Properties

Label 288.8
Level 288
Weight 8
Dimension 7137
Nonzero newspaces 12
Sturm bound 36864
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(36864\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(288))\).

Total New Old
Modular forms 16384 7227 9157
Cusp forms 15872 7137 8735
Eisenstein series 512 90 422

Trace form

\( 7137 q - 12 q^{2} - 12 q^{3} - 12 q^{4} - 290 q^{5} - 16 q^{6} + 678 q^{7} - 12 q^{8} - 24 q^{9} - 13036 q^{10} - 6 q^{11} - 16 q^{12} + 13606 q^{13} - 26204 q^{14} + 4362 q^{15} - 52792 q^{16} - 66106 q^{17}+ \cdots + 33890246 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(288))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
288.8.a \(\chi_{288}(1, \cdot)\) 288.8.a.a 1 1
288.8.a.b 1
288.8.a.c 1
288.8.a.d 1
288.8.a.e 1
288.8.a.f 2
288.8.a.g 2
288.8.a.h 2
288.8.a.i 2
288.8.a.j 2
288.8.a.k 2
288.8.a.l 2
288.8.a.m 2
288.8.a.n 2
288.8.a.o 2
288.8.a.p 2
288.8.a.q 4
288.8.a.r 4
288.8.c \(\chi_{288}(287, \cdot)\) 288.8.c.a 12 1
288.8.c.b 16
288.8.d \(\chi_{288}(145, \cdot)\) 288.8.d.a 2 1
288.8.d.b 6
288.8.d.c 12
288.8.d.d 14
288.8.f \(\chi_{288}(143, \cdot)\) 288.8.f.a 28 1
288.8.i \(\chi_{288}(97, \cdot)\) n/a 168 2
288.8.k \(\chi_{288}(73, \cdot)\) None 0 2
288.8.l \(\chi_{288}(71, \cdot)\) None 0 2
288.8.p \(\chi_{288}(47, \cdot)\) n/a 164 2
288.8.r \(\chi_{288}(49, \cdot)\) n/a 164 2
288.8.s \(\chi_{288}(95, \cdot)\) n/a 168 2
288.8.v \(\chi_{288}(37, \cdot)\) n/a 556 4
288.8.w \(\chi_{288}(35, \cdot)\) n/a 448 4
288.8.y \(\chi_{288}(23, \cdot)\) None 0 4
288.8.bb \(\chi_{288}(25, \cdot)\) None 0 4
288.8.bc \(\chi_{288}(13, \cdot)\) n/a 2672 8
288.8.bf \(\chi_{288}(11, \cdot)\) n/a 2672 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(288))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(288)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 15}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 2}\)