Properties

Label 288.8.a.m.1.2
Level $288$
Weight $8$
Character 288.1
Self dual yes
Analytic conductor $89.967$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [288,8,Mod(1,288)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("288.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(288, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 288.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,28,0,936,0,0,0,3384] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.9668873394\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 96)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 288.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+366.727 q^{5} -355.029 q^{7} +7100.47 q^{11} -3599.83 q^{13} +21326.7 q^{17} +15138.3 q^{19} -95346.3 q^{23} +56363.3 q^{25} +194218. q^{29} +16519.2 q^{31} -130198. q^{35} +321381. q^{37} -159119. q^{41} +856303. q^{43} -748446. q^{47} -697498. q^{49} +305261. q^{53} +2.60393e6 q^{55} -688982. q^{59} +1.17704e6 q^{61} -1.32015e6 q^{65} -4.25969e6 q^{67} -4.43415e6 q^{71} -2.12132e6 q^{73} -2.52087e6 q^{77} +2.37842e6 q^{79} +6.71208e6 q^{83} +7.82107e6 q^{85} +5.65976e6 q^{89} +1.27804e6 q^{91} +5.55162e6 q^{95} +1.56487e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 28 q^{5} + 936 q^{7} + 3384 q^{11} - 17076 q^{13} + 18668 q^{17} + 44856 q^{19} - 43488 q^{23} + 92974 q^{25} + 19484 q^{29} + 332856 q^{31} - 567504 q^{35} - 9076 q^{37} - 491780 q^{41} + 510984 q^{43}+ \cdots + 23720868 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 366.727 1.31204 0.656020 0.754743i \(-0.272239\pi\)
0.656020 + 0.754743i \(0.272239\pi\)
\(6\) 0 0
\(7\) −355.029 −0.391219 −0.195610 0.980682i \(-0.562669\pi\)
−0.195610 + 0.980682i \(0.562669\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 7100.47 1.60847 0.804235 0.594312i \(-0.202575\pi\)
0.804235 + 0.594312i \(0.202575\pi\)
\(12\) 0 0
\(13\) −3599.83 −0.454444 −0.227222 0.973843i \(-0.572964\pi\)
−0.227222 + 0.973843i \(0.572964\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 21326.7 1.05282 0.526408 0.850232i \(-0.323538\pi\)
0.526408 + 0.850232i \(0.323538\pi\)
\(18\) 0 0
\(19\) 15138.3 0.506337 0.253169 0.967422i \(-0.418527\pi\)
0.253169 + 0.967422i \(0.418527\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −95346.3 −1.63402 −0.817008 0.576626i \(-0.804369\pi\)
−0.817008 + 0.576626i \(0.804369\pi\)
\(24\) 0 0
\(25\) 56363.3 0.721451
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 194218. 1.47876 0.739378 0.673291i \(-0.235120\pi\)
0.739378 + 0.673291i \(0.235120\pi\)
\(30\) 0 0
\(31\) 16519.2 0.0995919 0.0497959 0.998759i \(-0.484143\pi\)
0.0497959 + 0.998759i \(0.484143\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −130198. −0.513295
\(36\) 0 0
\(37\) 321381. 1.04307 0.521536 0.853229i \(-0.325359\pi\)
0.521536 + 0.853229i \(0.325359\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −159119. −0.360561 −0.180281 0.983615i \(-0.557701\pi\)
−0.180281 + 0.983615i \(0.557701\pi\)
\(42\) 0 0
\(43\) 856303. 1.64243 0.821217 0.570616i \(-0.193296\pi\)
0.821217 + 0.570616i \(0.193296\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −748446. −1.05152 −0.525760 0.850633i \(-0.676219\pi\)
−0.525760 + 0.850633i \(0.676219\pi\)
\(48\) 0 0
\(49\) −697498. −0.846948
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 305261. 0.281648 0.140824 0.990035i \(-0.455025\pi\)
0.140824 + 0.990035i \(0.455025\pi\)
\(54\) 0 0
\(55\) 2.60393e6 2.11038
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −688982. −0.436743 −0.218371 0.975866i \(-0.570074\pi\)
−0.218371 + 0.975866i \(0.570074\pi\)
\(60\) 0 0
\(61\) 1.17704e6 0.663951 0.331976 0.943288i \(-0.392285\pi\)
0.331976 + 0.943288i \(0.392285\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.32015e6 −0.596249
\(66\) 0 0
\(67\) −4.25969e6 −1.73028 −0.865139 0.501532i \(-0.832770\pi\)
−0.865139 + 0.501532i \(0.832770\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.43415e6 −1.47030 −0.735150 0.677905i \(-0.762888\pi\)
−0.735150 + 0.677905i \(0.762888\pi\)
\(72\) 0 0
