Properties

Label 288.2.w.b.107.5
Level $288$
Weight $2$
Character 288.107
Analytic conductor $2.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [288,2,Mod(35,288)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(288, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("288.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 288.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.29969157821\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 107.5
Character \(\chi\) \(=\) 288.107
Dual form 288.2.w.b.35.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.345448 - 1.37137i) q^{2} +(-1.76133 - 0.947475i) q^{4} +(1.64859 + 0.682869i) q^{5} +(2.51270 - 2.51270i) q^{7} +(-1.90779 + 2.08814i) q^{8} +(1.50597 - 2.02494i) q^{10} +(2.69097 + 1.11464i) q^{11} +(-1.76057 - 4.25040i) q^{13} +(-2.57784 - 4.31386i) q^{14} +(2.20458 + 3.33764i) q^{16} -6.10169 q^{17} +(3.43292 - 1.42196i) q^{19} +(-2.25672 - 2.76476i) q^{20} +(2.45817 - 3.30527i) q^{22} +(0.525502 - 0.525502i) q^{23} +(-1.28399 - 1.28399i) q^{25} +(-6.43707 + 0.946113i) q^{26} +(-6.80642 + 2.04498i) q^{28} +(1.46544 + 3.53788i) q^{29} +7.55322i q^{31} +(5.33872 - 1.87033i) q^{32} +(-2.10781 + 8.36770i) q^{34} +(5.85826 - 2.42657i) q^{35} +(2.30333 - 5.56073i) q^{37} +(-0.764149 - 5.19904i) q^{38} +(-4.57109 + 2.13972i) q^{40} +(3.04402 + 3.04402i) q^{41} +(-3.31422 + 8.00123i) q^{43} +(-3.68360 - 4.51287i) q^{44} +(-0.539126 - 0.902192i) q^{46} +8.59875i q^{47} -5.62732i q^{49} +(-2.20438 + 1.31728i) q^{50} +(-0.926194 + 9.15446i) q^{52} +(-3.78946 + 9.14856i) q^{53} +(3.67516 + 3.67516i) q^{55} +(0.453168 + 10.0406i) q^{56} +(5.35798 - 0.787511i) q^{58} +(3.73387 - 9.01437i) q^{59} +(3.41173 - 1.41318i) q^{61} +(10.3583 + 2.60924i) q^{62} +(-0.720670 - 7.96747i) q^{64} -8.20941i q^{65} +(0.0538792 + 0.130076i) q^{67} +(10.7471 + 5.78120i) q^{68} +(-1.30401 - 8.87212i) q^{70} +(1.31641 + 1.31641i) q^{71} +(-10.9226 + 10.9226i) q^{73} +(-6.83016 - 5.07966i) q^{74} +(-7.39380 - 0.748061i) q^{76} +(9.56234 - 3.96085i) q^{77} +11.8735 q^{79} +(1.35528 + 7.00784i) q^{80} +(5.22604 - 3.12294i) q^{82} +(-4.38490 - 10.5861i) q^{83} +(-10.0592 - 4.16666i) q^{85} +(9.82779 + 7.30904i) q^{86} +(-7.46132 + 3.49263i) q^{88} +(-5.97566 + 5.97566i) q^{89} +(-15.1038 - 6.25618i) q^{91} +(-1.42348 + 0.427683i) q^{92} +(11.7921 + 2.97042i) q^{94} +6.63051 q^{95} -3.21530 q^{97} +(-7.71716 - 1.94394i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{2} + 4 q^{8} + 8 q^{10} + 8 q^{11} - 12 q^{14} + 8 q^{16} - 32 q^{20} + 16 q^{22} + 36 q^{26} + 16 q^{29} + 24 q^{32} - 24 q^{35} - 32 q^{38} - 32 q^{40} - 8 q^{44} - 32 q^{46} - 8 q^{50} - 56 q^{52}+ \cdots + 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.345448 1.37137i 0.244268 0.969708i
\(3\) 0 0
\(4\) −1.76133 0.947475i −0.880666 0.473738i
\(5\) 1.64859 + 0.682869i 0.737273 + 0.305388i 0.719537 0.694454i \(-0.244354\pi\)
0.0177359 + 0.999843i \(0.494354\pi\)
\(6\) 0 0
\(7\) 2.51270 2.51270i 0.949711 0.949711i −0.0490835 0.998795i \(-0.515630\pi\)
0.998795 + 0.0490835i \(0.0156300\pi\)
\(8\) −1.90779 + 2.08814i −0.674506 + 0.738270i
\(9\) 0 0
\(10\) 1.50597 2.02494i 0.476230 0.640342i
\(11\) 2.69097 + 1.11464i 0.811357 + 0.336075i 0.749495 0.662010i \(-0.230296\pi\)
0.0618618 + 0.998085i \(0.480296\pi\)
\(12\) 0 0
\(13\) −1.76057 4.25040i −0.488295 1.17885i −0.955577 0.294740i \(-0.904767\pi\)
0.467283 0.884108i \(-0.345233\pi\)
\(14\) −2.57784 4.31386i −0.688958 1.15293i
\(15\) 0 0
\(16\) 2.20458 + 3.33764i 0.551145 + 0.834409i
\(17\) −6.10169 −1.47988 −0.739939 0.672674i \(-0.765146\pi\)
−0.739939 + 0.672674i \(0.765146\pi\)
\(18\) 0 0
\(19\) 3.43292 1.42196i 0.787567 0.326221i 0.0476020 0.998866i \(-0.484842\pi\)
0.739965 + 0.672645i \(0.234842\pi\)
\(20\) −2.25672 2.76476i −0.504617 0.618219i
\(21\) 0 0
\(22\) 2.45817 3.30527i 0.524083 0.704687i
\(23\) 0.525502 0.525502i 0.109575 0.109575i −0.650194 0.759768i \(-0.725312\pi\)
0.759768 + 0.650194i \(0.225312\pi\)
\(24\) 0 0
\(25\) −1.28399 1.28399i −0.256798 0.256798i
\(26\) −6.43707 + 0.946113i −1.26241 + 0.185548i
\(27\) 0 0
\(28\) −6.80642 + 2.04498i −1.28629 + 0.386464i
\(29\) 1.46544 + 3.53788i 0.272125 + 0.656967i 0.999574 0.0291945i \(-0.00929421\pi\)
−0.727449 + 0.686162i \(0.759294\pi\)
\(30\) 0 0
\(31\) 7.55322i 1.35660i 0.734786 + 0.678299i \(0.237283\pi\)
−0.734786 + 0.678299i \(0.762717\pi\)
\(32\) 5.33872 1.87033i 0.943760 0.330630i
\(33\) 0 0
\(34\) −2.10781 + 8.36770i −0.361487 + 1.43505i
\(35\) 5.85826 2.42657i 0.990227 0.410165i
\(36\) 0 0
\(37\) 2.30333 5.56073i 0.378665 0.914178i −0.613552 0.789655i \(-0.710260\pi\)
0.992217 0.124523i \(-0.0397402\pi\)
\(38\) −0.764149 5.19904i −0.123961 0.843395i
\(39\) 0 0
\(40\) −4.57109 + 2.13972i −0.722754 + 0.338320i
\(41\) 3.04402 + 3.04402i 0.475396 + 0.475396i 0.903656 0.428260i \(-0.140873\pi\)
−0.428260 + 0.903656i \(0.640873\pi\)
\(42\) 0 0
\(43\) −3.31422 + 8.00123i −0.505414 + 1.22018i 0.441084 + 0.897466i \(0.354594\pi\)
−0.946498 + 0.322711i \(0.895406\pi\)
\(44\) −3.68360 4.51287i −0.555323 0.680340i
\(45\) 0 0
\(46\) −0.539126 0.902192i −0.0794898 0.133021i
\(47\) 8.59875i 1.25426i 0.778916 + 0.627128i \(0.215770\pi\)
−0.778916 + 0.627128i \(0.784230\pi\)
\(48\) 0 0
\(49\) 5.62732i 0.803903i
\(50\) −2.20438 + 1.31728i −0.311746 + 0.186291i
\(51\) 0 0
\(52\) −0.926194 + 9.15446i −0.128440 + 1.26950i
\(53\) −3.78946 + 9.14856i −0.520522 + 1.25665i 0.417058 + 0.908880i \(0.363061\pi\)
−0.937580 + 0.347771i \(0.886939\pi\)
\(54\) 0 0
\(55\) 3.67516 + 3.67516i 0.495558 + 0.495558i
\(56\) 0.453168 + 10.0406i 0.0605571 + 1.34173i
\(57\) 0 0
\(58\) 5.35798 0.787511i 0.703538 0.103405i
\(59\) 3.73387 9.01437i 0.486109 1.17357i −0.470553 0.882372i \(-0.655946\pi\)
0.956662 0.291199i \(-0.0940543\pi\)
\(60\) 0 0
\(61\) 3.41173 1.41318i 0.436827 0.180940i −0.153422 0.988161i \(-0.549030\pi\)
0.590249 + 0.807221i \(0.299030\pi\)
\(62\) 10.3583 + 2.60924i 1.31550 + 0.331374i
\(63\) 0 0
\(64\) −0.720670 7.96747i −0.0900838 0.995934i
\(65\) 8.20941i 1.01825i
\(66\) 0 0
\(67\) 0.0538792 + 0.130076i 0.00658239 + 0.0158913i 0.927137 0.374724i \(-0.122262\pi\)
−0.920554 + 0.390615i \(0.872262\pi\)
