\(685\) −3.67273 −0.140328
\(686\) 0 0
\(687\) 12.6635 0.483143
\(688\) 0 0
\(689\) −40.0487 −1.52573
\(690\) 0 0
\(691\) 6.94704 0.264278 0.132139 0.991231i \(-0.457815\pi\)
0.132139 + 0.991231i \(0.457815\pi\)
\(692\) 0 0
\(693\) 7.22733 0.274544
\(694\) 0 0
\(695\) 7.40414 0.280855
\(696\) 0 0
\(697\) −1.63595 −0.0619661
\(698\) 0 0
\(699\) 15.4379 0.583913
\(700\) 0 0
\(701\) −17.4794 −0.660189 −0.330094 0.943948i \(-0.607081\pi\)
−0.330094 + 0.943948i \(0.607081\pi\)
\(702\) 0 0
\(703\) 0.652300 0.0246020
\(704\) 0 0
\(705\) −11.0253 −0.415235
\(706\) 0 0
\(707\) 48.9832 1.84220
\(708\) 0 0
\(709\) 37.6289 1.41318 0.706591 0.707622i \(-0.250232\pi\)
0.706591 + 0.707622i \(0.250232\pi\)
\(710\) 0 0
\(711\) 1.19858 0.0449502
\(712\) 0 0
\(713\) 15.5192 0.581200
\(714\) 0 0
\(715\) −6.35830 −0.237787
\(716\) 0 0
\(717\) 18.2588 0.681886
\(718\) 0 0
\(719\) −50.9765 −1.90110 −0.950551 0.310570i \(-0.899480\pi\)
−0.950551 + 0.310570i \(0.899480\pi\)
\(720\) 0 0
\(721\) 48.4731 1.80523
\(722\) 0 0
\(723\) 26.1517 0.972591
\(724\) 0 0
\(725\) 2.84146 0.105529
\(726\) 0 0
\(727\) 13.2824 0.492616 0.246308 0.969192i \(-0.420782\pi\)
0.246308 + 0.969192i \(0.420782\pi\)
\(728\) 0 0
\(729\) 14.0280 0.519556
\(730\) 0 0
\(731\) −19.2682 −0.712659
\(732\) 0 0
\(733\) 30.1334 1.11300 0.556501 0.830847i \(-0.312143\pi\)
0.556501 + 0.830847i \(0.312143\pi\)
\(734\) 0 0
\(735\) 9.40505 0.346910
\(736\) 0 0
\(737\) −6.78168 −0.249807
\(738\) 0 0
\(739\) 8.25676 0.303730 0.151865 0.988401i \(-0.451472\pi\)
0.151865 + 0.988401i \(0.451472\pi\)
\(740\) 0 0
\(741\) 4.39205 0.161346
\(742\) 0 0
\(743\) 3.25778 0.119516 0.0597582 0.998213i \(-0.480967\pi\)
0.0597582 + 0.998213i \(0.480967\pi\)
\(744\) 0 0
\(745\) 4.65829 0.170667
\(746\) 0 0
\(747\) 3.59106 0.131390
\(748\) 0 0
\(749\) −13.5195 −0.493993
\(750\) 0 0
\(751\) −20.7322 −0.756530 −0.378265 0.925697i \(-0.623479\pi\)
−0.378265 + 0.925697i \(0.623479\pi\)
\(752\) 0 0
\(753\) −8.57882 −0.312630
\(754\) 0 0
\(755\) −6.93206 −0.252283
\(756\) 0 0
\(757\) 32.9904 1.19906 0.599529 0.800353i \(-0.295355\pi\)
0.599529 + 0.800353i \(0.295355\pi\)
\(758\) 0 0
\(759\) 3.35709 0.121854
\(760\) 0 0
\(761\) 24.0242 0.870878 0.435439 0.900218i \(-0.356593\pi\)
0.435439 + 0.900218i \(0.356593\pi\)
\(762\) 0 0
\(763\) 18.4856 0.669224
\(764\) 0 0
\(765\) 5.31232 0.192067
\(766\) 0 0
\(767\) 12.0755 0.436021
\(768\) 0 0
\(769\) −2.70862 −0.0976754 −0.0488377 0.998807i \(-0.515552\pi\)
−0.0488377 + 0.998807i \(0.515552\pi\)
\(770\) 0 0
\(771\) 4.25377 0.153196
\(772\) 0 0
\(773\) −32.4524 −1.16723 −0.583616 0.812030i \(-0.698363\pi\)
−0.583616 + 0.812030i \(0.698363\pi\)
\(774\) 0 0
\(775\) 4.30994 0.154817
\(776\) 0 0
\(777\) −4.31967 −0.154967
\(778\) 0 0
\(779\) −0.374459 −0.0134164
\(780\) 0 0