\(73\) −2.12132e6 −0.638228 −0.319114 0.947716i \(-0.603385\pi\)
−0.319114 + 0.947716i \(0.603385\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.52087e6 −0.629264
\(78\) 0 0
\(79\) 2.37842e6 0.542742 0.271371 0.962475i \(-0.412523\pi\)
0.271371 + 0.962475i \(0.412523\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.71208e6 1.28850 0.644249 0.764816i \(-0.277170\pi\)
0.644249 + 0.764816i \(0.277170\pi\)
\(84\) 0 0
\(85\) 7.82107e6 1.38134
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.65976e6 0.851007 0.425504 0.904957i \(-0.360097\pi\)
0.425504 + 0.904957i \(0.360097\pi\)
\(90\) 0 0
\(91\) 1.27804e6 0.177787
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.55162e6 0.664335
\(96\) 0 0
\(97\) 1.56487e7 1.74092 0.870458 0.492243i \(-0.163823\pi\)
0.870458 + 0.492243i \(0.163823\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.69363e7 1.63566 0.817830 0.575459i \(-0.195177\pi\)
0.817830 + 0.575459i \(0.195177\pi\)
\(102\) 0 0
\(103\) −1.07025e7 −0.965062 −0.482531 0.875879i \(-0.660282\pi\)
−0.482531 + 0.875879i \(0.660282\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.82697e7 1.44174 0.720871 0.693069i \(-0.243742\pi\)
0.720871 + 0.693069i \(0.243742\pi\)
\(108\) 0 0
\(109\) 936031. 0.0692305 0.0346153 0.999401i \(-0.488979\pi\)
0.0346153 + 0.999401i \(0.488979\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.92584e7 1.25558 0.627791 0.778382i \(-0.283959\pi\)
0.627791 + 0.778382i \(0.283959\pi\)
\(114\) 0 0
\(115\) −3.49660e7 −2.14390
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.57159e6 −0.411882
\(120\) 0 0
\(121\) 3.09296e7 1.58718
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.98058e6 −0.365468
\(126\) 0 0
\(127\) 3.40542e7 1.47522 0.737610 0.675227i \(-0.235954\pi\)
0.737610 + 0.675227i \(0.235954\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.61205e6 0.179244 0.0896220 0.995976i \(-0.471434\pi\)
0.0896220 + 0.995976i \(0.471434\pi\)
\(132\) 0 0
\(133\) −5.37454e6 −0.198089
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.14188e7 0.379401 0.189701 0.981842i \(-0.439248\pi\)
0.189701 + 0.981842i \(0.439248\pi\)
\(138\) 0 0
\(139\) −9.97814e6 −0.315136 −0.157568 0.987508i \(-0.550365\pi\)
−0.157568 + 0.987508i \(0.550365\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.55605e7 −0.730959
\(144\) 0 0
\(145\) 7.12249e7 1.94019
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.19127e7 −0.790337 −0.395168 0.918609i \(-0.629314\pi\)
−0.395168 + 0.918609i \(0.629314\pi\)
\(150\) 0 0
\(151\) 3.56752e6 0.0843231 0.0421616 0.999111i \(-0.486576\pi\)
0.0421616 + 0.999111i \(0.486576\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.05804e6 0.130669
\(156\) 0 0
\(157\) 5.56485e7 1.14764 0.573818 0.818983i \(-0.305462\pi\)
0.573818 + 0.818983i \(0.305462\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.38506e7 0.639258
\(162\) 0 0
\(163\) 6.68712e7 1.20943 0.604717 0.796440i \(-0.293286\pi\)
0.604717 + 0.796440i \(0.293286\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.58953e7 0.430242 0.215121 0.976587i \(-0.430985\pi\)
0.215121 + 0.976587i \(0.430985\pi\)
\(168\) 0 0
\(169\) −4.97898e7 −0.793481
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.85506e7 −0.272394 −0.136197 0.990682i \(-0.543488\pi\)
−0.136197 + 0.990682i \(0.543488\pi\)
\(174\) 0 0
\(175\) −2.00106e7 −0.282245
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.44092e8 −1.87783 −0.938913 0.344155i \(-0.888166\pi\)
−0.938913 + 0.344155i \(0.888166\pi\)
\(180\) 0 0
\(181\) 7.97401e7 0.999544 0.499772 0.866157i \(-0.333417\pi\)
0.499772 + 0.866157i \(0.333417\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.17859e8 1.36855
\(186\) 0 0
\(187\) 1.51430e8 1.69342
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.09598e8 −1.13811 −0.569057 0.822298i \(-0.692692\pi\)
−0.569057 + 0.822298i \(0.692692\pi\)
\(192\) 0 0
\(193\) 1.79334e8 1.79561 0.897803 0.440398i \(-0.145163\pi\)
0.897803 + 0.440398i \(0.145163\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.26410e8 1.17801 0.589005 0.808130i \(-0.299520\pi\)
0.589005 + 0.808130i \(0.299520\pi\)
