L(s) = 1 | + (−0.707 + 0.707i)5-s + 4.02i·7-s + (−0.646 + 0.646i)11-s + (4.91 + 4.91i)13-s + 2.70·17-s + (0.438 + 0.438i)19-s + 3.60i·23-s − 1.00i·25-s + (−2.00 − 2.00i)29-s − 4.30·31-s + (−2.84 − 2.84i)35-s + (−0.743 + 0.743i)37-s + 0.603i·41-s + (5.03 − 5.03i)43-s + 10.8·47-s + ⋯ |
L(s) = 1 | + (−0.316 + 0.316i)5-s + 1.52i·7-s + (−0.195 + 0.195i)11-s + (1.36 + 1.36i)13-s + 0.656·17-s + (0.100 + 0.100i)19-s + 0.750i·23-s − 0.200i·25-s + (−0.373 − 0.373i)29-s − 0.774·31-s + (−0.481 − 0.481i)35-s + (−0.122 + 0.122i)37-s + 0.0943i·41-s + (0.767 − 0.767i)43-s + 1.57·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.659 - 0.751i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.659 - 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.535918867\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.535918867\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 - 4.02iT - 7T^{2} \) |
| 11 | \( 1 + (0.646 - 0.646i)T - 11iT^{2} \) |
| 13 | \( 1 + (-4.91 - 4.91i)T + 13iT^{2} \) |
| 17 | \( 1 - 2.70T + 17T^{2} \) |
| 19 | \( 1 + (-0.438 - 0.438i)T + 19iT^{2} \) |
| 23 | \( 1 - 3.60iT - 23T^{2} \) |
| 29 | \( 1 + (2.00 + 2.00i)T + 29iT^{2} \) |
| 31 | \( 1 + 4.30T + 31T^{2} \) |
| 37 | \( 1 + (0.743 - 0.743i)T - 37iT^{2} \) |
| 41 | \( 1 - 0.603iT - 41T^{2} \) |
| 43 | \( 1 + (-5.03 + 5.03i)T - 43iT^{2} \) |
| 47 | \( 1 - 10.8T + 47T^{2} \) |
| 53 | \( 1 + (4.07 - 4.07i)T - 53iT^{2} \) |
| 59 | \( 1 + (-1.22 + 1.22i)T - 59iT^{2} \) |
| 61 | \( 1 + (6.98 + 6.98i)T + 61iT^{2} \) |
| 67 | \( 1 + (5.24 + 5.24i)T + 67iT^{2} \) |
| 71 | \( 1 - 13.7iT - 71T^{2} \) |
| 73 | \( 1 + 1.30iT - 73T^{2} \) |
| 79 | \( 1 + 0.611T + 79T^{2} \) |
| 83 | \( 1 + (-1.29 - 1.29i)T + 83iT^{2} \) |
| 89 | \( 1 - 10.9iT - 89T^{2} \) |
| 97 | \( 1 + 12.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.159776199828504641466023860206, −8.361849760500393826296445208136, −7.59734598431589432959338467309, −6.71956856540174982122116880148, −5.89826971462876759550643730696, −5.42510201482606007858162144290, −4.22190021342095894519507797605, −3.46818932225154102577114527915, −2.43423251355292341613341908564, −1.52430991053254894532299044337,
0.53538844710510925036933647822, 1.32388391976543762356404584582, 3.02154418956695063551204959732, 3.71825955801444165473167277776, 4.42290115934927625457144089522, 5.46838117231996121577450307760, 6.13852387296515953594931062704, 7.21811055615128267127689478945, 7.70567800105031534434147129927, 8.380100164253408989687936198491