\(68\) 10.7471 + 5.78120i 1.30328 + 0.701074i
\(69\) 0 0
\(70\) −1.30401 8.87212i −0.155860 1.06042i
\(71\) 1.31641 + 1.31641i 0.156229 + 0.156229i 0.780893 0.624664i \(-0.214764\pi\)
−0.624664 + 0.780893i \(0.714764\pi\)
\(72\) 0 0
\(73\) −10.9226 + 10.9226i −1.27839 + 1.27839i −0.336829 + 0.941566i \(0.609354\pi\)
−0.941566 + 0.336829i \(0.890646\pi\)
\(74\) −6.83016 5.07966i −0.793990 0.590499i
\(75\) 0 0
\(76\) −7.39380 0.748061i −0.848127 0.0858085i
\(77\) 9.56234 3.96085i 1.08973 0.451381i
\(78\) 0 0
\(79\) 11.8735 1.33588 0.667939 0.744216i \(-0.267177\pi\)
0.667939 + 0.744216i \(0.267177\pi\)
\(80\) 1.35528 + 7.00784i 0.151525 + 0.783500i
\(81\) 0 0
\(82\) 5.22604 3.12294i 0.577119 0.344871i
\(83\) −4.38490 10.5861i −0.481305 1.16197i −0.958989 0.283442i \(-0.908524\pi\)
0.477684 0.878532i \(-0.341476\pi\)
\(84\) 0 0
\(85\) −10.0592 4.16666i −1.09107 0.451937i
\(86\) 9.82779 + 7.30904i 1.05976 + 0.788154i
\(87\) 0 0
\(88\) −7.46132 + 3.49263i −0.795379 + 0.372316i
\(89\) −5.97566 + 5.97566i −0.633418 + 0.633418i −0.948924 0.315506i \(-0.897826\pi\)
0.315506 + 0.948924i \(0.397826\pi\)
\(90\) 0 0
\(91\) −15.1038 6.25618i −1.58330 0.655826i
\(92\) −1.42348 + 0.427683i −0.148408 + 0.0445890i
\(93\) 0 0
\(94\) 11.7921 + 2.97042i 1.21626 + 0.306375i
\(95\) 6.63051 0.680276
\(96\) 0 0
\(97\) −3.21530 −0.326464 −0.163232 0.986588i \(-0.552192\pi\)
−0.163232 + 0.986588i \(0.552192\pi\)
\(98\) −7.71716 1.94394i −0.779551 0.196368i
\(99\) 0 0
\(100\) 1.04498 + 3.47808i 0.104498 + 0.347808i
\(101\) 1.62739 + 0.674085i 0.161931 + 0.0670740i 0.462177 0.886788i \(-0.347069\pi\)
−0.300246 + 0.953862i \(0.597069\pi\)
\(102\) 0 0
\(103\) 0.111372 0.111372i 0.0109738 0.0109738i −0.701599 0.712572i \(-0.747530\pi\)
0.712572 + 0.701599i \(0.247530\pi\)
\(104\) 12.2342 + 4.43254i 1.19967 + 0.434647i
\(105\) 0 0
\(106\) 11.2370 + 8.35711i 1.09144 + 0.811714i
\(107\) −3.59142 1.48762i −0.347196 0.143813i 0.202269 0.979330i \(-0.435168\pi\)
−0.549465 + 0.835517i \(0.685168\pi\)
\(108\) 0 0
\(109\) 5.90637 + 14.2592i 0.565727 + 1.36579i 0.905126 + 0.425144i \(0.139777\pi\)
−0.339398 + 0.940643i \(0.610223\pi\)
\(110\) 6.30959 3.77044i 0.601596 0.359497i
\(111\) 0 0
\(112\) 13.9259 + 2.84703i 1.31588 + 0.269019i
\(113\) −16.6022 −1.56180 −0.780902 0.624653i \(-0.785240\pi\)
−0.780902 + 0.624653i \(0.785240\pi\)
\(114\) 0 0
\(115\) 1.22519 0.507489i 0.114249 0.0473236i
\(116\) 0.770931 7.61984i 0.0715791 0.707485i
\(117\) 0 0
\(118\) −11.0722 8.23453i −1.01928 0.758050i
\(119\) −15.3317 + 15.3317i −1.40546 + 1.40546i
\(120\) 0 0
\(121\) −1.77928 1.77928i −0.161753 0.161753i
\(122\) −0.759430 5.16693i −0.0687556 0.467792i
\(123\) 0 0
\(124\) 7.15649 13.3037i 0.642672 1.19471i
\(125\) −4.65432 11.2365i −0.416295 1.00503i
\(126\) 0 0
\(127\) 19.5462i 1.73444i 0.497923 + 0.867221i \(0.334096\pi\)
−0.497923 + 0.867221i \(0.665904\pi\)
\(128\) −11.1753 1.76404i −0.987770 0.155920i
\(129\) 0 0
\(130\) −11.2582 2.83592i −0.987407 0.248727i
\(131\) 5.97269 2.47397i 0.521837 0.216152i −0.106187 0.994346i \(-0.533864\pi\)
0.628023 + 0.778194i \(0.283864\pi\)
\(132\) 0 0
\(133\) 5.05294 12.1989i 0.438145 1.05778i
\(134\) 0.196995 0.0289541i 0.0170178 0.00250126i
\(135\) 0 0
\(136\) 11.6407 12.7412i 0.998186 1.09255i
\(137\) −13.9438 13.9438i −1.19130 1.19130i −0.976703 0.214594i \(-0.931157\pi\)
−0.214594 0.976703i \(-0.568843\pi\)
\(138\) 0 0
\(139\) 5.10923 12.3348i 0.433359 1.04622i −0.544838 0.838542i \(-0.683409\pi\)
0.978197 0.207680i \(-0.0665913\pi\)
\(140\) −12.6175 1.27656i −1.06637 0.107889i
\(141\) 0 0
\(142\) 2.26004 1.35054i 0.189658 0.113335i
\(143\) 13.4001i 1.12057i
\(144\) 0 0
\(145\) 6.83322i 0.567468i
\(146\) 11.2058 + 18.7522i 0.927398 + 1.55194i
\(147\) 0 0
\(148\) −9.32558 + 7.61194i −0.766558 + 0.625698i
\(149\) −1.29028 + 3.11502i −0.105704 + 0.255192i −0.967878 0.251420i \(-0.919102\pi\)
0.862174 + 0.506612i \(0.169102\pi\)
\(150\) 0 0
\(151\) −10.0537 10.0537i −0.818159 0.818159i 0.167682 0.985841i \(-0.446372\pi\)
−0.985841 + 0.167682i \(0.946372\pi\)
\(152\) −3.58004 + 9.88124i −0.290380 + 0.801475i
\(153\) 0 0
\(154\) −2.12852 14.4818i −0.171521 1.16698i
\(155\) −5.15786 + 12.4522i −0.414289 + 1.00018i
\(156\) 0 0
\(157\) 15.3765 6.36916i 1.22718 0.508315i 0.327494 0.944853i \(-0.393796\pi\)
0.899686 + 0.436539i \(0.143796\pi\)
\(158\) 4.10169 16.2831i 0.326313 1.29541i
\(159\) 0 0
\(160\) 10.0785 + 0.562239i 0.796779 + 0.0444489i
\(161\) 2.64086i 0.208129i
\(162\) 0 0
\(163\) 4.22080 + 10.1899i 0.330599 + 0.798136i 0.998545 + 0.0539266i \(0.0171737\pi\)
−0.667946 + 0.744210i \(0.732826\pi\)
\(164\) −2.47740 8.24566i −0.193452 0.643878i
\(165\) 0 0
\(166\) −16.0322 + 2.35640i −1.24434 + 0.182892i
\(167\) −11.1209 11.1209i −0.860562 0.860562i 0.130842 0.991403i \(-0.458232\pi\)
−0.991403 + 0.130842i \(0.958232\pi\)
\(168\) 0 0
\(169\) −5.77387 + 5.77387i −0.444144 + 0.444144i
\(170\) −9.18897 + 12.3556i −0.704762 + 0.947628i
\(171\) 0 0
\(172\) 13.4184 10.9527i 1.02314 0.835134i
\(173\) 9.66463 4.00322i 0.734788 0.304359i 0.0162700 0.999868i \(-0.494821\pi\)
0.718518 + 0.695509i \(0.244821\pi\)
\(174\) 0 0
\(175\) −6.45256 −0.487768
\(176\) 2.21221 + 11.4388i 0.166751 + 0.862230i
\(177\) 0 0
\(178\) 6.13058 + 10.2591i 0.459507 + 0.768955i
\(179\) −6.65549 16.0678i −0.497455 1.20096i −0.950850 0.309652i \(-0.899787\pi\)
0.453395 0.891310i \(-0.350213\pi\)
\(180\) 0 0
\(181\) −16.5604 6.85953i −1.23092 0.509865i −0.330056 0.943961i \(-0.607068\pi\)
−0.900867 + 0.434096i \(0.857068\pi\)
\(182\) −13.7971 + 18.5517i −1.02271 + 1.37514i
\(183\) 0 0
\(184\) 0.0947747 + 2.09987i 0.00698688 + 0.154804i
\(185\) 7.59450 7.59450i 0.558359 0.558359i
\(186\) 0 0
\(187\) −16.4195 6.80116i −1.20071 0.497350i
\(188\) 8.14710 15.1453i 0.594189 1.10458i
\(189\) 0 0
\(190\) 2.29049 9.09290i 0.166170 0.659668i
\(191\) −0.545506 −0.0394715 −0.0197357 0.999805i \(-0.506282\pi\)
−0.0197357 + 0.999805i \(0.506282\pi\)
\(192\) 0 0
\(193\) 13.7484 0.989632 0.494816 0.868998i \(-0.335235\pi\)
0.494816 + 0.868998i \(0.335235\pi\)
\(194\) −1.11072 + 4.40938i −0.0797448 + 0.316575i
\(195\) 0 0
\(196\) −5.33175 + 9.91158i −0.380839 + 0.707970i