\(781\) 12.6183 0.451517
\(782\) 0 0
\(783\) 14.3677 0.513459
\(784\) 0 0
\(785\) −7.99926 −0.285506
\(786\) 0 0
\(787\) 19.8827 0.708743 0.354371 0.935105i \(-0.384695\pi\)
0.354371 + 0.935105i \(0.384695\pi\)
\(788\) 0 0
\(789\) −9.32013 −0.331805
\(790\) 0 0
\(791\) −69.7609 −2.48041
\(792\) 0 0
\(793\) 68.7019 2.43967
\(794\) 0 0
\(795\) 5.87233 0.208270
\(796\) 0 0
\(797\) 50.0997 1.77462 0.887311 0.461171i \(-0.152571\pi\)
0.887311 + 0.461171i \(0.152571\pi\)
\(798\) 0 0
\(799\) −29.3011 −1.03660
\(800\) 0 0
\(801\) −21.4240 −0.756981
\(802\) 0 0
\(803\) 1.19721 0.0422487
\(804\) 0 0
\(805\) −14.5055 −0.511251
\(806\) 0 0
\(807\) −12.1077 −0.426212
\(808\) 0 0
\(809\) −16.9217 −0.594935 −0.297467 0.954732i \(-0.596142\pi\)
−0.297467 + 0.954732i \(0.596142\pi\)
\(810\) 0 0
\(811\) −28.8881 −1.01440 −0.507200 0.861829i \(-0.669319\pi\)
−0.507200 + 0.861829i \(0.669319\pi\)
\(812\) 0 0
\(813\) 19.1397 0.671257
\(814\) 0 0
\(815\) 15.5204 0.543655
\(816\) 0 0
\(817\) −4.41036 −0.154299
\(818\) 0 0
\(819\) 54.9160 1.91892
\(820\) 0 0
\(821\) 45.9002 1.60193 0.800964 0.598713i \(-0.204321\pi\)
0.800964 + 0.598713i \(0.204321\pi\)
\(822\) 0 0
\(823\) −6.50705 −0.226821 −0.113411 0.993548i \(-0.536178\pi\)
−0.113411 + 0.993548i \(0.536178\pi\)
\(824\) 0 0
\(825\) 0.932316 0.0324591
\(826\) 0 0
\(827\) −38.2584 −1.33038 −0.665188 0.746676i \(-0.731649\pi\)
−0.665188 + 0.746676i \(0.731649\pi\)
\(828\) 0 0
\(829\) −12.0804 −0.419571 −0.209786 0.977747i \(-0.567277\pi\)
−0.209786 + 0.977747i \(0.567277\pi\)
\(830\) 0 0
\(831\) 5.10477 0.177083
\(832\) 0 0
\(833\) 24.9952 0.866032
\(834\) 0 0
\(835\) −11.7686 −0.407271
\(836\) 0 0
\(837\) 21.7930 0.753275
\(838\) 0 0
\(839\) 24.4138 0.842860 0.421430 0.906861i \(-0.361528\pi\)
0.421430 + 0.906861i \(0.361528\pi\)
\(840\) 0 0
\(841\) −20.9261 −0.721590
\(842\) 0 0
\(843\) 2.36258 0.0813716
\(844\) 0 0
\(845\) −35.3128 −1.21480
\(846\) 0 0
\(847\) −40.9414 −1.40676
\(848\) 0 0
\(849\) −2.35224 −0.0807287
\(850\) 0 0
\(851\) 3.78847 0.129867
\(852\) 0 0
\(853\) 11.6428 0.398642 0.199321 0.979934i \(-0.436126\pi\)
0.199321 + 0.979934i \(0.436126\pi\)
\(854\) 0 0
\(855\) 1.21596 0.0415848
\(856\) 0 0
\(857\) −4.73909 −0.161884 −0.0809421 0.996719i \(-0.525793\pi\)
−0.0809421 + 0.996719i \(0.525793\pi\)
\(858\) 0 0
\(859\) 13.6489 0.465693 0.232847 0.972513i \(-0.425196\pi\)
0.232847 + 0.972513i \(0.425196\pi\)
\(860\) 0 0
\(861\) 2.47975 0.0845096
\(862\) 0 0
\(863\) −3.80368 −0.129479 −0.0647393 0.997902i \(-0.520622\pi\)
−0.0647393 + 0.997902i \(0.520622\pi\)
\(864\) 0 0
\(865\) −1.98309 −0.0674269
\(866\) 0 0
\(867\) 9.84875 0.334481
\(868\) 0 0
\(869\) 0.559038 0.0189641
\(870\) 0 0
\(871\) −51.5299 −1.74602
\(872\) 0 0
\(873\) 25.0199 0.846796
\(874\) 0 0
\(875\) −4.02840 −0.136185
