Properties

Label 288.2.w.a.35.4
Level $288$
Weight $2$
Character 288.35
Analytic conductor $2.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [288,2,Mod(35,288)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(288, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("288.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 288.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.29969157821\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 35.4
Character \(\chi\) \(=\) 288.35
Dual form 288.2.w.a.107.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.345448 - 1.37137i) q^{2} +(-1.76133 + 0.947475i) q^{4} +(-1.64859 + 0.682869i) q^{5} +(2.51270 + 2.51270i) q^{7} +(1.90779 + 2.08814i) q^{8} +(1.50597 + 2.02494i) q^{10} +(-2.69097 + 1.11464i) q^{11} +(-1.76057 + 4.25040i) q^{13} +(2.57784 - 4.31386i) q^{14} +(2.20458 - 3.33764i) q^{16} +6.10169 q^{17} +(3.43292 + 1.42196i) q^{19} +(2.25672 - 2.76476i) q^{20} +(2.45817 + 3.30527i) q^{22} +(-0.525502 - 0.525502i) q^{23} +(-1.28399 + 1.28399i) q^{25} +(6.43707 + 0.946113i) q^{26} +(-6.80642 - 2.04498i) q^{28} +(-1.46544 + 3.53788i) q^{29} -7.55322i q^{31} +(-5.33872 - 1.87033i) q^{32} +(-2.10781 - 8.36770i) q^{34} +(-5.85826 - 2.42657i) q^{35} +(2.30333 + 5.56073i) q^{37} +(0.764149 - 5.19904i) q^{38} +(-4.57109 - 2.13972i) q^{40} +(-3.04402 + 3.04402i) q^{41} +(-3.31422 - 8.00123i) q^{43} +(3.68360 - 4.51287i) q^{44} +(-0.539126 + 0.902192i) q^{46} +8.59875i q^{47} +5.62732i q^{49} +(2.20438 + 1.31728i) q^{50} +(-0.926194 - 9.15446i) q^{52} +(3.78946 + 9.14856i) q^{53} +(3.67516 - 3.67516i) q^{55} +(-0.453168 + 10.0406i) q^{56} +(5.35798 + 0.787511i) q^{58} +(-3.73387 - 9.01437i) q^{59} +(3.41173 + 1.41318i) q^{61} +(-10.3583 + 2.60924i) q^{62} +(-0.720670 + 7.96747i) q^{64} -8.20941i q^{65} +(0.0538792 - 0.130076i) q^{67} +(-10.7471 + 5.78120i) q^{68} +(-1.30401 + 8.87212i) q^{70} +(-1.31641 + 1.31641i) q^{71} +(-10.9226 - 10.9226i) q^{73} +(6.83016 - 5.07966i) q^{74} +(-7.39380 + 0.748061i) q^{76} +(-9.56234 - 3.96085i) q^{77} +11.8735 q^{79} +(-1.35528 + 7.00784i) q^{80} +(5.22604 + 3.12294i) q^{82} +(4.38490 - 10.5861i) q^{83} +(-10.0592 + 4.16666i) q^{85} +(-9.82779 + 7.30904i) q^{86} +(-7.46132 - 3.49263i) q^{88} +(5.97566 + 5.97566i) q^{89} +(-15.1038 + 6.25618i) q^{91} +(1.42348 + 0.427683i) q^{92} +(11.7921 - 2.97042i) q^{94} -6.63051 q^{95} -3.21530 q^{97} +(7.71716 - 1.94394i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{2} - 4 q^{8} + 8 q^{10} - 8 q^{11} + 12 q^{14} + 8 q^{16} + 32 q^{20} + 16 q^{22} - 36 q^{26} - 16 q^{29} - 24 q^{32} + 24 q^{35} + 32 q^{38} - 32 q^{40} + 8 q^{44} - 32 q^{46} + 8 q^{50} - 56 q^{52}+ \cdots - 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.345448 1.37137i −0.244268 0.969708i
\(3\) 0 0
\(4\) −1.76133 + 0.947475i −0.880666 + 0.473738i
\(5\) −1.64859 + 0.682869i −0.737273 + 0.305388i −0.719537 0.694454i \(-0.755646\pi\)
−0.0177359 + 0.999843i \(0.505646\pi\)
\(6\) 0 0
\(7\) 2.51270 + 2.51270i 0.949711 + 0.949711i 0.998795 0.0490835i \(-0.0156300\pi\)
−0.0490835 + 0.998795i \(0.515630\pi\)
\(8\) 1.90779 + 2.08814i 0.674506 + 0.738270i
\(9\) 0 0
\(10\) 1.50597 + 2.02494i 0.476230 + 0.640342i
\(11\) −2.69097 + 1.11464i −0.811357 + 0.336075i −0.749495 0.662010i \(-0.769704\pi\)
−0.0618618 + 0.998085i \(0.519704\pi\)
\(12\) 0 0
\(13\) −1.76057 + 4.25040i −0.488295 + 1.17885i 0.467283 + 0.884108i \(0.345233\pi\)
−0.955577 + 0.294740i \(0.904767\pi\)
\(14\) 2.57784 4.31386i 0.688958 1.15293i
\(15\) 0 0
\(16\) 2.20458 3.33764i 0.551145 0.834409i
\(17\) 6.10169 1.47988 0.739939 0.672674i \(-0.234854\pi\)
0.739939 + 0.672674i \(0.234854\pi\)
\(18\) 0 0
\(19\) 3.43292 + 1.42196i 0.787567 + 0.326221i 0.739965 0.672645i \(-0.234842\pi\)
0.0476020 + 0.998866i \(0.484842\pi\)
\(20\) 2.25672 2.76476i 0.504617 0.618219i
\(21\) 0 0
\(22\) 2.45817 + 3.30527i 0.524083 + 0.704687i
\(23\) −0.525502 0.525502i −0.109575 0.109575i 0.650194 0.759768i \(-0.274688\pi\)
−0.759768 + 0.650194i \(0.774688\pi\)
\(24\) 0 0
\(25\) −1.28399 + 1.28399i −0.256798 + 0.256798i
\(26\) 6.43707 + 0.946113i 1.26241 + 0.185548i
\(27\) 0 0
\(28\) −6.80642 2.04498i −1.28629 0.386464i
\(29\) −1.46544 + 3.53788i −0.272125 + 0.656967i −0.999574 0.0291945i \(-0.990706\pi\)
0.727449 + 0.686162i \(0.240706\pi\)
\(30\) 0 0
\(31\) 7.55322i 1.35660i −0.734786 0.678299i \(-0.762717\pi\)
0.734786 0.678299i \(-0.237283\pi\)
\(32\) −5.33872 1.87033i −0.943760 0.330630i
\(33\) 0 0
\(34\) −2.10781 8.36770i −0.361487 1.43505i
\(35\) −5.85826 2.42657i −0.990227 0.410165i
\(36\) 0 0
\(37\) 2.30333 + 5.56073i 0.378665 + 0.914178i 0.992217 + 0.124523i \(0.0397402\pi\)
−0.613552 + 0.789655i \(0.710260\pi\)
\(38\) 0.764149 5.19904i 0.123961 0.843395i
\(39\) 0 0
\(40\) −4.57109 2.13972i −0.722754 0.338320i
\(41\) −3.04402 + 3.04402i −0.475396 + 0.475396i −0.903656 0.428260i \(-0.859127\pi\)
0.428260 + 0.903656i \(0.359127\pi\)
\(42\) 0 0
\(43\) −3.31422 8.00123i −0.505414 1.22018i −0.946498 0.322711i \(-0.895406\pi\)
0.441084 0.897466i \(-0.354594\pi\)
\(44\) 3.68360 4.51287i 0.555323 0.680340i
\(45\) 0 0
\(46\) −0.539126 + 0.902192i −0.0794898 + 0.133021i