\(197\) 3.74434 + 1.55095i 0.266773 + 0.110501i 0.512060 0.858949i \(-0.328882\pi\)
−0.245288 + 0.969450i \(0.578882\pi\)
\(198\) 0 0
\(199\) 9.72904 9.72904i 0.689673 0.689673i −0.272486 0.962160i \(-0.587846\pi\)
0.962160 + 0.272486i \(0.0878460\pi\)
\(200\) 5.13074 0.231569i 0.362798 0.0163744i
\(201\) 0 0
\(202\) 1.48660 1.99889i 0.104597 0.140642i
\(203\) 12.5718 + 5.20742i 0.882369 + 0.365489i
\(204\) 0 0
\(205\) 2.93968 + 7.09701i 0.205316 + 0.495677i
\(206\) −0.114259 0.191205i −0.00796080 0.0133219i
\(207\) 0 0
\(208\) 10.3050 15.2465i 0.714520 1.05715i
\(209\) 10.8229 0.748633
\(210\) 0 0
\(211\) 12.8221 5.31108i 0.882708 0.365630i 0.105162 0.994455i \(-0.466464\pi\)
0.777546 + 0.628826i \(0.216464\pi\)
\(212\) 15.3425 12.5232i 1.05373 0.860099i
\(213\) 0 0
\(214\) −3.28073 + 4.41129i −0.224266 + 0.301550i
\(215\) −10.9276 + 10.9276i −0.745255 + 0.745255i
\(216\) 0 0
\(217\) 18.9790 + 18.9790i 1.28838 + 1.28838i
\(218\) 21.5951 3.17402i 1.46260 0.214972i
\(219\) 0 0
\(220\) −2.99105 9.95529i −0.201657 0.671186i
\(221\) 10.7425 + 25.9346i 0.722616 + 1.74455i
\(222\) 0 0
\(223\) 11.9519i 0.800361i −0.916436 0.400180i \(-0.868947\pi\)
0.916436 0.400180i \(-0.131053\pi\)
\(224\) 8.71502 18.1142i 0.582297 1.21030i
\(225\) 0 0
\(226\) −5.73519 + 22.7678i −0.381499 + 1.51449i
\(227\) 7.57146 3.13620i 0.502536 0.208157i −0.116991 0.993133i \(-0.537325\pi\)
0.619526 + 0.784976i \(0.287325\pi\)
\(228\) 0 0
\(229\) −4.36683 + 10.5425i −0.288568 + 0.696665i −0.999981 0.00610879i \(-0.998055\pi\)
0.711413 + 0.702774i \(0.248055\pi\)
\(230\) −0.272719 1.85550i −0.0179826 0.122348i
\(231\) 0 0
\(232\) −10.1833 3.68949i −0.668569 0.242227i
\(233\) 16.6048 + 16.6048i 1.08782 + 1.08782i 0.995753 + 0.0920662i \(0.0293472\pi\)
0.0920662 + 0.995753i \(0.470653\pi\)
\(234\) 0 0
\(235\) −5.87182 + 14.1758i −0.383035 + 0.924729i
\(236\) −15.1175 + 12.3395i −0.984065 + 0.803236i
\(237\) 0 0
\(238\) 15.7292 + 26.3218i 1.01957 + 1.70619i
\(239\) 19.8212i 1.28213i 0.767488 + 0.641063i \(0.221506\pi\)
−0.767488 + 0.641063i \(0.778494\pi\)
\(240\) 0 0
\(241\) 7.78762i 0.501645i −0.968033 0.250823i \(-0.919299\pi\)
0.968033 0.250823i \(-0.0807011\pi\)
\(242\) −3.05471 + 1.82541i −0.196364 + 0.117342i
\(243\) 0 0
\(244\) −7.34814 0.743441i −0.470416 0.0475940i
\(245\) 3.84272 9.27715i 0.245503 0.592695i
\(246\) 0 0
\(247\) −12.0878 12.0878i −0.769130 0.769130i
\(248\) −15.7722 14.4100i −1.00153 0.915033i
\(249\) 0 0
\(250\) −17.0173 + 2.50119i −1.07627 + 0.158189i
\(251\) −11.1471 + 26.9114i −0.703597 + 1.69863i 0.0118144 + 0.999930i \(0.496239\pi\)
−0.715412 + 0.698703i \(0.753761\pi\)
\(252\) 0 0
\(253\) 1.99985 0.828365i 0.125729 0.0520789i
\(254\) 26.8051 + 6.75218i 1.68190 + 0.423669i
\(255\) 0 0
\(256\) −6.27965 + 14.7162i −0.392478 + 0.919761i
\(257\) 6.18232i 0.385643i −0.981234 0.192821i \(-0.938236\pi\)
0.981234 0.192821i \(-0.0617638\pi\)
\(258\) 0 0
\(259\) −8.18487 19.7600i −0.508583 1.22783i
\(260\) −7.77821 + 14.4595i −0.482384 + 0.896740i
\(261\) 0 0
\(262\) −1.32949 9.04542i −0.0821359 0.558828i
\(263\) 2.98771 + 2.98771i 0.184230 + 0.184230i 0.793196 0.608966i \(-0.208416\pi\)
−0.608966 + 0.793196i \(0.708416\pi\)
\(264\) 0 0
\(265\) −12.4945 + 12.4945i −0.767533 + 0.767533i
\(266\) −14.9837 11.1435i −0.918709 0.683254i
\(267\) 0 0
\(268\) 0.0283445 0.280156i 0.00173142 0.0171133i
\(269\) 14.2963 5.92170i 0.871658 0.361053i 0.0984022 0.995147i \(-0.468627\pi\)
0.773256 + 0.634094i \(0.218627\pi\)
\(270\) 0 0
\(271\) −4.23625 −0.257334 −0.128667 0.991688i \(-0.541070\pi\)
−0.128667 + 0.991688i \(0.541070\pi\)
\(272\) −13.4517 20.3652i −0.815627 1.23482i
\(273\) 0 0
\(274\) −23.9390 + 14.3053i −1.44621 + 0.864214i
\(275\) −2.02399 4.88635i −0.122051 0.294658i
\(276\) 0 0
\(277\) 1.63206 + 0.676023i 0.0980612 + 0.0406183i 0.431175 0.902268i \(-0.358099\pi\)
−0.333114 + 0.942887i \(0.608099\pi\)
\(278\) −15.1506 11.2677i −0.908673 0.675791i
\(279\) 0 0
\(280\) −6.10931 + 16.8623i −0.365101 + 1.00771i
\(281\) −0.648281 + 0.648281i −0.0386732 + 0.0386732i −0.726179 0.687506i \(-0.758706\pi\)
0.687506 + 0.726179i \(0.258706\pi\)
\(282\) 0 0
\(283\) −0.905971 0.375265i −0.0538544 0.0223072i 0.355594 0.934641i \(-0.384279\pi\)
−0.409448 + 0.912333i \(0.634279\pi\)
\(284\) −1.07137 3.56589i −0.0635739 0.211597i
\(285\) 0 0
\(286\) −18.3765 4.62902i −1.08663 0.273720i
\(287\) 15.2974 0.902978
\(288\) 0 0
\(289\) 20.2306 1.19004
\(290\) 9.37089 + 2.36052i 0.550278 + 0.138614i
\(291\) 0 0
\(292\) 29.5872 8.88944i 1.73146 0.520215i
\(293\) −3.85498 1.59678i −0.225210 0.0932851i 0.267225 0.963634i \(-0.413893\pi\)
−0.492435 + 0.870349i \(0.663893\pi\)
\(294\) 0 0
\(295\) 12.3113 12.3113i 0.716790 0.716790i
\(296\) 7.21732 + 15.4184i 0.419498 + 0.896175i
\(297\) 0 0
\(298\) 3.82613 + 2.84554i 0.221642 + 0.164838i
\(299\) −3.15877 1.30841i −0.182677 0.0756671i
\(300\) 0 0
\(301\) 11.7771 + 28.4323i 0.678818 + 1.63881i
\(302\) −17.2604 + 10.3144i −0.993226 + 0.593525i
\(303\) 0 0
\(304\) 12.3142 + 8.32302i 0.706266 + 0.477358i
\(305\) 6.58956 0.377317
\(306\) 0 0
\(307\) −4.77567 + 1.97815i −0.272562 + 0.112899i −0.514778 0.857323i \(-0.672126\pi\)
0.242216 + 0.970222i \(0.422126\pi\)
\(308\) −20.5953 2.08371i −1.17352 0.118730i
\(309\) 0 0
\(310\) 15.2948 + 11.3749i 0.868687 + 0.646052i
\(311\) 5.85083 5.85083i 0.331770 0.331770i −0.521488 0.853258i \(-0.674623\pi\)
0.853258 + 0.521488i \(0.174623\pi\)
\(312\) 0 0
\(313\) −9.37980 9.37980i −0.530178 0.530178i 0.390448 0.920625i \(-0.372320\pi\)
−0.920625 + 0.390448i \(0.872320\pi\)
\(314\) −3.42272 23.2872i −0.193155 1.31417i
\(315\) 0 0
\(316\) −20.9133 11.2499i −1.17646 0.632856i
\(317\) −7.45951 18.0089i −0.418968 1.01148i −0.982647 0.185484i \(-0.940615\pi\)
0.563679 0.825994i \(-0.309385\pi\)
\(318\) 0 0
\(319\) 11.1537i 0.624490i
\(320\) 4.25265 13.6272i 0.237730 0.761786i
\(321\) 0 0
\(322\) −3.62160 0.912277i −0.201824 0.0508392i
\(323\) −20.9466 + 8.67638i −1.16550 + 0.482767i
\(324\) 0 0
\(325\) −3.19691 + 7.71802i −0.177333 + 0.428119i
\(326\) 15.4323 2.26822i 0.854714 0.125625i
\(327\) 0 0
\(328\) −12.1637 + 0.548992i −0.671628 + 0.0303130i
\(329\) 21.6061 + 21.6061i 1.19118 + 1.19118i
\(330\) 0 0