\(876\) 0 0
\(877\) −3.37880 −0.114094 −0.0570469 0.998371i \(-0.518168\pi\)
−0.0570469 + 0.998371i \(0.518168\pi\)
\(878\) 0 0
\(879\) −16.6891 −0.562911
\(880\) 0 0
\(881\) 23.6195 0.795762 0.397881 0.917437i \(-0.369746\pi\)
0.397881 + 0.917437i \(0.369746\pi\)
\(882\) 0 0
\(883\) 13.6437 0.459146 0.229573 0.973291i \(-0.426267\pi\)
0.229573 + 0.973291i \(0.426267\pi\)
\(884\) 0 0
\(885\) −1.77063 −0.0595189
\(886\) 0 0
\(887\) −8.91140 −0.299215 −0.149608 0.988745i \(-0.547801\pi\)
−0.149608 + 0.988745i \(0.547801\pi\)
\(888\) 0 0
\(889\) −62.6167 −2.10010
\(890\) 0 0
\(891\) −0.668077 −0.0223814
\(892\) 0 0
\(893\) −6.70685 −0.224436
\(894\) 0 0
\(895\) 13.6632 0.456709
\(896\) 0 0
\(897\) 25.5084 0.851702
\(898\) 0 0
\(899\) 12.2465 0.408444
\(900\) 0 0
\(901\) 15.6065 0.519928
\(902\) 0 0
\(903\) 29.2064 0.971927
\(904\) 0 0
\(905\) −0.416973 −0.0138606
\(906\) 0 0
\(907\) 33.2162 1.10293 0.551463 0.834200i \(-0.314070\pi\)
0.551463 + 0.834200i \(0.314070\pi\)
\(908\) 0 0
\(909\) −23.8479 −0.790984
\(910\) 0 0
\(911\) 1.77171 0.0586993 0.0293497 0.999569i \(-0.490656\pi\)
0.0293497 + 0.999569i \(0.490656\pi\)
\(912\) 0 0
\(913\) 1.67493 0.0554322
\(914\) 0 0
\(915\) −10.0737 −0.333027
\(916\) 0 0
\(917\) −64.2455 −2.12157
\(918\) 0 0
\(919\) −46.2001 −1.52400 −0.762001 0.647576i \(-0.775783\pi\)
−0.762001 + 0.647576i \(0.775783\pi\)
\(920\) 0 0
\(921\) 16.8804 0.556229
\(922\) 0 0
\(923\) 95.8784 3.15588
\(924\) 0 0
\(925\) 1.05212 0.0345935
\(926\) 0 0
\(927\) −23.5995 −0.775110
\(928\) 0 0
\(929\) −35.5011 −1.16475 −0.582376 0.812920i \(-0.697877\pi\)
−0.582376 + 0.812920i \(0.697877\pi\)
\(930\) 0 0
\(931\) 5.72124 0.187506
\(932\) 0 0
\(933\) −11.4218 −0.373932
\(934\) 0 0
\(935\) 2.47776 0.0810313
\(936\) 0 0
\(937\) 10.0385 0.327945 0.163972 0.986465i \(-0.447569\pi\)
0.163972 + 0.986465i \(0.447569\pi\)
\(938\) 0 0
\(939\) 7.65036 0.249660
\(940\) 0 0
\(941\) −59.8731 −1.95181 −0.975904 0.218200i \(-0.929981\pi\)
−0.975904 + 0.218200i \(0.929981\pi\)
\(942\) 0 0
\(943\) −2.17481 −0.0708215
\(944\) 0 0
\(945\) −20.3694 −0.662616
\(946\) 0 0
\(947\) 51.3903 1.66996 0.834980 0.550280i \(-0.185479\pi\)
0.834980 + 0.550280i \(0.185479\pi\)
\(948\) 0 0
\(949\) 9.09687 0.295297
\(950\) 0 0
\(951\) −23.4729 −0.761161
\(952\) 0 0
\(953\) −32.7338 −1.06035 −0.530176 0.847888i \(-0.677874\pi\)
−0.530176 + 0.847888i \(0.677874\pi\)
\(954\) 0 0
\(955\) 16.9352 0.548010
\(956\) 0 0
\(957\) 2.64914 0.0856344
\(958\) 0 0
\(959\) 14.7952 0.477762
\(960\) 0 0
\(961\) −12.4244 −0.400789
\(962\) 0 0
\(963\) 6.58209 0.212105
\(964\) 0 0
\(965\) 16.5927 0.534139
\(966\) 0 0
\(967\) −49.7169 −1.59879 −0.799394 0.600807i \(-0.794846\pi\)
−0.799394 + 0.600807i \(0.794846\pi\)
\(968\) 0 0
\(969\) −1.71153 −0.0549823
\(970\) 0 0