\(47\) 8.59875i 1.25426i 0.778916 + 0.627128i \(0.215770\pi\)
−0.778916 + 0.627128i \(0.784230\pi\)
\(48\) 0 0
\(49\) 5.62732i 0.803903i
\(50\) 2.20438 + 1.31728i 0.311746 + 0.186291i
\(51\) 0 0
\(52\) −0.926194 9.15446i −0.128440 1.26950i
\(53\) 3.78946 + 9.14856i 0.520522 + 1.25665i 0.937580 + 0.347771i \(0.113061\pi\)
−0.417058 + 0.908880i \(0.636939\pi\)
\(54\) 0 0
\(55\) 3.67516 3.67516i 0.495558 0.495558i
\(56\) −0.453168 + 10.0406i −0.0605571 + 1.34173i
\(57\) 0 0
\(58\) 5.35798 + 0.787511i 0.703538 + 0.103405i
\(59\) −3.73387 9.01437i −0.486109 1.17357i −0.956662 0.291199i \(-0.905946\pi\)
0.470553 0.882372i \(-0.344054\pi\)
\(60\) 0 0
\(61\) 3.41173 + 1.41318i 0.436827 + 0.180940i 0.590249 0.807221i \(-0.299030\pi\)
−0.153422 + 0.988161i \(0.549030\pi\)
\(62\) −10.3583 + 2.60924i −1.31550 + 0.331374i
\(63\) 0 0
\(64\) −0.720670 + 7.96747i −0.0900838 + 0.995934i
\(65\) 8.20941i 1.01825i
\(66\) 0 0
\(67\) 0.0538792 0.130076i 0.00658239 0.0158913i −0.920554 0.390615i \(-0.872262\pi\)
0.927137 + 0.374724i \(0.122262\pi\)
\(68\) −10.7471 + 5.78120i −1.30328 + 0.701074i
\(69\) 0 0
\(70\) −1.30401 + 8.87212i −0.155860 + 1.06042i
\(71\) −1.31641 + 1.31641i −0.156229 + 0.156229i −0.780893 0.624664i \(-0.785236\pi\)
0.624664 + 0.780893i \(0.285236\pi\)
\(72\) 0 0
\(73\) −10.9226 10.9226i −1.27839 1.27839i −0.941566 0.336829i \(-0.890646\pi\)
−0.336829 0.941566i \(-0.609354\pi\)
\(74\) 6.83016 5.07966i 0.793990 0.590499i
\(75\) 0 0
\(76\) −7.39380 + 0.748061i −0.848127 + 0.0858085i
\(77\) −9.56234 3.96085i −1.08973 0.451381i
\(78\) 0 0
\(79\) 11.8735 1.33588 0.667939 0.744216i \(-0.267177\pi\)
0.667939 + 0.744216i \(0.267177\pi\)
\(80\) −1.35528 + 7.00784i −0.151525 + 0.783500i
\(81\) 0 0
\(82\) 5.22604 + 3.12294i 0.577119 + 0.344871i
\(83\) 4.38490 10.5861i 0.481305 1.16197i −0.477684 0.878532i \(-0.658524\pi\)
0.958989 0.283442i \(-0.0914763\pi\)
\(84\) 0 0
\(85\) −10.0592 + 4.16666i −1.09107 + 0.451937i
\(86\) −9.82779 + 7.30904i −1.05976 + 0.788154i
\(87\) 0 0
\(88\) −7.46132 3.49263i −0.795379 0.372316i
\(89\) 5.97566 + 5.97566i 0.633418 + 0.633418i 0.948924 0.315506i \(-0.102174\pi\)
−0.315506 + 0.948924i \(0.602174\pi\)
\(90\) 0 0
\(91\) −15.1038 + 6.25618i −1.58330 + 0.655826i
\(92\) 1.42348 + 0.427683i 0.148408 + 0.0445890i
\(93\) 0 0
\(94\) 11.7921 2.97042i 1.21626 0.306375i
\(95\) −6.63051 −0.680276
\(96\) 0 0
\(97\) −3.21530 −0.326464 −0.163232 0.986588i \(-0.552192\pi\)
−0.163232 + 0.986588i \(0.552192\pi\)
\(98\) 7.71716 1.94394i 0.779551 0.196368i
\(99\) 0 0
\(100\) 1.04498 3.47808i 0.104498 0.347808i
\(101\) −1.62739 + 0.674085i −0.161931 + 0.0670740i −0.462177 0.886788i \(-0.652931\pi\)
0.300246 + 0.953862i \(0.402931\pi\)
\(102\) 0 0
\(103\) 0.111372 + 0.111372i 0.0109738 + 0.0109738i 0.712572 0.701599i \(-0.247530\pi\)
−0.701599 + 0.712572i \(0.747530\pi\)
\(104\) −12.2342 + 4.43254i −1.19967 + 0.434647i
\(105\) 0 0
\(106\) 11.2370 8.35711i 1.09144 0.811714i
\(107\) 3.59142 1.48762i 0.347196 0.143813i −0.202269 0.979330i \(-0.564832\pi\)
0.549465 + 0.835517i \(0.314832\pi\)
\(108\) 0 0
\(109\) 5.90637 14.2592i 0.565727 1.36579i −0.339398 0.940643i \(-0.610223\pi\)
0.905126 0.425144i \(-0.139777\pi\)
\(110\) −6.30959 3.77044i −0.601596 0.359497i
\(111\) 0 0
\(112\) 13.9259 2.84703i 1.31588 0.269019i
\(113\) 16.6022 1.56180 0.780902 0.624653i \(-0.214760\pi\)
0.780902 + 0.624653i \(0.214760\pi\)
\(114\) 0 0
\(115\) 1.22519 + 0.507489i 0.114249 + 0.0473236i
\(116\) −0.770931 7.61984i −0.0715791 0.707485i
\(117\) 0 0
\(118\) −11.0722 + 8.23453i −1.01928 + 0.758050i
\(119\) 15.3317 + 15.3317i 1.40546 + 1.40546i
\(120\) 0 0
\(121\) −1.77928 + 1.77928i −0.161753 + 0.161753i
\(122\) 0.759430 5.16693i 0.0687556 0.467792i
\(123\) 0 0
\(124\) 7.15649 + 13.3037i 0.642672 + 1.19471i
\(125\) 4.65432 11.2365i 0.416295 1.00503i
\(126\) 0 0
\(127\) 19.5462i 1.73444i −0.497923 0.867221i \(-0.665904\pi\)
0.497923 0.867221i \(-0.334096\pi\)
\(128\) 11.1753 1.76404i 0.987770 0.155920i
\(129\) 0 0
\(130\) −11.2582 + 2.83592i −0.987407 + 0.248727i
\(131\) −5.97269 2.47397i −0.521837 0.216152i 0.106187 0.994346i \(-0.466136\pi\)
−0.628023 + 0.778194i \(0.716136\pi\)
\(132\) 0 0
\(133\) 5.05294 + 12.1989i 0.438145 + 1.05778i
\(134\) −0.196995 0.0289541i −0.0170178 0.00250126i
\(135\) 0 0
\(136\) 11.6407 + 12.7412i 0.998186 + 1.09255i
\(137\) 13.9438 13.9438i 1.19130 1.19130i 0.214594 0.976703i \(-0.431157\pi\)
0.976703 0.214594i \(-0.0688429\pi\)
\(138\) 0 0
\(139\) 5.10923 + 12.3348i 0.433359 + 1.04622i 0.978197 + 0.207680i \(0.0665913\pi\)
−0.544838 + 0.838542i \(0.683409\pi\)
\(140\) 12.6175 1.27656i 1.06637 0.107889i
\(141\) 0 0
\(142\) 2.26004 + 1.35054i 0.189658 + 0.113335i
\(143\) 13.4001i 1.12057i
\(144\) 0 0
\(145\) 6.83322i 0.567468i
\(146\) −11.2058 + 18.7522i −0.927398 + 1.55194i
\(147\) 0 0
\(148\) −9.32558 7.61194i −0.766558 0.625698i
\(149\) 1.29028 + 3.11502i 0.105704 + 0.255192i 0.967878 0.251420i \(-0.0808975\pi\)
−0.862174 + 0.506612i \(0.830898\pi\)
\(150\) 0 0
\(151\) −10.0537 + 10.0537i −0.818159 + 0.818159i −0.985841 0.167682i \(-0.946372\pi\)
0.167682 + 0.985841i \(0.446372\pi\)
\(152\) 3.58004 + 9.88124i 0.290380 + 0.801475i
\(153\) 0 0