\(331\) −2.04504 + 4.93715i −0.112405 + 0.271370i −0.970064 0.242849i \(-0.921918\pi\)
0.857659 + 0.514219i \(0.171918\pi\)
\(332\) −2.30679 + 22.8002i −0.126601 + 1.25132i
\(333\) 0 0
\(334\) −19.0926 + 11.4092i −1.04470 + 0.624285i
\(335\) 0.251234i 0.0137264i
\(336\) 0 0
\(337\) 32.7329i 1.78308i −0.452946 0.891538i \(-0.649627\pi\)
0.452946 0.891538i \(-0.350373\pi\)
\(338\) 5.92357 + 9.91271i 0.322200 + 0.539180i
\(339\) 0 0
\(340\) 13.7698 + 16.8697i 0.746771 + 0.914888i
\(341\) −8.41908 + 20.3255i −0.455919 + 1.10069i
\(342\) 0 0
\(343\) 3.44913 + 3.44913i 0.186236 + 0.186236i
\(344\) −10.3849 22.1852i −0.559915 1.19615i
\(345\) 0 0
\(346\) −2.15129 14.6367i −0.115654 0.786875i
\(347\) 10.0545 24.2737i 0.539755 1.30308i −0.385140 0.922858i \(-0.625847\pi\)
0.924894 0.380225i \(-0.124153\pi\)
\(348\) 0 0
\(349\) −7.53157 + 3.11968i −0.403156 + 0.166993i −0.575041 0.818124i \(-0.695014\pi\)
0.171886 + 0.985117i \(0.445014\pi\)
\(350\) −2.22902 + 8.84887i −0.119146 + 0.472992i
\(351\) 0 0
\(352\) 16.4510 + 0.917733i 0.876843 + 0.0489154i
\(353\) 14.4403i 0.768579i −0.923213 0.384290i \(-0.874446\pi\)
0.923213 0.384290i \(-0.125554\pi\)
\(354\) 0 0
\(355\) 1.27128 + 3.06915i 0.0674728 + 0.162894i
\(356\) 16.1869 4.86333i 0.857904 0.257756i
\(357\) 0 0
\(358\) −24.3340 + 3.57659i −1.28609 + 0.189029i
\(359\) 1.26776 + 1.26776i 0.0669099 + 0.0669099i 0.739770 0.672860i \(-0.234934\pi\)
−0.672860 + 0.739770i \(0.734934\pi\)
\(360\) 0 0
\(361\) −3.67204 + 3.67204i −0.193265 + 0.193265i
\(362\) −15.1277 + 20.3409i −0.795095 + 1.06909i
\(363\) 0 0
\(364\) 20.6752 + 25.3297i 1.08367 + 1.32763i
\(365\) −25.4656 + 10.5482i −1.33293 + 0.552119i
\(366\) 0 0
\(367\) −0.516344 −0.0269529 −0.0134765 0.999909i \(-0.504290\pi\)
−0.0134765 + 0.999909i \(0.504290\pi\)
\(368\) 2.91244 + 0.595423i 0.151822 + 0.0310386i
\(369\) 0 0
\(370\) −7.79139 13.0384i −0.405055 0.677834i
\(371\) 13.4658 + 32.5093i 0.699110 + 1.68780i
\(372\) 0 0
\(373\) 15.7829 + 6.53747i 0.817205 + 0.338498i 0.751825 0.659363i \(-0.229174\pi\)
0.0653805 + 0.997860i \(0.479174\pi\)
\(374\) −14.9990 + 20.1678i −0.775579 + 1.04285i
\(375\) 0 0
\(376\) −17.9554 16.4046i −0.925980 0.846003i
\(377\) 12.4574 12.4574i 0.641587 0.641587i
\(378\) 0 0
\(379\) 10.1190 + 4.19144i 0.519780 + 0.215300i 0.627120 0.778922i \(-0.284233\pi\)
−0.107340 + 0.994222i \(0.534233\pi\)
\(380\) −11.6785 6.28224i −0.599096 0.322272i
\(381\) 0 0
\(382\) −0.188444 + 0.748093i −0.00964162 + 0.0382758i
\(383\) 10.5915 0.541201 0.270601 0.962692i \(-0.412778\pi\)
0.270601 + 0.962692i \(0.412778\pi\)
\(384\) 0 0
\(385\) 18.4691 0.941274
\(386\) 4.74935 18.8542i 0.241736 0.959654i
\(387\) 0 0
\(388\) 5.66321 + 3.04642i 0.287506 + 0.154658i
\(389\) −9.74428 4.03621i −0.494054 0.204644i 0.121723 0.992564i \(-0.461158\pi\)
−0.615778 + 0.787920i \(0.711158\pi\)
\(390\) 0 0
\(391\) −3.20645 + 3.20645i −0.162157 + 0.162157i
\(392\) 11.7506 + 10.7357i 0.593497 + 0.542237i
\(393\) 0 0
\(394\) 3.42041 4.59911i 0.172318 0.231700i
\(395\) 19.5746 + 8.10808i 0.984906 + 0.407962i
\(396\) 0 0
\(397\) −6.26413 15.1230i −0.314388 0.759000i −0.999532 0.0305919i \(-0.990261\pi\)
0.685144 0.728408i \(-0.259739\pi\)
\(398\) −9.98128 16.7030i −0.500316 0.837247i
\(399\) 0 0
\(400\) 1.45483 7.11615i 0.0727416 0.355808i
\(401\) −9.54016 −0.476413 −0.238207 0.971215i \(-0.576560\pi\)
−0.238207 + 0.971215i \(0.576560\pi\)
\(402\) 0 0
\(403\) 32.1042 13.2980i 1.59922 0.662420i
\(404\) −2.22769 2.72919i −0.110832 0.135783i
\(405\) 0 0
\(406\) 11.4842 15.4418i 0.569953 0.766363i
\(407\) 12.3964 12.3964i 0.614465 0.614465i
\(408\) 0 0
\(409\) −9.43887 9.43887i −0.466722 0.466722i 0.434129 0.900851i \(-0.357056\pi\)
−0.900851 + 0.434129i \(0.857056\pi\)
\(410\) 10.7482 1.57975i 0.530814 0.0780185i
\(411\) 0 0
\(412\) −0.301684 + 0.0906405i −0.0148629 + 0.00446554i
\(413\) −13.2683 32.0325i −0.652890 1.57622i
\(414\) 0 0
\(415\) 20.4464i 1.00368i
\(416\) −17.3488 19.3988i −0.850596 0.951105i
\(417\) 0 0
\(418\) 3.73873 14.8422i 0.182867 0.725955i
\(419\) −18.2081 + 7.54205i −0.889525 + 0.368453i −0.780183 0.625551i \(-0.784874\pi\)
−0.109342 + 0.994004i \(0.534874\pi\)
\(420\) 0 0
\(421\) 7.63758 18.4387i 0.372233 0.898649i −0.621139 0.783701i \(-0.713330\pi\)
0.993371 0.114949i \(-0.0366704\pi\)
\(422\) −2.85412 19.4186i −0.138936 0.945280i
\(423\) 0 0
\(424\) −11.8740 25.3665i −0.576652 1.23190i
\(425\) 7.83451 + 7.83451i 0.380029 + 0.380029i
\(426\) 0 0
\(427\) 5.02174 12.1235i 0.243019 0.586700i
\(428\) 4.91621 + 6.02297i 0.237634 + 0.291131i
\(429\) 0 0
\(430\) 11.2109 + 18.7607i 0.540638 + 0.904722i
\(431\) 15.7171i 0.757067i −0.925588 0.378534i \(-0.876428\pi\)
0.925588 0.378534i \(-0.123572\pi\)
\(432\) 0 0
\(433\) 2.04349i 0.0982041i 0.998794 + 0.0491020i \(0.0156360\pi\)
−0.998794 + 0.0491020i \(0.984364\pi\)
\(434\) 32.5835 19.4710i 1.56406 0.934639i
\(435\) 0 0
\(436\) 3.10720 30.7114i 0.148808 1.47081i
\(437\) 1.05676 2.55125i 0.0505518 0.122043i
\(438\) 0 0
\(439\) −8.47375 8.47375i −0.404430 0.404430i 0.475361 0.879791i \(-0.342318\pi\)
−0.879791 + 0.475361i \(0.842318\pi\)
\(440\) −14.6857 + 0.662818i −0.700112 + 0.0315986i
\(441\) 0 0
\(442\) 39.2770 5.77289i 1.86822 0.274588i
\(443\) −12.8153 + 30.9388i −0.608873 + 1.46995i 0.255355 + 0.966847i \(0.417808\pi\)
−0.864228 + 0.503101i \(0.832192\pi\)
\(444\) 0 0
\(445\) −13.9320 + 5.77083i −0.660440 + 0.273563i
\(446\) −16.3906 4.12877i −0.776116 0.195503i
\(447\) 0 0
\(448\) −21.8307 18.2090i −1.03140 0.860296i
\(449\) 19.7880i 0.933851i 0.884297 + 0.466926i \(0.154638\pi\)
−0.884297 + 0.466926i \(0.845362\pi\)
\(450\) 0 0
\(451\) 4.79839 + 11.5843i 0.225947 + 0.545485i
\(452\) 29.2420 + 15.7302i 1.37543 + 0.739885i
\(453\) 0 0
\(454\) −1.68536 11.4667i −0.0790980 0.538159i
\(455\) −20.6278 20.6278i −0.967045 0.967045i
\(456\) 0 0
\(457\) 9.46165 9.46165i 0.442597 0.442597i −0.450287 0.892884i \(-0.648678\pi\)
0.892884 + 0.450287i \(0.148678\pi\)
\(458\) 12.9491 + 9.63042i 0.605074 + 0.450000i
\(459\) 0 0
\(460\) −2.63879 0.266978i −0.123034 0.0124479i
\(461\) 8.16779 3.38321i 0.380412 0.157572i −0.184280 0.982874i \(-0.558995\pi\)
0.564691 + 0.825302i \(0.308995\pi\)
\(462\) 0 0