\(198\) 0 0
\(199\) −5.38271e7 −0.484189 −0.242095 0.970253i \(-0.577834\pi\)
−0.242095 + 0.970253i \(0.577834\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.89529e7 −0.578518
\(204\) 0 0
\(205\) −5.83533e7 −0.473071
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.07489e8 0.814428
\(210\) 0 0
\(211\) 2.40216e7 0.176041 0.0880204 0.996119i \(-0.471946\pi\)
0.0880204 + 0.996119i \(0.471946\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.14029e8 2.15494
\(216\) 0 0
\(217\) −5.86480e6 −0.0389622
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.67725e7 −0.478446
\(222\) 0 0
\(223\) −7.70788e7 −0.465445 −0.232722 0.972543i \(-0.574763\pi\)
−0.232722 + 0.972543i \(0.574763\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.46115e8 1.39652 0.698261 0.715844i \(-0.253958\pi\)
0.698261 + 0.715844i \(0.253958\pi\)
\(228\) 0 0
\(229\) 3.29557e8 1.81345 0.906725 0.421722i \(-0.138574\pi\)
0.906725 + 0.421722i \(0.138574\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.14579e8 −0.593416 −0.296708 0.954968i \(-0.595889\pi\)
−0.296708 + 0.954968i \(0.595889\pi\)
\(234\) 0 0
\(235\) −2.74475e8 −1.37964
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.39074e8 0.658953 0.329476 0.944164i \(-0.393128\pi\)
0.329476 + 0.944164i \(0.393128\pi\)
\(240\) 0 0
\(241\) −1.21938e8 −0.561150 −0.280575 0.959832i \(-0.590525\pi\)
−0.280575 + 0.959832i \(0.590525\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.55791e8 −1.11123
\(246\) 0 0
\(247\) −5.44954e7 −0.230102
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.59091e8 −1.83249 −0.916243 0.400622i \(-0.868794\pi\)
−0.916243 + 0.400622i \(0.868794\pi\)
\(252\) 0 0
\(253\) −6.77004e8 −2.62827
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.44461e8 0.898347 0.449173 0.893445i \(-0.351719\pi\)
0.449173 + 0.893445i \(0.351719\pi\)
\(258\) 0 0
\(259\) −1.14100e8 −0.408070
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.17922e7 0.141661 0.0708305 0.997488i \(-0.477435\pi\)
0.0708305 + 0.997488i \(0.477435\pi\)
\(264\) 0 0
\(265\) 1.11947e8 0.369533
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.67457e8 −1.77746 −0.888730 0.458431i \(-0.848412\pi\)
−0.888730 + 0.458431i \(0.848412\pi\)
\(270\) 0 0
\(271\) −3.17865e8 −0.970176 −0.485088 0.874465i \(-0.661212\pi\)
−0.485088 + 0.874465i \(0.661212\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.00206e8 1.16043
\(276\) 0 0
\(277\) −6.09683e8 −1.72355 −0.861777 0.507287i \(-0.830649\pi\)
−0.861777 + 0.507287i \(0.830649\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.74608e8 0.469453 0.234726 0.972061i \(-0.424581\pi\)
0.234726 + 0.972061i \(0.424581\pi\)
\(282\) 0 0
\(283\) 5.36563e8 1.40724 0.703620 0.710576i \(-0.251566\pi\)
0.703620 + 0.710576i \(0.251566\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.64919e7 0.141059
\(288\) 0 0
\(289\) 4.44895e7 0.108422
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.35688e8 −1.47641 −0.738206 0.674576i \(-0.764327\pi\)
−0.738206 + 0.674576i \(0.764327\pi\)
\(294\) 0 0
\(295\) −2.52668e8 −0.573024
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.43230e8 0.742568
\(300\) 0 0
\(301\) −3.04012e8 −0.642551
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.31651e8 0.871131
\(306\) 0 0
\(307\) −3.05086e8 −0.601781 −0.300890 0.953659i \(-0.597284\pi\)
−0.300890 + 0.953659i \(0.597284\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.78228e8 −0.901517 −0.450758 0.892646i \(-0.648846\pi\)
−0.450758 + 0.892646i \(0.648846\pi\)
\(312\) 0 0
\(313\) −3.87232e8 −0.713783 −0.356891 0.934146i \(-0.616163\pi\)
−0.356891 + 0.934146i \(0.616163\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.58088e8 −0.807683 −0.403842 0.914829i \(-0.632325\pi\)
−0.403842 + 0.914829i \(0.632325\pi\)
\(318\) 0 0
\(319\) 1.37904e9 2.37853
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.22850e8 0.533080
\(324\) 0 0
\(325\) −2.02898e8 −0.327859
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.65720e8 0.411375
\(330\) 0 0
\(331\) 3.25648e8 0.493572 0.246786 0.969070i \(-0.420626\pi\)