\(154\) −2.12852 + 14.4818i −0.171521 + 1.16698i
\(155\) 5.15786 + 12.4522i 0.414289 + 1.00018i
\(156\) 0 0
\(157\) 15.3765 + 6.36916i 1.22718 + 0.508315i 0.899686 0.436539i \(-0.143796\pi\)
0.327494 + 0.944853i \(0.393796\pi\)
\(158\) −4.10169 16.2831i −0.326313 1.29541i
\(159\) 0 0
\(160\) 10.0785 0.562239i 0.796779 0.0444489i
\(161\) 2.64086i 0.208129i
\(162\) 0 0
\(163\) 4.22080 10.1899i 0.330599 0.798136i −0.667946 0.744210i \(-0.732826\pi\)
0.998545 0.0539266i \(-0.0171737\pi\)
\(164\) 2.47740 8.24566i 0.193452 0.643878i
\(165\) 0 0
\(166\) −16.0322 2.35640i −1.24434 0.182892i
\(167\) 11.1209 11.1209i 0.860562 0.860562i −0.130842 0.991403i \(-0.541768\pi\)
0.991403 + 0.130842i \(0.0417679\pi\)
\(168\) 0 0
\(169\) −5.77387 5.77387i −0.444144 0.444144i
\(170\) 9.18897 + 12.3556i 0.704762 + 0.947628i
\(171\) 0 0
\(172\) 13.4184 + 10.9527i 1.02314 + 0.835134i
\(173\) −9.66463 4.00322i −0.734788 0.304359i −0.0162700 0.999868i \(-0.505179\pi\)
−0.718518 + 0.695509i \(0.755179\pi\)
\(174\) 0 0
\(175\) −6.45256 −0.487768
\(176\) −2.21221 + 11.4388i −0.166751 + 0.862230i
\(177\) 0 0
\(178\) 6.13058 10.2591i 0.459507 0.768955i
\(179\) 6.65549 16.0678i 0.497455 1.20096i −0.453395 0.891310i \(-0.649787\pi\)
0.950850 0.309652i \(-0.100213\pi\)
\(180\) 0 0
\(181\) −16.5604 + 6.85953i −1.23092 + 0.509865i −0.900867 0.434096i \(-0.857068\pi\)
−0.330056 + 0.943961i \(0.607068\pi\)
\(182\) 13.7971 + 18.5517i 1.02271 + 1.37514i
\(183\) 0 0
\(184\) 0.0947747 2.09987i 0.00698688 0.154804i
\(185\) −7.59450 7.59450i −0.558359 0.558359i
\(186\) 0 0
\(187\) −16.4195 + 6.80116i −1.20071 + 0.497350i
\(188\) −8.14710 15.1453i −0.594189 1.10458i
\(189\) 0 0
\(190\) 2.29049 + 9.09290i 0.166170 + 0.659668i
\(191\) 0.545506 0.0394715 0.0197357 0.999805i \(-0.493718\pi\)
0.0197357 + 0.999805i \(0.493718\pi\)
\(192\) 0 0
\(193\) 13.7484 0.989632 0.494816 0.868998i \(-0.335235\pi\)
0.494816 + 0.868998i \(0.335235\pi\)
\(194\) 1.11072 + 4.40938i 0.0797448 + 0.316575i
\(195\) 0 0
\(196\) −5.33175 9.91158i −0.380839 0.707970i
\(197\) −3.74434 + 1.55095i −0.266773 + 0.110501i −0.512060 0.858949i \(-0.671118\pi\)
0.245288 + 0.969450i \(0.421118\pi\)
\(198\) 0 0
\(199\) 9.72904 + 9.72904i 0.689673 + 0.689673i 0.962160 0.272486i \(-0.0878460\pi\)
−0.272486 + 0.962160i \(0.587846\pi\)
\(200\) −5.13074 0.231569i −0.362798 0.0163744i
\(201\) 0 0
\(202\) 1.48660 + 1.99889i 0.104597 + 0.140642i
\(203\) −12.5718 + 5.20742i −0.882369 + 0.365489i
\(204\) 0 0
\(205\) 2.93968 7.09701i 0.205316 0.495677i
\(206\) 0.114259 0.191205i 0.00796080 0.0133219i
\(207\) 0 0
\(208\) 10.3050 + 15.2465i 0.714520 + 1.05715i
\(209\) −10.8229 −0.748633
\(210\) 0 0
\(211\) 12.8221 + 5.31108i 0.882708 + 0.365630i 0.777546 0.628826i \(-0.216464\pi\)
0.105162 + 0.994455i \(0.466464\pi\)
\(212\) −15.3425 12.5232i −1.05373 0.860099i
\(213\) 0 0
\(214\) −3.28073 4.41129i −0.224266 0.301550i
\(215\) 10.9276 + 10.9276i 0.745255 + 0.745255i
\(216\) 0 0
\(217\) 18.9790 18.9790i 1.28838 1.28838i
\(218\) −21.5951 3.17402i −1.46260 0.214972i
\(219\) 0 0
\(220\) −2.99105 + 9.95529i −0.201657 + 0.671186i
\(221\) −10.7425 + 25.9346i −0.722616 + 1.74455i
\(222\) 0 0
\(223\) 11.9519i 0.800361i 0.916436 + 0.400180i \(0.131053\pi\)
−0.916436 + 0.400180i \(0.868947\pi\)
\(224\) −8.71502 18.1142i −0.582297 1.21030i
\(225\) 0 0
\(226\) −5.73519 22.7678i −0.381499 1.51449i
\(227\) −7.57146 3.13620i −0.502536 0.208157i 0.116991 0.993133i \(-0.462675\pi\)
−0.619526 + 0.784976i \(0.712675\pi\)
\(228\) 0 0
\(229\) −4.36683 10.5425i −0.288568 0.696665i 0.711413 0.702774i \(-0.248055\pi\)
−0.999981 + 0.00610879i \(0.998055\pi\)
\(230\) 0.272719 1.85550i 0.0179826 0.122348i
\(231\) 0 0
\(232\) −10.1833 + 3.68949i −0.668569 + 0.242227i
\(233\) −16.6048 + 16.6048i −1.08782 + 1.08782i −0.0920662 + 0.995753i \(0.529347\pi\)
−0.995753 + 0.0920662i \(0.970653\pi\)
\(234\) 0 0
\(235\) −5.87182 14.1758i −0.383035 0.924729i
\(236\) 15.1175 + 12.3395i 0.984065 + 0.803236i
\(237\) 0 0
\(238\) 15.7292 26.3218i 1.01957 1.70619i
\(239\) 19.8212i 1.28213i 0.767488 + 0.641063i \(0.221506\pi\)
−0.767488 + 0.641063i \(0.778494\pi\)
\(240\) 0 0
\(241\) 7.78762i 0.501645i 0.968033 + 0.250823i \(0.0807011\pi\)
−0.968033 + 0.250823i \(0.919299\pi\)
\(242\) 3.05471 + 1.82541i 0.196364 + 0.117342i
\(243\) 0 0
\(244\) −7.34814 + 0.743441i −0.470416 + 0.0475940i
\(245\) −3.84272 9.27715i −0.245503 0.592695i
\(246\) 0 0
\(247\) −12.0878 + 12.0878i −0.769130 + 0.769130i
\(248\) 15.7722 14.4100i 1.00153 0.915033i
\(249\) 0 0
\(250\) −17.0173 2.50119i −1.07627 0.158189i
\(251\) 11.1471 + 26.9114i 0.703597 + 1.69863i 0.715412 + 0.698703i \(0.246239\pi\)
−0.0118144 + 0.999930i \(0.503761\pi\)
\(252\) 0 0
\(253\) 1.99985 + 0.828365i 0.125729 + 0.0520789i
\(254\) −26.8051 + 6.75218i −1.68190 + 0.423669i
\(255\) 0 0
\(256\) −6.27965 14.7162i −0.392478 0.919761i
\(257\) 6.18232i 0.385643i −0.981234 0.192821i \(-0.938236\pi\)
0.981234 0.192821i \(-0.0617638\pi\)
\(258\) 0 0
\(259\) −8.18487 + 19.7600i −0.508583 + 1.22783i
\(260\) 7.77821 + 14.4595i 0.482384 + 0.896740i
\(261\) 0 0
\(262\) −1.32949 + 9.04542i −0.0821359 + 0.558828i