\(463\) −39.2301 −1.82318 −0.911590 0.411101i \(-0.865144\pi\)
−0.911590 + 0.411101i \(0.865144\pi\)
\(464\) −8.57748 + 12.6906i −0.398199 + 0.589148i
\(465\) 0 0
\(466\) 28.5075 17.0353i 1.32059 0.789147i
\(467\) −6.94459 16.7657i −0.321357 0.775825i −0.999176 0.0405959i \(-0.987074\pi\)
0.677818 0.735230i \(-0.262926\pi\)
\(468\) 0 0
\(469\) 0.462224 + 0.191459i 0.0213435 + 0.00884078i
\(470\) 17.4120 + 12.9495i 0.803154 + 0.597314i
\(471\) 0 0
\(472\) 11.6998 + 24.9944i 0.538528 + 1.15046i
\(473\) −17.8369 + 17.8369i −0.820142 + 0.820142i
\(474\) 0 0
\(475\) −6.23363 2.58205i −0.286018 0.118473i
\(476\) 41.5307 12.4778i 1.90356 0.571920i
\(477\) 0 0
\(478\) 27.1823 + 6.84718i 1.24329 + 0.313183i
\(479\) −10.6817 −0.488058 −0.244029 0.969768i \(-0.578469\pi\)
−0.244029 + 0.969768i \(0.578469\pi\)
\(480\) 0 0
\(481\) −27.6905 −1.26258
\(482\) −10.6797 2.69022i −0.486449 0.122536i
\(483\) 0 0
\(484\) 1.44808 + 4.81973i 0.0658218 + 0.219079i
\(485\) −5.30071 2.19563i −0.240693 0.0996983i
\(486\) 0 0
\(487\) −7.67417 + 7.67417i −0.347750 + 0.347750i −0.859271 0.511521i \(-0.829082\pi\)
0.511521 + 0.859271i \(0.329082\pi\)
\(488\) −3.55793 + 9.82022i −0.161060 + 0.444541i
\(489\) 0 0
\(490\) −11.3950 8.47458i −0.514773 0.382842i
\(491\) −38.6885 16.0253i −1.74599 0.723212i −0.998245 0.0592250i \(-0.981137\pi\)
−0.747744 0.663987i \(-0.768863\pi\)
\(492\) 0 0
\(493\) −8.94164 21.5870i −0.402711 0.972231i
\(494\) −20.7526 + 12.4012i −0.933705 + 0.557957i
\(495\) 0 0
\(496\) −25.2099 + 16.6517i −1.13196 + 0.747683i
\(497\) 6.61547 0.296745
\(498\) 0 0
\(499\) 18.1565 7.52067i 0.812797 0.336671i 0.0627275 0.998031i \(-0.480020\pi\)
0.750069 + 0.661359i \(0.230020\pi\)
\(500\) −2.44853 + 24.2011i −0.109501 + 1.08231i
\(501\) 0 0
\(502\) 33.0549 + 24.5833i 1.47531 + 1.09721i
\(503\) 20.9341 20.9341i 0.933405 0.933405i −0.0645124 0.997917i \(-0.520549\pi\)
0.997917 + 0.0645124i \(0.0205492\pi\)
\(504\) 0 0
\(505\) 2.22258 + 2.22258i 0.0989036 + 0.0989036i
\(506\) −0.445155 3.02870i −0.0197895 0.134642i
\(507\) 0 0
\(508\) 18.5195 34.4273i 0.821671 1.52746i
\(509\) −0.399075 0.963453i −0.0176887 0.0427043i 0.914788 0.403933i \(-0.132357\pi\)
−0.932477 + 0.361229i \(0.882357\pi\)
\(510\) 0 0
\(511\) 54.8905i 2.42821i
\(512\) 18.0121 + 13.6954i 0.796030 + 0.605257i
\(513\) 0 0
\(514\) −8.47828 2.13567i −0.373961 0.0942003i
\(515\) 0.259658 0.107554i 0.0114419 0.00473940i
\(516\) 0 0
\(517\) −9.58447 + 23.1390i −0.421525 + 1.01765i
\(518\) −29.9258 + 4.39846i −1.31486 + 0.193257i
\(519\) 0 0
\(520\) 17.1424 + 15.6618i 0.751744 + 0.686817i
\(521\) −3.86359 3.86359i −0.169267 0.169267i 0.617390 0.786657i \(-0.288190\pi\)
−0.786657 + 0.617390i \(0.788190\pi\)
\(522\) 0 0
\(523\) −8.40221 + 20.2847i −0.367403 + 0.886989i 0.626771 + 0.779203i \(0.284376\pi\)
−0.994174 + 0.107786i \(0.965624\pi\)
\(524\) −12.8639 1.30150i −0.561963 0.0568561i
\(525\) 0 0
\(526\) 5.12936 3.06517i 0.223651 0.133648i
\(527\) 46.0874i 2.00760i
\(528\) 0 0
\(529\) 22.4477i 0.975987i
\(530\) 12.8185 + 21.4509i 0.556799 + 0.931767i
\(531\) 0 0
\(532\) −20.4580 + 16.6987i −0.886969 + 0.723982i
\(533\) 7.57908 18.2975i 0.328286 0.792553i
\(534\) 0 0
\(535\) −4.90494 4.90494i −0.212059 0.212059i
\(536\) −0.374407 0.135650i −0.0161719 0.00585920i
\(537\) 0 0
\(538\) −3.18226 21.6511i −0.137197 0.933447i
\(539\) 6.27241 15.1429i 0.270172 0.652252i
\(540\) 0 0
\(541\) 0.504857 0.209119i 0.0217055 0.00899071i −0.371804 0.928311i \(-0.621261\pi\)
0.393510 + 0.919320i \(0.371261\pi\)
\(542\) −1.46340 + 5.80948i −0.0628585 + 0.249538i
\(543\) 0 0
\(544\) −32.5752 + 11.4122i −1.39665 + 0.489292i
\(545\) 27.5409i 1.17972i
\(546\) 0 0
\(547\) 11.9972 + 28.9639i 0.512964 + 1.23841i 0.942151 + 0.335190i \(0.108800\pi\)
−0.429186 + 0.903216i \(0.641200\pi\)
\(548\) 11.3482 + 37.7710i 0.484773 + 1.61350i
\(549\) 0 0
\(550\) −7.40020 + 1.08767i −0.315546 + 0.0463786i
\(551\) 10.0615 + 10.0615i 0.428633 + 0.428633i
\(552\) 0 0
\(553\) 29.8347 29.8347i 1.26870 1.26870i
\(554\) 1.49087 2.00464i 0.0633411 0.0851689i
\(555\) 0 0
\(556\) −20.6859 + 16.8848i −0.877279 + 0.716073i
\(557\) −3.31995 + 1.37517i −0.140671 + 0.0582677i −0.451908 0.892064i \(-0.649257\pi\)
0.311238 + 0.950332i \(0.399257\pi\)
\(558\) 0 0
\(559\) 39.8433 1.68519
\(560\) 21.0140 + 14.2032i 0.888005 + 0.600194i
\(561\) 0 0
\(562\) 0.665088 + 1.11298i 0.0280551 + 0.0469483i
\(563\) 3.47196 + 8.38204i 0.146325 + 0.353261i 0.980001 0.198994i \(-0.0637675\pi\)
−0.833675 + 0.552255i \(0.813767\pi\)
\(564\) 0 0
\(565\) −27.3703 11.3371i −1.15148 0.476957i
\(566\) −0.827594 + 1.11279i −0.0347864 + 0.0467741i
\(567\) 0 0
\(568\) −5.26028 + 0.237415i −0.220716 + 0.00996173i
\(569\) 2.72691 2.72691i 0.114318 0.114318i −0.647634 0.761952i \(-0.724241\pi\)
0.761952 + 0.647634i \(0.224241\pi\)
\(570\) 0 0
\(571\) 30.8517 + 12.7792i 1.29110 + 0.534792i 0.919314 0.393525i \(-0.128745\pi\)
0.371789 + 0.928317i \(0.378745\pi\)
\(572\) −12.6962 + 23.6020i −0.530856 + 0.986848i
\(573\) 0 0
\(574\) 5.28445 20.9785i 0.220569 0.875625i
\(575\) −1.34948 −0.0562771
\(576\) 0 0
\(577\) −45.9313 −1.91214 −0.956072 0.293131i \(-0.905303\pi\)
−0.956072 + 0.293131i \(0.905303\pi\)
\(578\) 6.98862 27.7438i 0.290688 1.15399i
\(579\) 0 0
\(580\) 6.47430 12.0356i 0.268831 0.499750i
\(581\) −37.6176 15.5817i −1.56064 0.646438i
\(582\) 0 0
\(583\) −20.3946 + 20.3946i −0.844658 + 0.844658i
\(584\) −1.96990 43.6460i −0.0815152 1.80608i
\(585\) 0 0
\(586\) −3.52148 + 4.73501i −0.145471 + 0.195601i
\(587\) −11.3774 4.71269i −0.469597 0.194514i 0.135320 0.990802i \(-0.456794\pi\)
−0.604917 + 0.796288i \(0.706794\pi\)
\(588\) 0 0
\(589\) 10.7404 + 25.9296i 0.442551 + 1.06841i
\(590\) −12.6305 21.1362i −0.519988 0.870166i
\(591\) 0 0
\(592\) 23.6376 4.57140i 0.971498 0.187883i
\(593\) −14.4266 −0.592431 −0.296216 0.955121i \(-0.595725\pi\)
−0.296216 + 0.955121i \(0.595725\pi\)
\(594\) 0 0
\(595\) −35.7453 + 14.8062i −1.46541 + 0.606994i
\(596\) 5.22402 4.26407i 0.213984 0.174663i
\(597\) 0 0
\(598\) −2.88551 + 3.87987i −0.117997 + 0.158660i
\(599\) 11.4738 11.4738i 0.468808 0.468808i −0.432720 0.901528i \(-0.642446\pi\)
0.901528 + 0.432720i \(0.142446\pi\)