\(971\) −35.0636 −1.12524 −0.562622 0.826715i \(-0.690207\pi\)
−0.562622 + 0.826715i \(0.690207\pi\)
\(972\) 0 0
\(973\) −29.8269 −0.956205
\(974\) 0 0
\(975\) 7.08410 0.226873
\(976\) 0 0
\(977\) 49.4546 1.58219 0.791096 0.611692i \(-0.209511\pi\)
0.791096 + 0.611692i \(0.209511\pi\)
\(978\) 0 0
\(979\) −9.99253 −0.319363
\(980\) 0 0
\(981\) −8.99988 −0.287344
\(982\) 0 0
\(983\) −23.9656 −0.764383 −0.382191 0.924083i \(-0.624830\pi\)
−0.382191 + 0.924083i \(0.624830\pi\)
\(984\) 0 0
\(985\) −3.37137 −0.107421
\(986\) 0 0
\(987\) 44.4142 1.41372
\(988\) 0 0
\(989\) −25.6148 −0.814503
\(990\) 0 0
\(991\) 28.8345 0.915957 0.457978 0.888963i \(-0.348574\pi\)
0.457978 + 0.888963i \(0.348574\pi\)
\(992\) 0 0
\(993\) 27.9399 0.886645
\(994\) 0 0
\(995\) −10.1411 −0.321494
\(996\) 0 0
\(997\) −8.53071 −0.270170 −0.135085 0.990834i \(-0.543131\pi\)
−0.135085 + 0.990834i \(0.543131\pi\)
\(998\) 0 0
\(999\) 5.31998 0.168317
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5120.2.a.s.1.4 8
4.3 odd 2 5120.2.a.u.1.5 8
8.3 odd 2 5120.2.a.t.1.4 8
8.5 even 2 5120.2.a.v.1.5 8
32.3 odd 8 320.2.l.a.81.6 16
32.5 even 8 640.2.l.b.481.6 16
32.11 odd 8 320.2.l.a.241.6 16
32.13 even 8 640.2.l.b.161.6 16
32.19 odd 8 640.2.l.a.161.3 16
32.21 even 8 80.2.l.a.21.1 16
32.27 odd 8 640.2.l.a.481.3 16
32.29 even 8 80.2.l.a.61.1 yes 16
96.11 even 8 2880.2.t.c.2161.1 16
96.29 odd 8 720.2.t.c.541.8 16
96.35 even 8 2880.2.t.c.721.4 16
96.53 odd 8 720.2.t.c.181.8 16
160.3 even 8 1600.2.q.h.849.3 16
160.29 even 8 400.2.l.h.301.8 16
160.43 even 8 1600.2.q.g.49.6 16
160.53 odd 8 400.2.q.h.149.4 16
160.67 even 8 1600.2.q.g.849.6 16
160.93 odd 8 400.2.q.g.349.5 16
160.99 odd 8 1600.2.l.i.401.3 16
160.107 even 8 1600.2.q.h.49.3 16
160.117 odd 8 400.2.q.g.149.5 16
160.139 odd 8 1600.2.l.i.1201.3 16
160.149 even 8 400.2.l.h.101.8 16
160.157 odd 8 400.2.q.h.349.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.1 16 32.21 even 8
80.2.l.a.61.1 yes 16 32.29 even 8
320.2.l.a.81.6 16 32.3 odd 8
320.2.l.a.241.6 16 32.11 odd 8
400.2.l.h.101.8 16 160.149 even 8
400.2.l.h.301.8 16 160.29 even 8
400.2.q.g.149.5 16 160.117 odd 8
400.2.q.g.349.5 16 160.93 odd 8
400.2.q.h.149.4 16 160.53 odd 8
400.2.q.h.349.4 16 160.157 odd 8
640.2.l.a.161.3 16 32.19 odd 8
640.2.l.a.481.3 16 32.27 odd 8
640.2.l.b.161.6 16 32.13 even 8
640.2.l.b.481.6 16 32.5 even 8
720.2.t.c.181.8 16 96.53 odd 8
720.2.t.c.541.8 16 96.29 odd 8
1600.2.l.i.401.3 16 160.99 odd 8
1600.2.l.i.1201.3 16 160.139 odd 8
1600.2.q.g.49.6 16 160.43 even 8
1600.2.q.g.849.6 16 160.67 even 8
1600.2.q.h.49.3 16 160.107 even 8
1600.2.q.h.849.3 16 160.3 even 8
2880.2.t.c.721.4 16 96.35 even 8
2880.2.t.c.2161.1 16 96.11 even 8
5120.2.a.s.1.4 8 1.1 even 1 trivial
5120.2.a.t.1.4 8 8.3 odd 2
5120.2.a.u.1.5 8 4.3 odd 2
5120.2.a.v.1.5 8 8.5 even 2