\(263\) −2.98771 + 2.98771i −0.184230 + 0.184230i −0.793196 0.608966i \(-0.791584\pi\)
0.608966 + 0.793196i \(0.291584\pi\)
\(264\) 0 0
\(265\) −12.4945 12.4945i −0.767533 0.767533i
\(266\) 14.9837 11.1435i 0.918709 0.683254i
\(267\) 0 0
\(268\) 0.0283445 + 0.280156i 0.00173142 + 0.0171133i
\(269\) −14.2963 5.92170i −0.871658 0.361053i −0.0984022 0.995147i \(-0.531373\pi\)
−0.773256 + 0.634094i \(0.781373\pi\)
\(270\) 0 0
\(271\) −4.23625 −0.257334 −0.128667 0.991688i \(-0.541070\pi\)
−0.128667 + 0.991688i \(0.541070\pi\)
\(272\) 13.4517 20.3652i 0.815627 1.23482i
\(273\) 0 0
\(274\) −23.9390 14.3053i −1.44621 0.864214i
\(275\) 2.02399 4.88635i 0.122051 0.294658i
\(276\) 0 0
\(277\) 1.63206 0.676023i 0.0980612 0.0406183i −0.333114 0.942887i \(-0.608099\pi\)
0.431175 + 0.902268i \(0.358099\pi\)
\(278\) 15.1506 11.2677i 0.908673 0.675791i
\(279\) 0 0
\(280\) −6.10931 16.8623i −0.365101 1.00771i
\(281\) 0.648281 + 0.648281i 0.0386732 + 0.0386732i 0.726179 0.687506i \(-0.241294\pi\)
−0.687506 + 0.726179i \(0.741294\pi\)
\(282\) 0 0
\(283\) −0.905971 + 0.375265i −0.0538544 + 0.0223072i −0.409448 0.912333i \(-0.634279\pi\)
0.355594 + 0.934641i \(0.384279\pi\)
\(284\) 1.07137 3.56589i 0.0635739 0.211597i
\(285\) 0 0
\(286\) −18.3765 + 4.62902i −1.08663 + 0.273720i
\(287\) −15.2974 −0.902978
\(288\) 0 0
\(289\) 20.2306 1.19004
\(290\) −9.37089 + 2.36052i −0.550278 + 0.138614i
\(291\) 0 0
\(292\) 29.5872 + 8.88944i 1.73146 + 0.520215i
\(293\) 3.85498 1.59678i 0.225210 0.0932851i −0.267225 0.963634i \(-0.586107\pi\)
0.492435 + 0.870349i \(0.336107\pi\)
\(294\) 0 0
\(295\) 12.3113 + 12.3113i 0.716790 + 0.716790i
\(296\) −7.21732 + 15.4184i −0.419498 + 0.896175i
\(297\) 0 0
\(298\) 3.82613 2.84554i 0.221642 0.164838i
\(299\) 3.15877 1.30841i 0.182677 0.0756671i
\(300\) 0 0
\(301\) 11.7771 28.4323i 0.678818 1.63881i
\(302\) 17.2604 + 10.3144i 0.993226 + 0.593525i
\(303\) 0 0
\(304\) 12.3142 8.32302i 0.706266 0.477358i
\(305\) −6.58956 −0.377317
\(306\) 0 0
\(307\) −4.77567 1.97815i −0.272562 0.112899i 0.242216 0.970222i \(-0.422126\pi\)
−0.514778 + 0.857323i \(0.672126\pi\)
\(308\) 20.5953 2.08371i 1.17352 0.118730i
\(309\) 0 0
\(310\) 15.2948 11.3749i 0.868687 0.646052i
\(311\) −5.85083 5.85083i −0.331770 0.331770i 0.521488 0.853258i \(-0.325377\pi\)
−0.853258 + 0.521488i \(0.825377\pi\)
\(312\) 0 0
\(313\) −9.37980 + 9.37980i −0.530178 + 0.530178i −0.920625 0.390448i \(-0.872320\pi\)
0.390448 + 0.920625i \(0.372320\pi\)
\(314\) 3.42272 23.2872i 0.193155 1.31417i
\(315\) 0 0
\(316\) −20.9133 + 11.2499i −1.17646 + 0.632856i
\(317\) 7.45951 18.0089i 0.418968 1.01148i −0.563679 0.825994i \(-0.690615\pi\)
0.982647 0.185484i \(-0.0593853\pi\)
\(318\) 0 0
\(319\) 11.1537i 0.624490i
\(320\) −4.25265 13.6272i −0.237730 0.761786i
\(321\) 0 0
\(322\) −3.62160 + 0.912277i −0.201824 + 0.0508392i
\(323\) 20.9466 + 8.67638i 1.16550 + 0.482767i
\(324\) 0 0
\(325\) −3.19691 7.71802i −0.177333 0.428119i
\(326\) −15.4323 2.26822i −0.854714 0.125625i
\(327\) 0 0
\(328\) −12.1637 0.548992i −0.671628 0.0303130i
\(329\) −21.6061 + 21.6061i −1.19118 + 1.19118i
\(330\) 0 0
\(331\) −2.04504 4.93715i −0.112405 0.271370i 0.857659 0.514219i \(-0.171918\pi\)
−0.970064 + 0.242849i \(0.921918\pi\)
\(332\) 2.30679 + 22.8002i 0.126601 + 1.25132i
\(333\) 0 0
\(334\) −19.0926 11.4092i −1.04470 0.624285i
\(335\) 0.251234i 0.0137264i
\(336\) 0 0
\(337\) 32.7329i 1.78308i 0.452946 + 0.891538i \(0.350373\pi\)
−0.452946 + 0.891538i \(0.649627\pi\)
\(338\) −5.92357 + 9.91271i −0.322200 + 0.539180i
\(339\) 0 0
\(340\) 13.7698 16.8697i 0.746771 0.914888i
\(341\) 8.41908 + 20.3255i 0.455919 + 1.10069i
\(342\) 0 0
\(343\) 3.44913 3.44913i 0.186236 0.186236i
\(344\) 10.3849 22.1852i 0.559915 1.19615i
\(345\) 0 0
\(346\) −2.15129 + 14.6367i −0.115654 + 0.786875i
\(347\) −10.0545 24.2737i −0.539755 1.30308i −0.924894 0.380225i \(-0.875847\pi\)
0.385140 0.922858i \(-0.374153\pi\)
\(348\) 0 0
\(349\) −7.53157 3.11968i −0.403156 0.166993i 0.171886 0.985117i \(-0.445014\pi\)
−0.575041 + 0.818124i \(0.695014\pi\)
\(350\) 2.22902 + 8.84887i 0.119146 + 0.472992i
\(351\) 0 0
\(352\) 16.4510 0.917733i 0.876843 0.0489154i
\(353\) 14.4403i 0.768579i −0.923213 0.384290i \(-0.874446\pi\)
0.923213 0.384290i \(-0.125554\pi\)
\(354\) 0 0
\(355\) 1.27128 3.06915i 0.0674728 0.162894i
\(356\) −16.1869 4.86333i −0.857904 0.257756i
\(357\) 0 0
\(358\) −24.3340 3.57659i −1.28609 0.189029i
\(359\) −1.26776 + 1.26776i −0.0669099 + 0.0669099i −0.739770 0.672860i \(-0.765066\pi\)
0.672860 + 0.739770i \(0.265066\pi\)
\(360\) 0 0
\(361\) −3.67204 3.67204i −0.193265 0.193265i
\(362\) 15.1277 + 20.3409i 0.795095 + 1.06909i
\(363\) 0 0
\(364\) 20.6752 25.3297i 1.08367 1.32763i
\(365\) 25.4656 + 10.5482i 1.33293 + 0.552119i
\(366\) 0 0
\(367\) −0.516344 −0.0269529 −0.0134765 0.999909i \(-0.504290\pi\)
−0.0134765 + 0.999909i \(0.504290\pi\)
\(368\) −2.91244 + 0.595423i −0.151822 + 0.0310386i
\(369\) 0 0
\(370\) −7.79139 + 13.0384i −0.405055 + 0.677834i
\(371\) −13.4658 + 32.5093i −0.699110 + 1.68780i
\(372\) 0 0
\(373\) 15.7829 6.53747i 0.817205 0.338498i 0.0653805 0.997860i \(-0.479174\pi\)
0.751825 + 0.659363i \(0.229174\pi\)
\(374\) 14.9990 + 20.1678i 0.775579 + 1.04285i