\(600\) 0 0
\(601\) −5.94470 5.94470i −0.242489 0.242489i 0.575390 0.817879i \(-0.304850\pi\)
−0.817879 + 0.575390i \(0.804850\pi\)
\(602\) 43.0597 6.32887i 1.75498 0.257945i
\(603\) 0 0
\(604\) 8.18228 + 27.2336i 0.332932 + 1.10812i
\(605\) −1.71829 4.14832i −0.0698585 0.168653i
\(606\) 0 0
\(607\) 22.8701i 0.928269i −0.885765 0.464135i \(-0.846365\pi\)
0.885765 0.464135i \(-0.153635\pi\)
\(608\) 15.6679 14.0121i 0.635416 0.568268i
\(609\) 0 0
\(610\) 2.27635 9.03675i 0.0921666 0.365887i
\(611\) 36.5481 15.1387i 1.47858 0.612447i
\(612\) 0 0
\(613\) −5.36341 + 12.9484i −0.216626 + 0.522982i −0.994415 0.105544i \(-0.966342\pi\)
0.777788 + 0.628526i \(0.216342\pi\)
\(614\) 1.06304 + 7.23258i 0.0429007 + 0.291883i
\(615\) 0 0
\(616\) −9.97212 + 27.5240i −0.401788 + 1.10897i
\(617\) −20.5540 20.5540i −0.827474 0.827474i 0.159693 0.987167i \(-0.448950\pi\)
−0.987167 + 0.159693i \(0.948950\pi\)
\(618\) 0 0
\(619\) −4.42844 + 10.6912i −0.177994 + 0.429716i −0.987546 0.157333i \(-0.949710\pi\)
0.809551 + 0.587049i \(0.199710\pi\)
\(620\) 20.8828 17.0455i 0.838675 0.684562i
\(621\) 0 0
\(622\) −6.00252 10.0448i −0.240679 0.402761i
\(623\) 30.0301i 1.20313i
\(624\) 0 0
\(625\) 12.6236i 0.504943i
\(626\) −16.1034 + 9.62298i −0.643623 + 0.384612i
\(627\) 0 0
\(628\) −33.1178 3.35066i −1.32154 0.133706i
\(629\) −14.0542 + 33.9298i −0.560378 + 1.35287i
\(630\) 0 0
\(631\) 0.402845 + 0.402845i 0.0160370 + 0.0160370i 0.715080 0.699043i \(-0.246390\pi\)
−0.699043 + 0.715080i \(0.746390\pi\)
\(632\) −22.6522 + 24.7936i −0.901058 + 0.986238i
\(633\) 0 0
\(634\) −27.2737 + 4.00866i −1.08318 + 0.159204i
\(635\) −13.3475 + 32.2237i −0.529678 + 1.27876i
\(636\) 0 0
\(637\) −23.9183 + 9.90730i −0.947679 + 0.392542i
\(638\) 15.2959 + 3.85303i 0.605572 + 0.152543i
\(639\) 0 0
\(640\) −17.2190 10.5395i −0.680639 0.416609i
\(641\) 11.0551i 0.436649i −0.975876 0.218324i \(-0.929941\pi\)
0.975876 0.218324i \(-0.0700591\pi\)
\(642\) 0 0
\(643\) 10.8771 + 26.2596i 0.428950 + 1.03558i 0.979621 + 0.200854i \(0.0643717\pi\)
−0.550671 + 0.834722i \(0.685628\pi\)
\(644\) −2.50215 + 4.65142i −0.0985983 + 0.183292i
\(645\) 0 0
\(646\) 4.66260 + 31.7229i 0.183448 + 1.24812i
\(647\) 3.60517 + 3.60517i 0.141734 + 0.141734i 0.774414 0.632680i \(-0.218045\pi\)
−0.632680 + 0.774414i \(0.718045\pi\)
\(648\) 0 0
\(649\) 20.0955 20.0955i 0.788816 0.788816i
\(650\) 9.47993 + 7.05033i 0.371833 + 0.276537i
\(651\) 0 0
\(652\) 2.22046 21.9469i 0.0869600 0.859509i
\(653\) −34.1322 + 14.1380i −1.33570 + 0.553264i −0.932275 0.361749i \(-0.882180\pi\)
−0.403423 + 0.915014i \(0.632180\pi\)
\(654\) 0 0
\(655\) 11.5359 0.450746
\(656\) −3.44905 + 16.8706i −0.134663 + 0.658687i
\(657\) 0 0
\(658\) 37.0938 22.1662i 1.44607 0.864130i
\(659\) 17.8965 + 43.2060i 0.697150 + 1.68307i 0.729854 + 0.683603i \(0.239588\pi\)
−0.0327038 + 0.999465i \(0.510412\pi\)
\(660\) 0 0
\(661\) −3.26994 1.35446i −0.127186 0.0526822i 0.318183 0.948029i \(-0.396927\pi\)
−0.445369 + 0.895347i \(0.646927\pi\)
\(662\) 6.06423 + 4.51004i 0.235693 + 0.175288i
\(663\) 0 0
\(664\) 30.4707 + 11.0397i 1.18249 + 0.428425i
\(665\) 16.6605 16.6605i 0.646065 0.646065i
\(666\) 0 0
\(667\) 2.62925 + 1.08907i 0.101805 + 0.0421690i
\(668\) 9.05083 + 30.1244i 0.350187 + 1.16555i
\(669\) 0 0
\(670\) 0.344536 + 0.0867883i 0.0133106 + 0.00335293i
\(671\) 10.7560 0.415232
\(672\) 0 0
\(673\) 31.8698 1.22849 0.614245 0.789115i \(-0.289461\pi\)
0.614245 + 0.789115i \(0.289461\pi\)
\(674\) −44.8891 11.3075i −1.72906 0.435549i
\(675\) 0 0
\(676\) 15.6403 4.69910i 0.601550 0.180735i
\(677\) −13.6153 5.63965i −0.523279 0.216749i 0.105378 0.994432i \(-0.466395\pi\)
−0.628657 + 0.777683i \(0.716395\pi\)
\(678\) 0 0
\(679\) −8.07908 + 8.07908i −0.310047 + 0.310047i
\(680\) 27.8914 13.0559i 1.06959 0.500672i
\(681\) 0 0
\(682\) 24.9655 + 18.5671i 0.955977 + 0.710971i
\(683\) 24.0468 + 9.96050i 0.920124 + 0.381128i 0.791923 0.610621i \(-0.209080\pi\)
0.128200 + 0.991748i \(0.459080\pi\)
\(684\) 0 0
\(685\) −13.4658 32.5094i −0.514503 1.24212i
\(686\) 5.92155 3.53856i 0.226086 0.135103i
\(687\) 0 0
\(688\) −34.0117 + 6.57770i −1.29668 + 0.250773i
\(689\) 45.5566 1.73557
\(690\) 0 0
\(691\) −37.6111 + 15.5790i −1.43079 + 0.592653i −0.957547 0.288278i \(-0.906917\pi\)
−0.473245 + 0.880931i \(0.656917\pi\)
\(692\) −20.8156 2.10600i −0.791289 0.0800580i
\(693\) 0 0
\(694\) −29.8151 22.1738i −1.13176 0.841706i
\(695\) 16.8461 16.8461i 0.639008 0.639008i
\(696\) 0 0
\(697\) −18.5737 18.5737i −0.703528 0.703528i
\(698\) 1.67648 + 11.4063i 0.0634558 + 0.431734i
\(699\) 0 0
\(700\) 11.3651 + 6.11364i 0.429560 + 0.231074i
\(701\) 9.53278 + 23.0142i 0.360048 + 0.869233i 0.995292 + 0.0969216i \(0.0308996\pi\)
−0.635244 + 0.772312i \(0.719100\pi\)
\(702\) 0 0
\(703\) 22.3648i 0.843505i
\(704\) 6.94153 22.2435i 0.261619 0.838333i
\(705\) 0 0
\(706\) −19.8030 4.98836i −0.745297 0.187740i
\(707\) 5.78290 2.39536i 0.217488 0.0900867i
\(708\) 0 0
\(709\) −1.93081 + 4.66140i −0.0725132 + 0.175062i −0.955980 0.293431i \(-0.905203\pi\)
0.883467 + 0.468493i \(0.155203\pi\)
\(710\) 4.64812 0.683175i 0.174441 0.0256391i
\(711\) 0 0
\(712\) −1.07772 23.8783i −0.0403891 0.894878i
\(713\) 3.96923 + 3.96923i 0.148649 + 0.148649i
\(714\) 0 0
\(715\) 9.15050 22.0913i 0.342209 0.826166i
\(716\) −3.50129 + 34.6066i −0.130849 + 1.29331i
\(717\) 0 0
\(718\) 2.17652 1.30063i 0.0812270 0.0485391i
\(719\) 39.1090i 1.45852i −0.684237 0.729260i \(-0.739865\pi\)
0.684237 0.729260i \(-0.260135\pi\)
\(720\) 0 0
\(721\) 0.559686i 0.0208438i
\(722\) 3.76724 + 6.30423i 0.140202 + 0.234619i
\(723\) 0 0
\(724\) 22.6691 + 27.7725i 0.842490 + 1.03216i
\(725\) 2.66099 6.42420i 0.0988268 0.238589i
\(726\) 0 0
\(727\) 17.8274 + 17.8274i 0.661183 + 0.661183i 0.955659 0.294476i \(-0.0951450\pi\)
−0.294476 + 0.955659i \(0.595145\pi\)
\(728\) 41.8786 19.6033i 1.55212 0.726547i
\(729\) 0 0
\(730\) 5.66850 + 38.5668i 0.209801 + 1.42742i
\(731\) 20.2223 48.8210i 0.747950 1.80571i
\(732\) 0 0
\(733\) 3.09283 1.28109i 0.114236 0.0473182i −0.324833 0.945771i \(-0.605308\pi\)
0.439070 + 0.898453i \(0.355308\pi\)
\(734\) −0.178370 + 0.708101i −0.00658375 + 0.0261365i
\(735\) 0 0
\(736\) 1.82264 3.78836i 0.0671835 0.139641i
