Defining parameters
| Level: | \( N \) | \(=\) | \( 288 = 2^{5} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 8 \) |
| Character orbit: | \([\chi]\) | \(=\) | 288.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 18 \) | ||
| Sturm bound: | \(384\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(288))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 352 | 35 | 317 |
| Cusp forms | 320 | 35 | 285 |
| Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(90\) | \(7\) | \(83\) | \(82\) | \(7\) | \(75\) | \(8\) | \(0\) | \(8\) | |||
| \(+\) | \(-\) | \(-\) | \(88\) | \(10\) | \(78\) | \(80\) | \(10\) | \(70\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(+\) | \(-\) | \(86\) | \(7\) | \(79\) | \(78\) | \(7\) | \(71\) | \(8\) | \(0\) | \(8\) | |||
| \(-\) | \(-\) | \(+\) | \(88\) | \(11\) | \(77\) | \(80\) | \(11\) | \(69\) | \(8\) | \(0\) | \(8\) | |||
| Plus space | \(+\) | \(178\) | \(18\) | \(160\) | \(162\) | \(18\) | \(144\) | \(16\) | \(0\) | \(16\) | ||||
| Minus space | \(-\) | \(174\) | \(17\) | \(157\) | \(158\) | \(17\) | \(141\) | \(16\) | \(0\) | \(16\) | ||||
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(288))\) into newform subspaces
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(288))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(288)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 15}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 2}\)