\(375\) 0 0
\(376\) −17.9554 + 16.4046i −0.925980 + 0.846003i
\(377\) −12.4574 12.4574i −0.641587 0.641587i
\(378\) 0 0
\(379\) 10.1190 4.19144i 0.519780 0.215300i −0.107340 0.994222i \(-0.534233\pi\)
0.627120 + 0.778922i \(0.284233\pi\)
\(380\) 11.6785 6.28224i 0.599096 0.322272i
\(381\) 0 0
\(382\) −0.188444 0.748093i −0.00964162 0.0382758i
\(383\) −10.5915 −0.541201 −0.270601 0.962692i \(-0.587222\pi\)
−0.270601 + 0.962692i \(0.587222\pi\)
\(384\) 0 0
\(385\) 18.4691 0.941274
\(386\) −4.74935 18.8542i −0.241736 0.959654i
\(387\) 0 0
\(388\) 5.66321 3.04642i 0.287506 0.154658i
\(389\) 9.74428 4.03621i 0.494054 0.204644i −0.121723 0.992564i \(-0.538842\pi\)
0.615778 + 0.787920i \(0.288842\pi\)
\(390\) 0 0
\(391\) −3.20645 3.20645i −0.162157 0.162157i
\(392\) −11.7506 + 10.7357i −0.593497 + 0.542237i
\(393\) 0 0
\(394\) 3.42041 + 4.59911i 0.172318 + 0.231700i
\(395\) −19.5746 + 8.10808i −0.984906 + 0.407962i
\(396\) 0 0
\(397\) −6.26413 + 15.1230i −0.314388 + 0.759000i 0.685144 + 0.728408i \(0.259739\pi\)
−0.999532 + 0.0305919i \(0.990261\pi\)
\(398\) 9.98128 16.7030i 0.500316 0.837247i
\(399\) 0 0
\(400\) 1.45483 + 7.11615i 0.0727416 + 0.355808i
\(401\) 9.54016 0.476413 0.238207 0.971215i \(-0.423440\pi\)
0.238207 + 0.971215i \(0.423440\pi\)
\(402\) 0 0
\(403\) 32.1042 + 13.2980i 1.59922 + 0.662420i
\(404\) 2.22769 2.72919i 0.110832 0.135783i
\(405\) 0 0
\(406\) 11.4842 + 15.4418i 0.569953 + 0.766363i
\(407\) −12.3964 12.3964i −0.614465 0.614465i
\(408\) 0 0
\(409\) −9.43887 + 9.43887i −0.466722 + 0.466722i −0.900851 0.434129i \(-0.857056\pi\)
0.434129 + 0.900851i \(0.357056\pi\)
\(410\) −10.7482 1.57975i −0.530814 0.0780185i
\(411\) 0 0
\(412\) −0.301684 0.0906405i −0.0148629 0.00446554i
\(413\) 13.2683 32.0325i 0.652890 1.57622i
\(414\) 0 0
\(415\) 20.4464i 1.00368i
\(416\) 17.3488 19.3988i 0.850596 0.951105i
\(417\) 0 0
\(418\) 3.73873 + 14.8422i 0.182867 + 0.725955i
\(419\) 18.2081 + 7.54205i 0.889525 + 0.368453i 0.780183 0.625551i \(-0.215126\pi\)
0.109342 + 0.994004i \(0.465126\pi\)
\(420\) 0 0
\(421\) 7.63758 + 18.4387i 0.372233 + 0.898649i 0.993371 + 0.114949i \(0.0366704\pi\)
−0.621139 + 0.783701i \(0.713330\pi\)
\(422\) 2.85412 19.4186i 0.138936 0.945280i
\(423\) 0 0
\(424\) −11.8740 + 25.3665i −0.576652 + 1.23190i
\(425\) −7.83451 + 7.83451i −0.380029 + 0.380029i
\(426\) 0 0
\(427\) 5.02174 + 12.1235i 0.243019 + 0.586700i
\(428\) −4.91621 + 6.02297i −0.237634 + 0.291131i
\(429\) 0 0
\(430\) 11.2109 18.7607i 0.540638 0.904722i
\(431\) 15.7171i 0.757067i −0.925588 0.378534i \(-0.876428\pi\)
0.925588 0.378534i \(-0.123572\pi\)
\(432\) 0 0
\(433\) 2.04349i 0.0982041i −0.998794 0.0491020i \(-0.984364\pi\)
0.998794 0.0491020i \(-0.0156360\pi\)
\(434\) −32.5835 19.4710i −1.56406 0.934639i
\(435\) 0 0
\(436\) 3.10720 + 30.7114i 0.148808 + 1.47081i
\(437\) −1.05676 2.55125i −0.0505518 0.122043i
\(438\) 0 0
\(439\) −8.47375 + 8.47375i −0.404430 + 0.404430i −0.879791 0.475361i \(-0.842318\pi\)
0.475361 + 0.879791i \(0.342318\pi\)
\(440\) 14.6857 + 0.662818i 0.700112 + 0.0315986i
\(441\) 0 0
\(442\) 39.2770 + 5.77289i 1.86822 + 0.274588i
\(443\) 12.8153 + 30.9388i 0.608873 + 1.46995i 0.864228 + 0.503101i \(0.167808\pi\)
−0.255355 + 0.966847i \(0.582192\pi\)
\(444\) 0 0
\(445\) −13.9320 5.77083i −0.660440 0.273563i
\(446\) 16.3906 4.12877i 0.776116 0.195503i
\(447\) 0 0
\(448\) −21.8307 + 18.2090i −1.03140 + 0.860296i
\(449\) 19.7880i 0.933851i 0.884297 + 0.466926i \(0.154638\pi\)
−0.884297 + 0.466926i \(0.845362\pi\)
\(450\) 0 0
\(451\) 4.79839 11.5843i 0.225947 0.545485i
\(452\) −29.2420 + 15.7302i −1.37543 + 0.739885i
\(453\) 0 0
\(454\) −1.68536 + 11.4667i −0.0790980 + 0.538159i
\(455\) 20.6278 20.6278i 0.967045 0.967045i
\(456\) 0 0
\(457\) 9.46165 + 9.46165i 0.442597 + 0.442597i 0.892884 0.450287i \(-0.148678\pi\)
−0.450287 + 0.892884i \(0.648678\pi\)
\(458\) −12.9491 + 9.63042i −0.605074 + 0.450000i
\(459\) 0 0
\(460\) −2.63879 + 0.266978i −0.123034 + 0.0124479i
\(461\) −8.16779 3.38321i −0.380412 0.157572i 0.184280 0.982874i \(-0.441005\pi\)
−0.564691 + 0.825302i \(0.691005\pi\)
\(462\) 0 0
\(463\) −39.2301 −1.82318 −0.911590 0.411101i \(-0.865144\pi\)
−0.911590 + 0.411101i \(0.865144\pi\)
\(464\) 8.57748 + 12.6906i 0.398199 + 0.589148i
\(465\) 0 0
\(466\) 28.5075 + 17.0353i 1.32059 + 0.789147i
\(467\) 6.94459 16.7657i 0.321357 0.775825i −0.677818 0.735230i \(-0.737074\pi\)
0.999176 0.0405959i \(-0.0129256\pi\)
\(468\) 0 0
\(469\) 0.462224 0.191459i 0.0213435 0.00884078i
\(470\) −17.4120 + 12.9495i −0.803154 + 0.597314i
\(471\) 0 0
\(472\) 11.6998 24.9944i 0.538528 1.15046i
\(473\) 17.8369 + 17.8369i 0.820142 + 0.820142i
\(474\) 0 0
\(475\) −6.23363 + 2.58205i −0.286018 + 0.118473i
\(476\) −41.5307 12.4778i −1.90356 0.571920i
\(477\) 0 0
\(478\) 27.1823 6.84718i 1.24329 0.313183i
\(479\) 10.6817 0.488058 0.244029 0.969768i \(-0.421531\pi\)
0.244029 + 0.969768i \(0.421531\pi\)
\(480\) 0 0
\(481\) −27.6905 −1.26258
\(482\) 10.6797 2.69022i 0.486449 0.122536i
\(483\) 0 0
\(484\) 1.44808 4.81973i 0.0658218 0.219079i
\(485\) 5.30071 2.19563i 0.240693 0.0996983i
\(486\) 0 0
\(487\) −7.67417 7.67417i −0.347750 0.347750i 0.511521 0.859271i \(-0.329082\pi\)