\(737\) 0.410086i 0.0151057i
\(738\) 0 0
\(739\) −8.57114 20.6926i −0.315295 0.761188i −0.999491 0.0318910i \(-0.989847\pi\)
0.684197 0.729297i \(-0.260153\pi\)
\(740\) −20.5720 + 6.18083i −0.756243 + 0.227212i
\(741\) 0 0
\(742\) 49.2342 7.23639i 1.80744 0.265656i
\(743\) 30.6030 + 30.6030i 1.12272 + 1.12272i 0.991332 + 0.131384i \(0.0419421\pi\)
0.131384 + 0.991332i \(0.458058\pi\)
\(744\) 0 0
\(745\) −4.25430 + 4.25430i −0.155866 + 0.155866i
\(746\) 14.4175 19.3858i 0.527861 0.709766i
\(747\) 0 0
\(748\) 22.4762 + 27.5361i 0.821810 + 1.00682i
\(749\) −12.7621 + 5.28623i −0.466317 + 0.193155i
\(750\) 0 0
\(751\) −9.79523 −0.357433 −0.178716 0.983901i \(-0.557194\pi\)
−0.178716 + 0.983901i \(0.557194\pi\)
\(752\) −28.6995 + 18.9566i −1.04656 + 0.691278i
\(753\) 0 0
\(754\) −12.7803 21.3871i −0.465433 0.778872i
\(755\) −9.70910 23.4398i −0.353350 0.853063i
\(756\) 0 0
\(757\) 10.1531 + 4.20556i 0.369021 + 0.152854i 0.559485 0.828841i \(-0.310999\pi\)
−0.190463 + 0.981694i \(0.560999\pi\)
\(758\) 9.24363 12.4291i 0.335744 0.451444i
\(759\) 0 0
\(760\) −12.6496 + 13.8454i −0.458850 + 0.502227i
\(761\) −19.7195 + 19.7195i −0.714832 + 0.714832i −0.967542 0.252710i \(-0.918678\pi\)
0.252710 + 0.967542i \(0.418678\pi\)
\(762\) 0 0
\(763\) 50.6701 + 20.9882i 1.83438 + 0.759825i
\(764\) 0.960818 + 0.516854i 0.0347612 + 0.0186991i
\(765\) 0 0
\(766\) 3.65881 14.5249i 0.132198 0.524807i
\(767\) −44.8884 −1.62083
\(768\) 0 0
\(769\) −11.6440 −0.419894 −0.209947 0.977713i \(-0.567329\pi\)
−0.209947 + 0.977713i \(0.567329\pi\)
\(770\) 6.38011 25.3281i 0.229923 0.912761i
\(771\) 0 0
\(772\) −24.2155 13.0263i −0.871535 0.468826i
\(773\) 32.6494 + 13.5238i 1.17432 + 0.486418i 0.882617 0.470092i \(-0.155779\pi\)
0.291700 + 0.956510i \(0.405779\pi\)
\(774\) 0 0
\(775\) 9.69825 9.69825i 0.348372 0.348372i
\(776\) 6.13411 6.71400i 0.220202 0.241018i
\(777\) 0 0
\(778\) −8.90129 + 11.9687i −0.319127 + 0.429100i
\(779\) 14.7784 + 6.12140i 0.529490 + 0.219322i
\(780\) 0 0
\(781\) 2.07510 + 5.00972i 0.0742528 + 0.179262i
\(782\) 3.28958 + 5.50490i 0.117635 + 0.196855i
\(783\) 0 0
\(784\) 18.7820 12.4059i 0.670784 0.443067i
\(785\) 29.6989 1.06000
\(786\) 0 0
\(787\) 4.72873 1.95870i 0.168561 0.0698203i −0.296807 0.954937i \(-0.595922\pi\)
0.465368 + 0.885117i \(0.345922\pi\)
\(788\) −5.12553 6.27941i −0.182589 0.223695i
\(789\) 0 0
\(790\) 17.8812 24.0432i 0.636185 0.855419i
\(791\) −41.7164 + 41.7164i −1.48326 + 1.48326i
\(792\) 0 0
\(793\) −12.0132 12.0132i −0.426600 0.426600i
\(794\) −22.9032 + 3.36628i −0.812803 + 0.119465i
\(795\) 0 0
\(796\) −26.3541 + 7.91804i −0.934096 + 0.280648i
\(797\) −1.47493 3.56079i −0.0522447 0.126130i 0.895602 0.444856i \(-0.146745\pi\)
−0.947847 + 0.318726i \(0.896745\pi\)
\(798\) 0 0
\(799\) 52.4669i 1.85615i
\(800\) −9.25633 4.45338i −0.327261 0.157451i
\(801\) 0 0
\(802\) −3.29563 + 13.0831i −0.116373 + 0.461981i
\(803\) −41.5671 + 17.2177i −1.46687 + 0.607598i
\(804\) 0 0
\(805\) 1.80336 4.35369i 0.0635600 0.153447i
\(806\) −7.14620 48.6206i −0.251714 1.71259i
\(807\) 0 0
\(808\) −4.51230 + 2.11220i −0.158742 + 0.0743069i
\(809\) 0.851642 + 0.851642i 0.0299421 + 0.0299421i 0.721919 0.691977i \(-0.243260\pi\)
−0.691977 + 0.721919i \(0.743260\pi\)
\(810\) 0 0
\(811\) 11.0808 26.7515i 0.389100 0.939371i −0.601031 0.799226i \(-0.705243\pi\)
0.990131 0.140145i \(-0.0447568\pi\)
\(812\) −17.2093 21.0835i −0.603926 0.739885i
\(813\) 0 0
\(814\) −12.7178 21.2823i −0.445757 0.745946i
\(815\) 19.6813i 0.689405i
\(816\) 0 0
\(817\) 32.1803i 1.12585i
\(818\) −16.2049 + 9.68358i −0.566589 + 0.338579i
\(819\) 0 0
\(820\) 1.54649 15.2855i 0.0540059 0.533792i
\(821\) 14.6802 35.4411i 0.512342 1.23690i −0.430176 0.902745i \(-0.641548\pi\)
0.942517 0.334157i \(-0.108452\pi\)
\(822\) 0 0
\(823\) 23.7916 + 23.7916i 0.829322 + 0.829322i 0.987423 0.158101i \(-0.0505370\pi\)
−0.158101 + 0.987423i \(0.550537\pi\)
\(824\) 0.0200860 + 0.445033i 0.000699728 + 0.0155035i
\(825\) 0 0
\(826\) −48.5120 + 7.13025i −1.68795 + 0.248093i
\(827\) 6.95203 16.7837i 0.241746 0.583626i −0.755711 0.654906i \(-0.772708\pi\)
0.997456 + 0.0712800i \(0.0227084\pi\)
\(828\) 0 0
\(829\) 17.6000 7.29015i 0.611272 0.253197i −0.0555001 0.998459i \(-0.517675\pi\)
0.666772 + 0.745261i \(0.267675\pi\)
\(830\) −28.0397 7.06317i −0.973273 0.245166i
\(831\) 0 0
\(832\) −32.5961 + 17.0904i −1.13007 + 0.592505i
\(833\) 34.3362i 1.18968i
\(834\) 0 0
\(835\) −10.7397 25.9280i −0.371663 0.897274i
\(836\) −19.0626 10.2544i −0.659295 0.354656i
\(837\) 0 0
\(838\) 4.05302 + 27.5755i 0.140009 + 0.952581i
\(839\) 4.74463 + 4.74463i 0.163803 + 0.163803i 0.784249 0.620446i \(-0.213048\pi\)
−0.620446 + 0.784249i \(0.713048\pi\)
\(840\) 0 0
\(841\) 10.1370 10.1370i 0.349553 0.349553i
\(842\) −22.6480 16.8436i −0.780503 0.580469i
\(843\) 0 0
\(844\) −27.6160 2.79403i −0.950583 0.0961744i
\(845\) −13.4616 + 5.57596i −0.463092 + 0.191819i
\(846\) 0 0
\(847\) −8.94160 −0.307237
\(848\) −38.8887 + 7.52090i −1.33544 + 0.258269i
\(849\) 0 0
\(850\) 13.4504 8.03763i 0.461347 0.275688i
\(851\) −1.71177 4.13257i −0.0586787 0.141663i
\(852\) 0 0
\(853\) 21.3984 + 8.86349i 0.732666 + 0.303480i 0.717647 0.696407i \(-0.245219\pi\)
0.0150190 + 0.999887i \(0.495219\pi\)
\(854\) −14.8912 11.0747i −0.509565 0.378969i
\(855\) 0 0
\(856\) 9.95804 4.66134i 0.340359 0.159321i
\(857\) 14.9755 14.9755i 0.511554 0.511554i −0.403448 0.915003i \(-0.632188\pi\)
0.915003 + 0.403448i \(0.132188\pi\)
\(858\) 0 0
\(859\) −3.68023 1.52440i −0.125568 0.0520119i 0.319015 0.947750i \(-0.396648\pi\)
−0.444583 + 0.895738i \(0.646648\pi\)
\(860\) 29.6007 8.89349i 1.00938 0.303265i
\(861\) 0 0
\(862\) −21.5541 5.42944i −0.734134 0.184928i
\(863\) 52.6581 1.79250 0.896252 0.443545i \(-0.146279\pi\)
0.896252 + 0.443545i \(0.146279\pi\)
\(864\) 0 0
\(865\) 18.6667 0.634687
\(866\) 2.80239 + 0.705920i 0.0952292 + 0.0239881i
\(867\) 0 0
\(868\) −15.4462 51.4104i −0.524277 1.74498i
\(869\) 31.9513 + 13.2347i 1.08387 + 0.448955i
\(870\) 0 0
\(871\) 0.458016 0.458016i 0.0155193 0.0155193i
\(872\) −41.0434 14.8703i −1.38991 0.503572i
\(873\) 0 0
\(874\) −3.13366 2.33054i −0.105998 0.0788317i
