# Properties

 Label 288.2.w.b Level $288$ Weight $2$ Character orbit 288.w Analytic conductor $2.300$ Analytic rank $0$ Dimension $32$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$288 = 2^{5} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 288.w (of order $$8$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.29969157821$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$8$$ over $$\Q(\zeta_{8})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

## $q$-expansion

The dimension is sufficiently large that we do not compute an algebraic $$q$$-expansion, but we have computed the trace expansion.

 $$\operatorname{Tr}(f)(q) =$$ $$32q + 4q^{2} + 4q^{8} + O(q^{10})$$ $$\operatorname{Tr}(f)(q) =$$ $$32q + 4q^{2} + 4q^{8} + 8q^{10} + 8q^{11} - 12q^{14} + 8q^{16} - 32q^{20} + 16q^{22} + 36q^{26} + 16q^{29} + 24q^{32} - 24q^{35} - 32q^{38} - 32q^{40} - 8q^{44} - 32q^{46} - 8q^{50} - 56q^{52} + 16q^{53} - 32q^{55} - 40q^{56} - 32q^{58} - 32q^{59} + 32q^{61} + 68q^{62} - 48q^{64} - 16q^{67} + 72q^{68} - 48q^{70} - 16q^{71} - 60q^{74} - 8q^{76} + 16q^{77} - 32q^{79} - 96q^{80} + 40q^{82} + 40q^{83} + 40q^{86} + 40q^{88} - 48q^{91} + 16q^{92} + 72q^{94} + 80q^{95} + 44q^{98} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
35.1 −1.32473 + 0.495070i 0 1.50981 1.31167i 0.0505677 0.0209458i 0 1.44150 + 1.44150i −1.35072 + 2.48506i 0 −0.0566189 + 0.0527821i
35.2 −1.16775 0.797726i 0 0.727265 + 1.86308i −1.65625 + 0.686041i 0 −0.456585 0.456585i 0.636970 2.75577i 0 2.48135 + 0.520112i
35.3 −0.430512 + 1.34709i 0 −1.62932 1.15988i −1.78959 + 0.741273i 0 −2.33709 2.33709i 2.26391 1.69550i 0 −0.228123 2.72987i
35.4 −0.349793 1.37027i 0 −1.75529 + 0.958624i 2.97412 1.23192i 0 0.237717 + 0.237717i 1.92756 + 2.06990i 0 −2.72839 3.64443i
35.5 0.345448 + 1.37137i 0 −1.76133 + 0.947475i 1.64859 0.682869i 0 2.51270 + 2.51270i −1.90779 2.08814i 0 1.50597 + 2.02494i
35.6 1.19734 0.752583i 0 0.867238 1.80219i 0.0913223 0.0378270i 0 −3.05457 3.05457i −0.317923 2.81050i 0 0.0808758 0.114019i
35.7 1.33776 + 0.458699i 0 1.57919 + 1.22726i 2.70076 1.11869i 0 −1.06647 1.06647i 1.54963 + 2.36614i 0 4.12611 0.257702i
35.8 1.39224 + 0.248345i 0 1.87665 + 0.691511i −4.01952 + 1.66494i 0 2.72280 + 2.72280i 2.44101 + 1.42881i 0 −6.00960 + 1.31976i
107.1 −1.32473 0.495070i 0 1.50981 + 1.31167i 0.0505677 + 0.0209458i 0 1.44150 1.44150i −1.35072 2.48506i 0 −0.0566189 0.0527821i
107.2 −1.16775 + 0.797726i 0 0.727265 1.86308i −1.65625 0.686041i 0 −0.456585 + 0.456585i 0.636970 + 2.75577i 0 2.48135 0.520112i
107.3 −0.430512 1.34709i 0 −1.62932 + 1.15988i −1.78959 0.741273i 0 −2.33709 + 2.33709i 2.26391 + 1.69550i 0 −0.228123 + 2.72987i
107.4 −0.349793 + 1.37027i 0 −1.75529 0.958624i 2.97412 + 1.23192i 0 0.237717 0.237717i 1.92756 2.06990i 0 −2.72839 + 3.64443i
107.5 0.345448 1.37137i 0 −1.76133 0.947475i 1.64859 + 0.682869i 0 2.51270 2.51270i −1.90779 + 2.08814i 0 1.50597 2.02494i
107.6 1.19734 + 0.752583i 0 0.867238 + 1.80219i 0.0913223 + 0.0378270i 0 −3.05457 + 3.05457i −0.317923 + 2.81050i 0 0.0808758 + 0.114019i
107.7 1.33776 0.458699i 0 1.57919 1.22726i 2.70076 + 1.11869i 0 −1.06647 + 1.06647i 1.54963 2.36614i 0 4.12611 + 0.257702i
107.8 1.39224 0.248345i 0 1.87665 0.691511i −4.01952 1.66494i 0 2.72280 2.72280i 2.44101 1.42881i 0 −6.00960 1.31976i
179.1 −1.24371 + 0.673185i 0 1.09364 1.67450i −1.11994 2.70378i 0 1.57144 + 1.57144i −0.232933 + 2.81882i 0 3.21304 + 2.60880i
179.2 −1.24152 0.677214i 0 1.08276 + 1.68155i −0.0963530 0.232617i 0 0.617536 + 0.617536i −0.205502 2.82095i 0 −0.0379068 + 0.354051i
179.3 −0.450008 + 1.34071i 0 −1.59499 1.20666i 0.739921 + 1.78633i 0 0.385417 + 0.385417i 2.33553 1.59540i 0 −2.72791 + 0.188155i
179.4 0.290763 1.38400i 0 −1.83091 0.804831i 1.12344 + 2.71222i 0 3.03150 + 3.03150i −1.64625 + 2.29997i 0 4.08037 0.766228i
See all 32 embeddings
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 251.8 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
96.o even 8 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 288.2.w.b yes 32
3.b odd 2 1 288.2.w.a 32
4.b odd 2 1 1152.2.w.a 32
12.b even 2 1 1152.2.w.b 32
32.g even 8 1 1152.2.w.b 32
32.h odd 8 1 288.2.w.a 32
96.o even 8 1 inner 288.2.w.b yes 32
96.p odd 8 1 1152.2.w.a 32

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
288.2.w.a 32 3.b odd 2 1
288.2.w.a 32 32.h odd 8 1
288.2.w.b yes 32 1.a even 1 1 trivial
288.2.w.b yes 32 96.o even 8 1 inner
1152.2.w.a 32 4.b odd 2 1
1152.2.w.a 32 96.p odd 8 1
1152.2.w.b 32 12.b even 2 1
1152.2.w.b 32 32.g even 8 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5}^{32} + \cdots$$ acting on $$S_{2}^{\mathrm{new}}(288, [\chi])$$.