−0.859271 + 0.511521i \(0.829082\pi\)
\(488\) 3.55793 + 9.82022i 0.161060 + 0.444541i
\(489\) 0 0
\(490\) −11.3950 + 8.47458i −0.514773 + 0.382842i
\(491\) 38.6885 16.0253i 1.74599 0.723212i 0.747744 0.663987i \(-0.231137\pi\)
0.998245 0.0592250i \(-0.0188629\pi\)
\(492\) 0 0
\(493\) −8.94164 + 21.5870i −0.402711 + 0.972231i
\(494\) 20.7526 + 12.4012i 0.933705 + 0.557957i
\(495\) 0 0
\(496\) −25.2099 16.6517i −1.13196 0.747683i
\(497\) −6.61547 −0.296745
\(498\) 0 0
\(499\) 18.1565 + 7.52067i 0.812797 + 0.336671i 0.750069 0.661359i \(-0.230020\pi\)
0.0627275 + 0.998031i \(0.480020\pi\)
\(500\) 2.44853 + 24.2011i 0.109501 + 1.08231i
\(501\) 0 0
\(502\) 33.0549 24.5833i 1.47531 1.09721i
\(503\) −20.9341 20.9341i −0.933405 0.933405i 0.0645124 0.997917i \(-0.479451\pi\)
−0.997917 + 0.0645124i \(0.979451\pi\)
\(504\) 0 0
\(505\) 2.22258 2.22258i 0.0989036 0.0989036i
\(506\) 0.445155 3.02870i 0.0197895 0.134642i
\(507\) 0 0
\(508\) 18.5195 + 34.4273i 0.821671 + 1.52746i
\(509\) 0.399075 0.963453i 0.0176887 0.0427043i −0.914788 0.403933i \(-0.867643\pi\)
0.932477 + 0.361229i \(0.117643\pi\)
\(510\) 0 0
\(511\) 54.8905i 2.42821i
\(512\) −18.0121 + 13.6954i −0.796030 + 0.605257i
\(513\) 0 0
\(514\) −8.47828 + 2.13567i −0.373961 + 0.0942003i
\(515\) −0.259658 0.107554i −0.0114419 0.00473940i
\(516\) 0 0
\(517\) −9.58447 23.1390i −0.421525 1.01765i
\(518\) 29.9258 + 4.39846i 1.31486 + 0.193257i
\(519\) 0 0
\(520\) 17.1424 15.6618i 0.751744 0.686817i
\(521\) 3.86359 3.86359i 0.169267 0.169267i −0.617390 0.786657i \(-0.711810\pi\)
0.786657 + 0.617390i \(0.211810\pi\)
\(522\) 0 0
\(523\) −8.40221 20.2847i −0.367403 0.886989i −0.994174 0.107786i \(-0.965624\pi\)
0.626771 0.779203i \(-0.284376\pi\)
\(524\) 12.8639 1.30150i 0.561963 0.0568561i
\(525\) 0 0
\(526\) 5.12936 + 3.06517i 0.223651 + 0.133648i
\(527\) 46.0874i 2.00760i
\(528\) 0 0
\(529\) 22.4477i 0.975987i
\(530\) −12.8185 + 21.4509i −0.556799 + 0.931767i
\(531\) 0 0
\(532\) −20.4580 16.6987i −0.886969 0.723982i
\(533\) −7.57908 18.2975i −0.328286 0.792553i
\(534\) 0 0
\(535\) −4.90494 + 4.90494i −0.212059 + 0.212059i
\(536\) 0.374407 0.135650i 0.0161719 0.00585920i
\(537\) 0 0
\(538\) −3.18226 + 21.6511i −0.137197 + 0.933447i
\(539\) −6.27241 15.1429i −0.270172 0.652252i
\(540\) 0 0
\(541\) 0.504857 + 0.209119i 0.0217055 + 0.00899071i 0.393510 0.919320i \(-0.371261\pi\)
−0.371804 + 0.928311i \(0.621261\pi\)
\(542\) 1.46340 + 5.80948i 0.0628585 + 0.249538i
\(543\) 0 0
\(544\) −32.5752 11.4122i −1.39665 0.489292i
\(545\) 27.5409i 1.17972i
\(546\) 0 0
\(547\) 11.9972 28.9639i 0.512964 1.23841i −0.429186 0.903216i \(-0.641200\pi\)
0.942151 0.335190i \(-0.108800\pi\)
\(548\) −11.3482 + 37.7710i −0.484773 + 1.61350i
\(549\) 0 0
\(550\) −7.40020 1.08767i −0.315546 0.0463786i
\(551\) −10.0615 + 10.0615i −0.428633 + 0.428633i
\(552\) 0 0
\(553\) 29.8347 + 29.8347i 1.26870 + 1.26870i
\(554\) −1.49087 2.00464i −0.0633411 0.0851689i
\(555\) 0 0
\(556\) −20.6859 16.8848i −0.877279 0.716073i
\(557\) 3.31995 + 1.37517i 0.140671 + 0.0582677i 0.451908 0.892064i \(-0.350743\pi\)
−0.311238 + 0.950332i \(0.600743\pi\)
\(558\) 0 0
\(559\) 39.8433 1.68519
\(560\) −21.0140 + 14.2032i −0.888005 + 0.600194i
\(561\) 0 0
\(562\) 0.665088 1.11298i 0.0280551 0.0469483i
\(563\) −3.47196 + 8.38204i −0.146325 + 0.353261i −0.980001 0.198994i \(-0.936233\pi\)
0.833675 + 0.552255i \(0.186233\pi\)
\(564\) 0 0
\(565\) −27.3703 + 11.3371i −1.15148 + 0.476957i
\(566\) 0.827594 + 1.11279i 0.0347864 + 0.0467741i
\(567\) 0 0
\(568\) −5.26028 0.237415i −0.220716 0.00996173i
\(569\) −2.72691 2.72691i −0.114318 0.114318i 0.647634 0.761952i \(-0.275759\pi\)
−0.761952 + 0.647634i \(0.775759\pi\)
\(570\) 0 0
\(571\) 30.8517 12.7792i 1.29110 0.534792i 0.371789 0.928317i \(-0.378745\pi\)
0.919314 + 0.393525i \(0.128745\pi\)
\(572\) 12.6962 + 23.6020i 0.530856 + 0.986848i
\(573\) 0 0
\(574\) 5.28445 + 20.9785i 0.220569 + 0.875625i
\(575\) 1.34948 0.0562771
\(576\) 0 0
\(577\) −45.9313 −1.91214 −0.956072 0.293131i \(-0.905303\pi\)
−0.956072 + 0.293131i \(0.905303\pi\)
\(578\) −6.98862 27.7438i −0.290688 1.15399i
\(579\) 0 0
\(580\) 6.47430 + 12.0356i 0.268831 + 0.499750i
\(581\) 37.6176 15.5817i 1.56064 0.646438i
\(582\) 0 0
\(583\) −20.3946 20.3946i −0.844658 0.844658i
\(584\) 1.96990 43.6460i 0.0815152 1.80608i
\(585\) 0 0
\(586\) −3.52148 4.73501i −0.145471 0.195601i
\(587\) 11.3774 4.71269i 0.469597 0.194514i −0.135320 0.990802i \(-0.543206\pi\)
0.604917 + 0.796288i \(0.293206\pi\)
\(588\) 0 0
\(589\) 10.7404 25.9296i 0.442551 1.06841i
\(590\) 12.6305 21.1362i 0.519988 0.870166i
\(591\) 0 0
\(592\) 23.6376 + 4.57140i 0.971498 + 0.187883i
\(593\) 14.4266 0.592431 0.296216 0.955121i \(-0.404275\pi\)
0.296216 + 0.955121i \(0.404275\pi\)
\(594\) 0 0
\(595\) −35.7453 14.8062i −1.46541 0.606994i
\(596\) −5.22402 4.26407i −0.213984 0.174663i
\(597\) 0 0
\(598\) −2.88551 3.87987i −0.117997 0.158660i
\(599\) −11.4738 11.4738i −0.468808 0.468808i 0.432720 0.901528i \(-0.357554\pi\)
−0.901528 + 0.432720i \(0.857554\pi\)
\(600\) 0 0
\(601\) −5.94470 + 5.94470i −0.242489 + 0.242489i −0.817879 0.575390i \(-0.804850\pi\)