\(875\) −39.9289 16.5391i −1.34984 0.559124i
\(876\) 0 0
\(877\) −4.99743 12.0649i −0.168751 0.407401i 0.816768 0.576966i \(-0.195764\pi\)
−0.985519 + 0.169565i \(0.945764\pi\)
\(878\) −14.5479 + 8.69344i −0.490968 + 0.293390i
\(879\) 0 0
\(880\) −4.16416 + 20.3685i −0.140374 + 0.686623i
\(881\) −38.6516 −1.30221 −0.651103 0.758989i \(-0.725694\pi\)
−0.651103 + 0.758989i \(0.725694\pi\)
\(882\) 0 0
\(883\) −10.8231 + 4.48306i −0.364226 + 0.150867i −0.557288 0.830319i \(-0.688158\pi\)
0.193062 + 0.981186i \(0.438158\pi\)
\(884\) 5.65135 55.8577i 0.190076 1.87870i
\(885\) 0 0
\(886\) 38.0017 + 28.2623i 1.27669 + 0.949490i
\(887\) 3.30593 3.30593i 0.111002 0.111002i −0.649424 0.760426i \(-0.724990\pi\)
0.760426 + 0.649424i \(0.224990\pi\)
\(888\) 0 0
\(889\) 49.1137 + 49.1137i 1.64722 + 1.64722i
\(890\) 3.10118 + 21.0995i 0.103952 + 0.707257i
\(891\) 0 0
\(892\) −11.3242 + 21.0513i −0.379161 + 0.704850i
\(893\) 12.2271 + 29.5189i 0.409165 + 0.987811i
\(894\) 0 0
\(895\) 31.0340i 1.03735i
\(896\) −32.5128 + 23.6478i −1.08618 + 0.790017i
\(897\) 0 0
\(898\) 27.1367 + 6.83570i 0.905563 + 0.228110i
\(899\) −26.7224 + 11.0688i −0.891241 + 0.369164i
\(900\) 0 0
\(901\) 23.1221 55.8217i 0.770309 1.85969i
\(902\) 17.5440 2.57860i 0.584153 0.0858581i
\(903\) 0 0
\(904\) 31.6735 34.6678i 1.05345 1.15303i
\(905\) −22.6171 22.6171i −0.751819 0.751819i
\(906\) 0 0
\(907\) 14.0586 33.9405i 0.466809 1.12698i −0.498739 0.866752i \(-0.666203\pi\)
0.965548 0.260225i \(-0.0837967\pi\)
\(908\) −16.3073 1.64988i −0.541178 0.0547532i
\(909\) 0 0
\(910\) −35.4142 + 21.1626i −1.17397 + 0.701533i
\(911\) 28.5526i 0.945990i 0.881065 + 0.472995i \(0.156827\pi\)
−0.881065 + 0.472995i \(0.843173\pi\)
\(912\) 0 0
\(913\) 33.3744i 1.10453i
\(914\) −9.70695 16.2440i −0.321077 0.537302i
\(915\) 0 0
\(916\) 17.6802 14.4313i 0.584169 0.476824i
\(917\) 8.79124 21.2239i 0.290312 0.700876i
\(918\) 0 0
\(919\) 14.1101 + 14.1101i 0.465448 + 0.465448i 0.900436 0.434988i \(-0.143247\pi\)
−0.434988 + 0.900436i \(0.643247\pi\)
\(920\) −1.27769 + 3.52654i −0.0421242 + 0.116267i
\(921\) 0 0
\(922\) −1.81810 12.3698i −0.0598760 0.407378i
\(923\) 3.27762 7.91289i 0.107884 0.260456i
\(924\) 0 0
\(925\) −10.0974 + 4.18247i −0.331999 + 0.137519i
\(926\) −13.5520 + 53.7992i −0.445345 + 1.76795i
\(927\) 0 0
\(928\) 14.4405 + 16.1469i 0.474034 + 0.530047i
\(929\) 1.88348i 0.0617951i 0.999523 + 0.0308975i \(0.00983656\pi\)
−0.999523 + 0.0308975i \(0.990163\pi\)
\(930\) 0 0
\(931\) −8.00185 19.3182i −0.262250 0.633127i
\(932\) −13.5140 44.9793i −0.442664 1.47335i
\(933\) 0 0
\(934\) −25.3911 + 3.73195i −0.830821 + 0.122113i
\(935\) −22.4247 22.4247i −0.733365 0.733365i
\(936\) 0 0
\(937\) −15.2871 + 15.2871i −0.499409 + 0.499409i −0.911254 0.411845i \(-0.864885\pi\)
0.411845 + 0.911254i \(0.364885\pi\)
\(938\) 0.422237 0.567743i 0.0137865 0.0185375i
\(939\) 0 0
\(940\) 23.7735 19.4049i 0.775405 0.632919i
\(941\) 35.4271 14.6744i 1.15489 0.478372i 0.278721 0.960372i \(-0.410090\pi\)
0.876171 + 0.482000i \(0.160090\pi\)
\(942\) 0 0
\(943\) 3.19927 0.104183
\(944\) 38.3183 7.41059i 1.24716 0.241194i
\(945\) 0 0
\(946\) 18.2994 + 30.6228i 0.594963 + 0.995633i
\(947\) 8.28542 + 20.0028i 0.269240 + 0.650003i 0.999448 0.0332221i \(-0.0105769\pi\)
−0.730208 + 0.683225i \(0.760577\pi\)
\(948\) 0 0
\(949\) 65.6555 + 27.1954i 2.13127 + 0.882800i
\(950\) −5.69435 + 7.65667i −0.184749 + 0.248415i
\(951\) 0 0
\(952\) −2.76509 61.2645i −0.0896171 1.98559i
\(953\) −27.6252 + 27.6252i −0.894867 + 0.894867i −0.994976 0.100110i \(-0.968081\pi\)
0.100110 + 0.994976i \(0.468081\pi\)
\(954\) 0 0
\(955\) −0.899317 0.372509i −0.0291012 0.0120541i
\(956\) 18.7801 34.9117i 0.607392 1.12913i
\(957\) 0 0
\(958\) −3.68995 + 14.6486i −0.119217 + 0.473273i
\(959\) −70.0731 −2.26278
\(960\) 0 0
\(961\) −26.0511 −0.840358
\(962\) −9.56561 + 37.9740i −0.308408 + 1.22433i
\(963\) 0 0
\(964\) −7.37858 + 13.7166i −0.237648 + 0.441782i
\(965\) 22.6655 + 9.38836i 0.729629 + 0.302222i
\(966\) 0 0
\(967\) −32.5133 + 32.5133i −1.04556 + 1.04556i −0.0466463 + 0.998911i \(0.514853\pi\)
−0.998911 + 0.0466463i \(0.985147\pi\)
\(968\) 7.10989 0.320895i 0.228520 0.0103140i
\(969\) 0 0
\(970\) −4.84214 + 6.51079i −0.155472 + 0.209049i
\(971\) 49.5609 + 20.5288i 1.59048 + 0.658800i 0.990030 0.140859i \(-0.0449863\pi\)
0.600455 + 0.799659i \(0.294986\pi\)
\(972\) 0 0
\(973\) −18.1556 43.8315i −0.582042 1.40517i
\(974\) 7.87313 + 13.1752i 0.252271 + 0.422160i
\(975\) 0 0
\(976\) 12.2381 + 8.27163i 0.391733 + 0.264768i
\(977\) 29.2129 0.934603 0.467301 0.884098i \(-0.345226\pi\)
0.467301 + 0.884098i \(0.345226\pi\)
\(978\) 0 0
\(979\) −22.7410 + 9.41962i −0.726805 + 0.301052i
\(980\) −15.5582 + 12.6993i −0.496988 + 0.405663i
\(981\) 0 0
\(982\) −35.3415 + 47.5205i −1.12779 + 1.51644i
\(983\) 33.7320 33.7320i 1.07588 1.07588i 0.0790094 0.996874i \(-0.474824\pi\)
0.996874 0.0790094i \(-0.0251757\pi\)
\(984\) 0 0
\(985\) 5.11378 + 5.11378i 0.162939 + 0.162939i
\(986\) −32.6928 + 4.80515i −1.04115 + 0.153027i
\(987\) 0 0
\(988\) 9.83776 + 32.7436i 0.312981 + 1.04171i
\(989\) 2.46303 + 5.94629i 0.0783199 + 0.189081i
\(990\) 0 0
\(991\) 2.34392i 0.0744571i 0.999307 + 0.0372285i \(0.0118530\pi\)
−0.999307 + 0.0372285i \(0.988147\pi\)
\(992\) 14.1270 + 40.3245i 0.448532 + 1.28030i
\(993\) 0 0
\(994\) 2.28530 9.07229i 0.0724853 0.287755i
\(995\) 22.6829 9.39555i 0.719095 0.297859i
\(996\) 0 0
\(997\) −14.7502 + 35.6102i −0.467145 + 1.12779i 0.498259 + 0.867028i \(0.333973\pi\)
−0.965404 + 0.260759i \(0.916027\pi\)
\(998\) −4.04153 27.4974i −0.127932 0.870413i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.2.w.b.107.5 yes 32
3.2 odd 2 288.2.w.a.107.4 yes 32
4.3 odd 2 1152.2.w.a.719.6 32
12.11 even 2 1152.2.w.b.719.3 32
32.3 odd 8 288.2.w.a.35.4 32
32.29 even 8 1152.2.w.b.431.3 32
96.29 odd 8 1152.2.w.a.431.6 32
96.35 even 8 inner 288.2.w.b.35.5 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.w.a.35.4 32 32.3 odd 8
288.2.w.a.107.4 yes 32 3.2 odd 2
288.2.w.b.35.5 yes 32 96.35 even 8 inner
288.2.w.b.107.5 yes 32 1.1 even 1 trivial
1152.2.w.a.431.6 32 96.29 odd 8
1152.2.w.a.719.6 32 4.3 odd 2
1152.2.w.b.431.3 32 32.29 even 8
1152.2.w.b.719.3 32 12.11 even 2