0.246786 + 0.969070i \(0.420626\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.56214e9 −2.27020
\(336\) 0 0
\(337\) 7.38971e8 1.05177 0.525887 0.850554i \(-0.323733\pi\)
0.525887 + 0.850554i \(0.323733\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.17294e8 0.160190
\(342\) 0 0
\(343\) 5.40013e8 0.722561
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.79778e8 −1.25885 −0.629426 0.777060i \(-0.716710\pi\)
−0.629426 + 0.777060i \(0.716710\pi\)
\(348\) 0 0
\(349\) −1.24643e9 −1.56956 −0.784780 0.619775i \(-0.787224\pi\)
−0.784780 + 0.619775i \(0.787224\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.58065e8 0.796264 0.398132 0.917328i \(-0.369659\pi\)
0.398132 + 0.917328i \(0.369659\pi\)
\(354\) 0 0
\(355\) −1.62612e9 −1.92909
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.52591e7 0.0516269 0.0258134 0.999667i \(-0.491782\pi\)
0.0258134 + 0.999667i \(0.491782\pi\)
\(360\) 0 0
\(361\) −6.64703e8 −0.743622
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.77944e8 −0.837382
\(366\) 0 0
\(367\) 1.03217e9 1.08998 0.544991 0.838442i \(-0.316533\pi\)
0.544991 + 0.838442i \(0.316533\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.08377e8 −0.110186
\(372\) 0 0
\(373\) −5.25005e8 −0.523821 −0.261910 0.965092i \(-0.584353\pi\)
−0.261910 + 0.965092i \(0.584353\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.99151e8 −0.672011
\(378\) 0 0
\(379\) 8.22050e8 0.775642 0.387821 0.921735i \(-0.373228\pi\)
0.387821 + 0.921735i \(0.373228\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.99387e8 0.272293 0.136147 0.990689i \(-0.456528\pi\)
0.136147 + 0.990689i \(0.456528\pi\)
\(384\) 0 0
\(385\) −9.24470e8 −0.825620
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.12130e8 −0.613389 −0.306694 0.951808i \(-0.599223\pi\)
−0.306694 + 0.951808i \(0.599223\pi\)
\(390\) 0 0
\(391\) −2.03342e9 −1.72032
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.72229e8 0.712099
\(396\) 0 0
\(397\) 5.53020e8 0.443582 0.221791 0.975094i \(-0.428810\pi\)
0.221791 + 0.975094i \(0.428810\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.24965e8 −0.406561 −0.203280 0.979121i \(-0.565160\pi\)
−0.203280 + 0.979121i \(0.565160\pi\)
\(402\) 0 0
\(403\) −5.94664e7 −0.0452589
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.28196e9 1.67775
\(408\) 0 0
\(409\) 2.85772e8 0.206533 0.103266 0.994654i \(-0.467071\pi\)
0.103266 + 0.994654i \(0.467071\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.44608e8 0.170862
\(414\) 0 0
\(415\) 2.46150e9 1.69056
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.14977e9 0.763591 0.381796 0.924247i \(-0.375306\pi\)
0.381796 + 0.924247i \(0.375306\pi\)
\(420\) 0 0
\(421\) 2.46430e7 0.0160956 0.00804778 0.999968i \(-0.497438\pi\)
0.00804778 + 0.999968i \(0.497438\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.20204e9 0.759555
\(426\) 0 0
\(427\) −4.17882e8 −0.259751
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.58335e9 −0.952593 −0.476297 0.879285i \(-0.658021\pi\)
−0.476297 + 0.879285i \(0.658021\pi\)
\(432\) 0 0
\(433\) −8.36866e8 −0.495391 −0.247695 0.968838i \(-0.579673\pi\)
−0.247695 + 0.968838i \(0.579673\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.44338e9 −0.827363
\(438\) 0 0
\(439\) −3.08460e9 −1.74010 −0.870048 0.492967i \(-0.835912\pi\)
−0.870048 + 0.492967i \(0.835912\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.35708e8 −0.511360 −0.255680 0.966761i \(-0.582299\pi\)
−0.255680 + 0.966761i \(0.582299\pi\)
\(444\) 0 0
\(445\) 2.07558e9 1.11656
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.11014e9 −1.62150 −0.810752 0.585390i \(-0.800942\pi\)
−0.810752 + 0.585390i \(0.800942\pi\)
\(450\) 0 0
\(451\) −1.12982e9 −0.579952
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.68692e8 0.233264
\(456\) 0 0
\(457\) 2.01909e9 0.989577 0.494789 0.869013i \(-0.335246\pi\)
0.494789 + 0.869013i \(0.335246\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.35152e8 0.349481 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(462\) 0 0