0.575390 + 0.817879i \(0.304850\pi\)
\(602\) −43.0597 6.32887i −1.75498 0.257945i
\(603\) 0 0
\(604\) 8.18228 27.2336i 0.332932 1.10812i
\(605\) 1.71829 4.14832i 0.0698585 0.168653i
\(606\) 0 0
\(607\) 22.8701i 0.928269i 0.885765 + 0.464135i \(0.153635\pi\)
−0.885765 + 0.464135i \(0.846365\pi\)
\(608\) −15.6679 14.0121i −0.635416 0.568268i
\(609\) 0 0
\(610\) 2.27635 + 9.03675i 0.0921666 + 0.365887i
\(611\) −36.5481 15.1387i −1.47858 0.612447i
\(612\) 0 0
\(613\) −5.36341 12.9484i −0.216626 0.522982i 0.777788 0.628526i \(-0.216342\pi\)
−0.994415 + 0.105544i \(0.966342\pi\)
\(614\) −1.06304 + 7.23258i −0.0429007 + 0.291883i
\(615\) 0 0
\(616\) −9.97212 27.5240i −0.401788 1.10897i
\(617\) 20.5540 20.5540i 0.827474 0.827474i −0.159693 0.987167i \(-0.551050\pi\)
0.987167 + 0.159693i \(0.0510505\pi\)
\(618\) 0 0
\(619\) −4.42844 10.6912i −0.177994 0.429716i 0.809551 0.587049i \(-0.199710\pi\)
−0.987546 + 0.157333i \(0.949710\pi\)
\(620\) −20.8828 17.0455i −0.838675 0.684562i
\(621\) 0 0
\(622\) −6.00252 + 10.0448i −0.240679 + 0.402761i
\(623\) 30.0301i 1.20313i
\(624\) 0 0
\(625\) 12.6236i 0.504943i
\(626\) 16.1034 + 9.62298i 0.643623 + 0.384612i
\(627\) 0 0
\(628\) −33.1178 + 3.35066i −1.32154 + 0.133706i
\(629\) 14.0542 + 33.9298i 0.560378 + 1.35287i
\(630\) 0 0
\(631\) 0.402845 0.402845i 0.0160370 0.0160370i −0.699043 0.715080i \(-0.746390\pi\)
0.715080 + 0.699043i \(0.246390\pi\)
\(632\) 22.6522 + 24.7936i 0.901058 + 0.986238i
\(633\) 0 0
\(634\) −27.2737 4.00866i −1.08318 0.159204i
\(635\) 13.3475 + 32.2237i 0.529678 + 1.27876i
\(636\) 0 0
\(637\) −23.9183 9.90730i −0.947679 0.392542i
\(638\) −15.2959 + 3.85303i −0.605572 + 0.152543i
\(639\) 0 0
\(640\) −17.2190 + 10.5395i −0.680639 + 0.416609i
\(641\) 11.0551i 0.436649i −0.975876 0.218324i \(-0.929941\pi\)
0.975876 0.218324i \(-0.0700591\pi\)
\(642\) 0 0
\(643\) 10.8771 26.2596i 0.428950 1.03558i −0.550671 0.834722i \(-0.685628\pi\)
0.979621 0.200854i \(-0.0643717\pi\)
\(644\) 2.50215 + 4.65142i 0.0985983 + 0.183292i
\(645\) 0 0
\(646\) 4.66260 31.7229i 0.183448 1.24812i
\(647\) −3.60517 + 3.60517i −0.141734 + 0.141734i −0.774414 0.632680i \(-0.781955\pi\)
0.632680 + 0.774414i \(0.281955\pi\)
\(648\) 0 0
\(649\) 20.0955 + 20.0955i 0.788816 + 0.788816i
\(650\) −9.47993 + 7.05033i −0.371833 + 0.276537i
\(651\) 0 0
\(652\) 2.22046 + 21.9469i 0.0869600 + 0.859509i
\(653\) 34.1322 + 14.1380i 1.33570 + 0.553264i 0.932275 0.361749i \(-0.117820\pi\)
0.403423 + 0.915014i \(0.367820\pi\)
\(654\) 0 0
\(655\) 11.5359 0.450746
\(656\) 3.44905 + 16.8706i 0.134663 + 0.658687i
\(657\) 0 0
\(658\) 37.0938 + 22.1662i 1.44607 + 0.864130i
\(659\) −17.8965 + 43.2060i −0.697150 + 1.68307i 0.0327038 + 0.999465i \(0.489588\pi\)
−0.729854 + 0.683603i \(0.760412\pi\)
\(660\) 0 0
\(661\) −3.26994 + 1.35446i −0.127186 + 0.0526822i −0.445369 0.895347i \(-0.646927\pi\)
0.318183 + 0.948029i \(0.396927\pi\)
\(662\) −6.06423 + 4.51004i −0.235693 + 0.175288i
\(663\) 0 0
\(664\) 30.4707 11.0397i 1.18249 0.428425i
\(665\) −16.6605 16.6605i −0.646065 0.646065i
\(666\) 0 0
\(667\) 2.62925 1.08907i 0.101805 0.0421690i
\(668\) −9.05083 + 30.1244i −0.350187 + 1.16555i
\(669\) 0 0
\(670\) 0.344536 0.0867883i 0.0133106 0.00335293i
\(671\) −10.7560 −0.415232
\(672\) 0 0
\(673\) 31.8698 1.22849 0.614245 0.789115i \(-0.289461\pi\)
0.614245 + 0.789115i \(0.289461\pi\)
\(674\) 44.8891 11.3075i 1.72906 0.435549i
\(675\) 0 0
\(676\) 15.6403 + 4.69910i 0.601550 + 0.180735i
\(677\) 13.6153 5.63965i 0.523279 0.216749i −0.105378 0.994432i \(-0.533605\pi\)
0.628657 + 0.777683i \(0.283605\pi\)
\(678\) 0 0
\(679\) −8.07908 8.07908i −0.310047 0.310047i
\(680\) −27.8914 13.0559i −1.06959 0.500672i
\(681\) 0 0
\(682\) 24.9655 18.5671i 0.955977 0.710971i
\(683\) −24.0468 + 9.96050i −0.920124 + 0.381128i −0.791923 0.610621i \(-0.790920\pi\)
−0.128200 + 0.991748i \(0.540920\pi\)
\(684\) 0 0
\(685\) −13.4658 + 32.5094i −0.514503 + 1.24212i
\(686\) −5.92155 3.53856i −0.226086 0.135103i
\(687\) 0 0
\(688\) −34.0117 6.57770i −1.29668 0.250773i
\(689\) −45.5566 −1.73557
\(690\) 0 0
\(691\) −37.6111 15.5790i −1.43079 0.592653i −0.473245 0.880931i \(-0.656917\pi\)
−0.957547 + 0.288278i \(0.906917\pi\)
\(692\) 20.8156 2.10600i 0.791289 0.0800580i
\(693\) 0 0
\(694\) −29.8151 + 22.1738i −1.13176 + 0.841706i
\(695\) −16.8461 16.8461i −0.639008 0.639008i
\(696\) 0 0
\(697\) −18.5737 + 18.5737i −0.703528 + 0.703528i
\(698\) −1.67648 + 11.4063i −0.0634558 + 0.431734i
\(699\) 0 0
\(700\) 11.3651 6.11364i 0.429560 0.231074i
\(701\) −9.53278 + 23.0142i −0.360048 + 0.869233i 0.635244 + 0.772312i \(0.280900\pi\)
−0.995292 + 0.0969216i \(0.969100\pi\)
\(702\) 0 0
\(703\) 22.3648i 0.843505i
\(704\) −6.94153 22.2435i −0.261619 0.838333i
\(705\) 0 0
\(706\) −19.8030 + 4.98836i −0.745297 + 0.187740i
\(707\) −5.78290 2.39536i −0.217488 0.0900867i
\(708\) 0 0
\(709\) −1.93081 4.66140i −0.0725132 0.175062i 0.883467 0.468493i \(-0.155203\pi\)
−0.955980 + 0.293431i \(0.905203\pi\)
\(710\) −4.64812 0.683175i −0.174441 0.0256391i
\(711\) 0 0
\(712\) −1.07772 + 23.8783i −0.0403891 + 0.894878i
\(713\) −3.96923 + 3.96923i −0.148649 + 0.148649i
\(714\) 0 0