\(463\) −2.98518e9 −1.39777 −0.698887 0.715232i \(-0.746321\pi\)
−0.698887 + 0.715232i \(0.746321\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.07591e9 1.39754 0.698769 0.715347i \(-0.253731\pi\)
0.698769 + 0.715347i \(0.253731\pi\)
\(468\) 0 0
\(469\) 1.51231e9 0.676918
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.08016e9 2.64180
\(474\) 0 0
\(475\) 8.53246e8 0.365298
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.60321e9 0.666523 0.333262 0.942834i \(-0.391851\pi\)
0.333262 + 0.942834i \(0.391851\pi\)
\(480\) 0 0
\(481\) −1.15692e9 −0.474018
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.73880e9 2.28415
\(486\) 0 0
\(487\) −1.70605e9 −0.669331 −0.334665 0.942337i \(-0.608623\pi\)
−0.334665 + 0.942337i \(0.608623\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.03396e9 −1.15671 −0.578355 0.815785i \(-0.696305\pi\)
−0.578355 + 0.815785i \(0.696305\pi\)
\(492\) 0 0
\(493\) 4.14203e9 1.55686
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.57425e9 0.575209
\(498\) 0 0
\(499\) 2.91071e9 1.04869 0.524344 0.851506i \(-0.324310\pi\)
0.524344 + 0.851506i \(0.324310\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.61700e9 0.566528 0.283264 0.959042i \(-0.408583\pi\)
0.283264 + 0.959042i \(0.408583\pi\)
\(504\) 0 0
\(505\) 6.21098e9 2.14605
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.47914e8 −0.0497163 −0.0248581 0.999691i \(-0.507913\pi\)
−0.0248581 + 0.999691i \(0.507913\pi\)
\(510\) 0 0
\(511\) 7.53129e8 0.249687
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.92489e9 −1.26620
\(516\) 0 0
\(517\) −5.31432e9 −1.69134
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.28069e9 −0.706536 −0.353268 0.935522i \(-0.614930\pi\)
−0.353268 + 0.935522i \(0.614930\pi\)
\(522\) 0 0
\(523\) 3.70860e9 1.13359 0.566793 0.823860i \(-0.308184\pi\)
0.566793 + 0.823860i \(0.308184\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.52301e8 0.104852
\(528\) 0 0
\(529\) 5.68609e9 1.67001
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.72802e8 0.163855
\(534\) 0 0
\(535\) 6.69998e9 1.89163
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.95256e9 −1.36229
\(540\) 0 0
\(541\) 2.43003e8 0.0659813 0.0329907 0.999456i \(-0.489497\pi\)
0.0329907 + 0.999456i \(0.489497\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.43267e8 0.0908333
\(546\) 0 0
\(547\) −1.23514e9 −0.322672 −0.161336 0.986900i \(-0.551580\pi\)
−0.161336 + 0.986900i \(0.551580\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.94013e9 0.748749
\(552\) 0 0
\(553\) −8.44406e8 −0.212331
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.03766e8 0.0990002 0.0495001 0.998774i \(-0.484237\pi\)
0.0495001 + 0.998774i \(0.484237\pi\)
\(558\) 0 0
\(559\) −3.08254e9 −0.746394
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.17239e9 0.276882 0.138441 0.990371i \(-0.455791\pi\)
0.138441 + 0.990371i \(0.455791\pi\)
\(564\) 0 0
\(565\) 7.06256e9 1.64738
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.08771e9 −0.702658 −0.351329 0.936252i \(-0.614270\pi\)
−0.351329 + 0.936252i \(0.614270\pi\)
\(570\) 0 0
\(571\) 1.26406e9 0.284147 0.142073 0.989856i \(-0.454623\pi\)
0.142073 + 0.989856i \(0.454623\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.37403e9 −1.17886
\(576\) 0 0
\(577\) −4.12237e9 −0.893371 −0.446685 0.894691i \(-0.647396\pi\)
−0.446685 + 0.894691i \(0.647396\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.38298e9 −0.504085
\(582\) 0 0
\(583\) 2.16750e9 0.453022
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.43332e9 −0.292489 −0.146245 0.989248i \(-0.546719\pi\)
−0.146245 + 0.989248i \(0.546719\pi\)
\(588\) 0 0
\(589\) 2.50073e8 0.0504271
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9.06949e9 −1.78604 −0.893021 0.450015i \(-0.851419\pi\)
−0.893021 + 0.450015i \(0.851419\pi\)
\(594\) 0 0
\(595\) −2.77670e9 −0.540406
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.87038e9 −1.30613 −0.653065 0.757302i \(-0.726517\pi\)
−0.653065 + 0.757302i \(0.726517\pi\)
\(600\) 0 0
\(601\) 1.21863e9 0.228988 0.114494 0.993424i \(-0.463475\pi\)
0.114494 + 0.993424i \(0.463475\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.13427e10 2.08244
\(606\) 0 0
\(607\) −2.23889e8 −0.0406324 −0.0203162 0.999794i \(-0.506467\pi\)
−0.0203162 + 0.999794i \(0.506467\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.69428e9 0.477857
\(612\) 0 0
\(613\) 2.74524e9 0.481359 0.240680 0.970605i \(-0.422630\pi\)
0.240680 + 0.970605i \(0.422630\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.52382e7 −0.00432574 −0.00216287 0.999998i \(-0.500688\pi\)
−0.00216287 + 0.999998i \(0.500688\pi\)
\(618\) 0 0
\(619\) 4.17398e9 0.707347 0.353674 0.935369i \(-0.384932\pi\)
0.353674 + 0.935369i \(0.384932\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.00938e9 −0.332930
\(624\) 0 0
\(625\) −7.33008e9 −1.20096
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.85400e9 1.09816
\(630\) 0 0
\(631\) −1.64464e9 −0.260596 −0.130298 0.991475i \(-0.541593\pi\)
−0.130298 + 0.991475i \(0.541593\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.24886e10 1.93555
\(636\) 0 0
\(637\) 2.51087e9 0.384890
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.21295e8 −0.108171 −0.0540854 0.998536i \(-0.517224\pi\)
−0.0540854 + 0.998536i \(0.517224\pi\)
\(642\) 0 0
\(643\) 9.90611e8 0.146948 0.0734741 0.997297i \(-0.476591\pi\)
0.0734741 + 0.997297i \(0.476591\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.87612e9 0.998110 0.499055 0.866570i \(-0.333681\pi\)
0.499055 + 0.866570i \(0.333681\pi\)
\(648\) 0 0
\(649\) −4.89210e9 −0.702488
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.58692e9 −0.925734 −0.462867 0.886428i \(-0.653179\pi\)
−0.462867 + 0.886428i \(0.653179\pi\)
\(654\) 0 0
\(655\) 1.69136e9 0.235175
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.21929e9 0.165961 0.0829806 0.996551i \(-0.473556\pi\)
0.0829806 + 0.996551i \(0.473556\pi\)
\(660\) 0 0
\(661\) 1.93235e9 0.260244 0.130122 0.991498i \(-0.458463\pi\)
0.130122 + 0.991498i \(0.458463\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.97098e9 −0.259901
\(666\) 0 0
\(667\) −1.85180e10 −2.41631
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.35753e9 1.06795
\(672\) 0 0
\(673\) −9.47851e9 −1.19864 −0.599318 0.800511i \(-0.704561\pi\)
−0.599318 + 0.800511i \(0.704561\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.46353e9 0.924452 0.462226 0.886762i \(-0.347051\pi\)
0.462226 + 0.886762i \(0.347051\pi\)
\(678\) 0 0
\(679\) −5.55574e9 −0.681079
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.79020e9 0.214995 0.107498 0.994205i \(-0.465716\pi\)
0.107498 + 0.994205i \(0.465716\pi\)
\(684\) 0 0
\(685\) 4.18758e9 0.497790
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.09889e9 −0.127993
\(690\) 0 0
\(691\) −7.44397e9 −0.858285 −0.429142 0.903237i \(-0.641184\pi\)
−0.429142 + 0.903237i \(0.641184\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.65925e9 −0.413471
\(696\) 0 0
\(697\) −3.39349e9 −0.379605
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.28971e9 0.141410 0.0707050 0.997497i \(-0.477475\pi\)
0.0707050 + 0.997497i \(0.477475\pi\)
\(702\) 0 0
\(703\) 4.86517e9 0.528147
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.01286e9 −0.639902
\(708\) 0 0
\(709\) 3.13464e9 0.330313 0.165157 0.986267i \(-0.447187\pi\)
0.165157 + 0.986267i \(0.447187\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.57505e9 −0.162735
\(714\) 0 0
\(715\) −9.37371e9 −0.959048
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7.98384e9 −0.801052 −0.400526 0.916285i \(-0.631173\pi\)
−0.400526 + 0.916285i \(0.631173\pi\)
\(720\) 0 0
\(721\) 3.79969e9 0.377551
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.09468e10 1.06685
\(726\) 0 0
\(727\) 3.62828e9 0.350212 0.175106 0.984550i \(-0.443973\pi\)
0.175106 + 0.984550i \(0.443973\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.82621e10 1.72918
\(732\) 0 0
\(733\) −1.42705e10 −1.33837 −0.669183 0.743098i \(-0.733356\pi\)
−0.669183 + 0.743098i \(0.733356\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.02458e10 −2.78310
\(738\) 0 0
\(739\) 1.65044e10 1.50434 0.752168 0.658971i \(-0.229008\pi\)
0.752168 + 0.658971i \(0.229008\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9.34147e9 −0.835516 −0.417758 0.908558i \(-0.637184\pi\)
−0.417758 + 0.908558i \(0.637184\pi\)
\(744\) 0 0
\(745\) −1.17032e10 −1.03695
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6.48626e9 −0.564037
\(750\) 0 0
\(751\) 1.36465e10 1.17566 0.587829 0.808986i \(-0.299983\pi\)
0.587829 + 0.808986i \(0.299983\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.30830e9 0.110635
\(756\) 0 0
\(757\) −6.63373e9 −0.555804 −0.277902 0.960609i \(-0.589639\pi\)
−0.277902 + 0.960609i \(0.589639\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.32467e10 −1.08958 −0.544792 0.838571i \(-0.683391\pi\)
−0.544792 + 0.838571i \(0.683391\pi\)
\(762\) 0 0
\(763\) −3.32318e8 −0.0270843
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.48022e9 0.198475
\(768\) 0 0
\(769\) −1.73702e10 −1.37741 −0.688706 0.725041i \(-0.741821\pi\)
−0.688706 + 0.725041i \(0.741821\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.20862e9 −0.639207 −0.319604 0.947551i \(-0.603550\pi\)
−0.319604 + 0.947551i \(0.603550\pi\)
\(774\) 0 0
\(775\) 9.31079e8 0.0718506
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.40880e9 −0.182566
\(780\) 0 0
\(781\) −3.14845e10 −2.36493
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.04078e10 1.50575
\(786\) 0 0
\(787\) −5.20336e9 −0.380516 −0.190258 0.981734i \(-0.560932\pi\)
−0.190258 + 0.981734i \(0.560932\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.83728e9 −0.491208
\(792\) 0 0
\(793\) −4.23714e9 −0.301729
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.74511e10 −1.22101 −0.610504 0.792013i \(-0.709033\pi\)
−0.610504 + 0.792013i \(0.709033\pi\)
\(798\) 0 0
\(799\) −1.59619e10 −1.10706
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.50624e10 −1.02657
\(804\) 0 0
\(805\) 1.24139e10 0.838733
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.67781e8 −0.0377017 −0.0188509 0.999822i \(-0.506001\pi\)
−0.0188509 + 0.999822i \(0.506001\pi\)
\(810\) 0 0
\(811\) 2.26569e10 1.49151 0.745756 0.666219i \(-0.232088\pi\)
0.745756 + 0.666219i \(0.232088\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.45234e10 1.58683
\(816\) 0 0
\(817\) 1.29630e10 0.831626
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.43924e9 0.343034 0.171517 0.985181i \(-0.445133\pi\)
0.171517 + 0.985181i \(0.445133\pi\)
\(822\) 0 0
\(823\) 3.81390e9 0.238490 0.119245 0.992865i \(-0.461953\pi\)
0.119245 + 0.992865i \(0.461953\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.04027e10 −1.25435 −0.627176 0.778878i \(-0.715789\pi\)
−0.627176 + 0.778878i \(0.715789\pi\)
\(828\) 0 0
\(829\) −2.09133e10 −1.27492 −0.637458 0.770485i \(-0.720014\pi\)
−0.637458 + 0.770485i \(0.720014\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.48753e10 −0.891680
\(834\) 0 0
\(835\) 9.49649e9 0.564495
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.29188e10 −1.33975 −0.669876 0.742473i \(-0.733653\pi\)
−0.669876 + 0.742473i \(0.733653\pi\)
\(840\) 0 0
\(841\) 2.04707e10 1.18672
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.82592e10 −1.04108
\(846\) 0 0
\(847\) −1.09809e10 −0.620933
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.06425e10 −1.70440
\(852\) 0 0
\(853\) 3.12228e9 0.172247 0.0861233 0.996284i \(-0.472552\pi\)
0.0861233 + 0.996284i \(0.472552\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.39835e10 1.84431 0.922157 0.386817i \(-0.126425\pi\)
0.922157 + 0.386817i \(0.126425\pi\)
\(858\) 0 0
\(859\) 2.07390e10 1.11638 0.558190 0.829713i \(-0.311496\pi\)
0.558190 + 0.829713i \(0.311496\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.13047e10 0.598719 0.299360 0.954140i \(-0.403227\pi\)
0.299360 + 0.954140i \(0.403227\pi\)
\(864\) 0 0
\(865\) −6.80300e9 −0.357391
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.68879e10 0.872984
\(870\) 0 0
\(871\) 1.53341e10 0.786314
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.83333e9 0.142978
\(876\) 0 0
\(877\) 1.41724e10 0.709486 0.354743 0.934964i \(-0.384568\pi\)
0.354743 + 0.934964i \(0.384568\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.71670e8 −0.0183123 −0.00915614 0.999958i \(-0.502915\pi\)
−0.00915614 + 0.999958i \(0.502915\pi\)
\(882\) 0 0
\(883\) 2.28024e10 1.11460 0.557299 0.830312i \(-0.311838\pi\)
0.557299 + 0.830312i \(0.311838\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.09283e9 −0.196920 −0.0984602 0.995141i \(-0.531392\pi\)
−0.0984602 + 0.995141i \(0.531392\pi\)
\(888\) 0 0
\(889\) −1.20902e10 −0.577135
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.13302e10 −0.532424
\(894\) 0 0
\(895\) −5.28425e10 −2.46378
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.20833e9 0.147272
\(900\) 0 0
\(901\) 6.51022e9 0.296523
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.92428e10 1.31144
\(906\) 0 0
\(907\) −3.93238e10 −1.74997 −0.874983 0.484153i \(-0.839128\pi\)
−0.874983 + 0.484153i \(0.839128\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.39548e10 1.04973 0.524866 0.851185i \(-0.324115\pi\)
0.524866 + 0.851185i \(0.324115\pi\)
\(912\) 0 0
\(913\) 4.76589e10 2.07251
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.63741e9 −0.0701237
\(918\) 0 0
\(919\) 3.48503e10 1.48116 0.740580 0.671968i \(-0.234551\pi\)
0.740580 + 0.671968i \(0.234551\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.59622e10 0.668168
\(924\) 0 0
\(925\) 1.81141e10 0.752526
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.68507e9 0.0689547 0.0344774 0.999405i \(-0.489023\pi\)
0.0344774 + 0.999405i \(0.489023\pi\)
\(930\) 0 0
\(931\) −1.05589e10 −0.428841
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.55333e10 2.22184
\(936\) 0 0
\(937\) −1.83372e10 −0.728189 −0.364094 0.931362i \(-0.618621\pi\)
−0.364094 + 0.931362i \(0.618621\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.09477e9 0.121078 0.0605390 0.998166i \(-0.480718\pi\)
0.0605390 + 0.998166i \(0.480718\pi\)
\(942\) 0 0
\(943\) 1.51714e10 0.589163
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.46943e10 1.71012 0.855061 0.518527i \(-0.173519\pi\)
0.855061 + 0.518527i \(0.173519\pi\)
\(948\) 0 0
\(949\) 7.63639e9 0.290039
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.13357e10 0.798514 0.399257 0.916839i \(-0.369268\pi\)
0.399257 + 0.916839i \(0.369268\pi\)
\(954\) 0 0
\(955\) −4.01925e10 −1.49325
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.05400e9 −0.148429
\(960\) 0 0
\(961\) −2.72397e10 −0.990081
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.57664e10 2.35591
\(966\) 0 0
\(967\) −1.55906e10 −0.554461 −0.277231 0.960803i \(-0.589417\pi\)
−0.277231 + 0.960803i \(0.589417\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7.00913e9 −0.245695 −0.122848 0.992426i \(-0.539203\pi\)
−0.122848 + 0.992426i \(0.539203\pi\)
\(972\) 0 0
\(973\) 3.54252e9 0.123287
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.94015e10 −0.665587 −0.332794 0.943000i \(-0.607991\pi\)
−0.332794 + 0.943000i \(0.607991\pi\)
\(978\) 0 0
\(979\) 4.01870e10 1.36882
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −5.00668e10 −1.68117 −0.840587 0.541677i \(-0.817790\pi\)
−0.840587 + 0.541677i \(0.817790\pi\)
\(984\) 0 0
\(985\) 4.63578e10 1.54560
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.16453e10 −2.68376
\(990\) 0 0
\(991\) −5.16083e10 −1.68446 −0.842232 0.539115i \(-0.818759\pi\)
−0.842232 + 0.539115i \(0.818759\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.97398e10 −0.635276
\(996\) 0 0
\(997\) 5.60890e9 0.179244 0.0896221 0.995976i \(-0.471434\pi\)
0.0896221 + 0.995976i \(0.471434\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.8.a.m.1.2 2
3.2 odd 2 96.8.a.c.1.1 2
4.3 odd 2 288.8.a.l.1.2 2
8.3 odd 2 576.8.a.bg.1.1 2
8.5 even 2 576.8.a.bh.1.1 2
12.11 even 2 96.8.a.f.1.1 yes 2
24.5 odd 2 192.8.a.v.1.2 2
24.11 even 2 192.8.a.s.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
96.8.a.c.1.1 2 3.2 odd 2
96.8.a.f.1.1 yes 2 12.11 even 2
192.8.a.s.1.2 2 24.11 even 2
192.8.a.v.1.2 2 24.5 odd 2
288.8.a.l.1.2 2 4.3 odd 2
288.8.a.m.1.2 2 1.1 even 1 trivial
576.8.a.bg.1.1 2 8.3 odd 2
576.8.a.bh.1.1 2 8.5 even 2