\(715\) 9.15050 + 22.0913i 0.342209 + 0.826166i
\(716\) 3.50129 + 34.6066i 0.130849 + 1.29331i
\(717\) 0 0
\(718\) 2.17652 + 1.30063i 0.0812270 + 0.0485391i
\(719\) 39.1090i 1.45852i −0.684237 0.729260i \(-0.739865\pi\)
0.684237 0.729260i \(-0.260135\pi\)
\(720\) 0 0
\(721\) 0.559686i 0.0208438i
\(722\) −3.76724 + 6.30423i −0.140202 + 0.234619i
\(723\) 0 0
\(724\) 22.6691 27.7725i 0.842490 1.03216i
\(725\) −2.66099 6.42420i −0.0988268 0.238589i
\(726\) 0 0
\(727\) 17.8274 17.8274i 0.661183 0.661183i −0.294476 0.955659i \(-0.595145\pi\)
0.955659 + 0.294476i \(0.0951450\pi\)
\(728\) −41.8786 19.6033i −1.55212 0.726547i
\(729\) 0 0
\(730\) 5.66850 38.5668i 0.209801 1.42742i
\(731\) −20.2223 48.8210i −0.747950 1.80571i
\(732\) 0 0
\(733\) 3.09283 + 1.28109i 0.114236 + 0.0473182i 0.439070 0.898453i \(-0.355308\pi\)
−0.324833 + 0.945771i \(0.605308\pi\)
\(734\) 0.178370 + 0.708101i 0.00658375 + 0.0261365i
\(735\) 0 0
\(736\) 1.82264 + 3.78836i 0.0671835 + 0.139641i
\(737\) 0.410086i 0.0151057i
\(738\) 0 0
\(739\) −8.57114 + 20.6926i −0.315295 + 0.761188i 0.684197 + 0.729297i \(0.260153\pi\)
−0.999491 + 0.0318910i \(0.989847\pi\)
\(740\) 20.5720 + 6.18083i 0.756243 + 0.227212i
\(741\) 0 0
\(742\) 49.2342 + 7.23639i 1.80744 + 0.265656i
\(743\) −30.6030 + 30.6030i −1.12272 + 1.12272i −0.131384 + 0.991332i \(0.541942\pi\)
−0.991332 + 0.131384i \(0.958058\pi\)
\(744\) 0 0
\(745\) −4.25430 4.25430i −0.155866 0.155866i
\(746\) −14.4175 19.3858i −0.527861 0.709766i
\(747\) 0 0
\(748\) 22.4762 27.5361i 0.821810 1.00682i
\(749\) 12.7621 + 5.28623i 0.466317 + 0.193155i
\(750\) 0 0
\(751\) −9.79523 −0.357433 −0.178716 0.983901i \(-0.557194\pi\)
−0.178716 + 0.983901i \(0.557194\pi\)
\(752\) 28.6995 + 18.9566i 1.04656 + 0.691278i
\(753\) 0 0
\(754\) −12.7803 + 21.3871i −0.465433 + 0.778872i
\(755\) 9.70910 23.4398i 0.353350 0.853063i
\(756\) 0 0
\(757\) 10.1531 4.20556i 0.369021 0.152854i −0.190463 0.981694i \(-0.560999\pi\)
0.559485 + 0.828841i \(0.310999\pi\)
\(758\) −9.24363 12.4291i −0.335744 0.451444i
\(759\) 0 0
\(760\) −12.6496 13.8454i −0.458850 0.502227i
\(761\) 19.7195 + 19.7195i 0.714832 + 0.714832i 0.967542 0.252710i \(-0.0813219\pi\)
−0.252710 + 0.967542i \(0.581322\pi\)
\(762\) 0 0
\(763\) 50.6701 20.9882i 1.83438 0.759825i
\(764\) −0.960818 + 0.516854i −0.0347612 + 0.0186991i
\(765\) 0 0
\(766\) 3.65881 + 14.5249i 0.132198 + 0.524807i
\(767\) 44.8884 1.62083
\(768\) 0 0
\(769\) −11.6440 −0.419894 −0.209947 0.977713i \(-0.567329\pi\)
−0.209947 + 0.977713i \(0.567329\pi\)
\(770\) −6.38011 25.3281i −0.229923 0.912761i
\(771\) 0 0
\(772\) −24.2155 + 13.0263i −0.871535 + 0.468826i
\(773\) −32.6494 + 13.5238i −1.17432 + 0.486418i −0.882617 0.470092i \(-0.844221\pi\)
−0.291700 + 0.956510i \(0.594221\pi\)
\(774\) 0 0
\(775\) 9.69825 + 9.69825i 0.348372 + 0.348372i
\(776\) −6.13411 6.71400i −0.220202 0.241018i
\(777\) 0 0
\(778\) −8.90129 11.9687i −0.319127 0.429100i
\(779\) −14.7784 + 6.12140i −0.529490 + 0.219322i
\(780\) 0 0
\(781\) 2.07510 5.00972i 0.0742528 0.179262i
\(782\) −3.28958 + 5.50490i −0.117635 + 0.196855i
\(783\) 0 0
\(784\) 18.7820 + 12.4059i 0.670784 + 0.443067i
\(785\) −29.6989 −1.06000
\(786\) 0 0
\(787\) 4.72873 + 1.95870i 0.168561 + 0.0698203i 0.465368 0.885117i \(-0.345922\pi\)
−0.296807 + 0.954937i \(0.595922\pi\)
\(788\) 5.12553 6.27941i 0.182589 0.223695i
\(789\) 0 0
\(790\) 17.8812 + 24.0432i 0.636185 + 0.855419i
\(791\) 41.7164 + 41.7164i 1.48326 + 1.48326i
\(792\) 0 0
\(793\) −12.0132 + 12.0132i −0.426600 + 0.426600i
\(794\) 22.9032 + 3.36628i 0.812803 + 0.119465i
\(795\) 0 0
\(796\) −26.3541 7.91804i −0.934096 0.280648i
\(797\) 1.47493 3.56079i 0.0522447 0.126130i −0.895602 0.444856i \(-0.853255\pi\)
0.947847 + 0.318726i \(0.103255\pi\)
\(798\) 0 0
\(799\) 52.4669i 1.85615i
\(800\) 9.25633 4.45338i 0.327261 0.157451i
\(801\) 0 0
\(802\) −3.29563 13.0831i −0.116373 0.461981i
\(803\) 41.5671 + 17.2177i 1.46687 + 0.607598i
\(804\) 0 0
\(805\) 1.80336 + 4.35369i 0.0635600 + 0.153447i
\(806\) 7.14620 48.6206i 0.251714 1.71259i
\(807\) 0 0
\(808\) −4.51230 2.11220i −0.158742 0.0743069i
\(809\) −0.851642 + 0.851642i −0.0299421 + 0.0299421i −0.721919 0.691977i \(-0.756740\pi\)
0.691977 + 0.721919i \(0.256740\pi\)
\(810\) 0 0
\(811\) 11.0808 + 26.7515i 0.389100 + 0.939371i 0.990131 + 0.140145i \(0.0447568\pi\)
−0.601031 + 0.799226i \(0.705243\pi\)
\(812\) 17.2093 21.0835i 0.603926 0.739885i
\(813\) 0 0
\(814\) −12.7178 + 21.2823i −0.445757 + 0.745946i
\(815\) 19.6813i 0.689405i
\(816\) 0 0
\(817\) 32.1803i 1.12585i
\(818\) 16.2049 + 9.68358i 0.566589 + 0.338579i
\(819\) 0 0
\(820\) 1.54649 + 15.2855i 0.0540059 + 0.533792i
\(821\) −14.6802 35.4411i −0.512342 1.23690i −0.942517 0.334157i \(-0.891548\pi\)
0.430176 0.902745i \(-0.358452\pi\)
\(822\) 0 0
\(823\) 23.7916 23.7916i 0.829322 0.829322i −0.158101 0.987423i \(-0.550537\pi\)
0.987423 + 0.158101i \(0.0505370\pi\)
\(824\) −0.0200860 + 0.445033i −0.000699728 + 0.0155035i
\(825\) 0 0
\(826\) −48.5120 7.13025i −1.68795 0.248093i
\(827\) −6.95203 16.7837i −0.241746 0.583626i 0.755711 0.654906i \(-0.227292\pi\)
−0.997456 + 0.0712800i \(0.977292\pi\)
\(828\) 0 0
\(829\) 17.6000 + 7.29015i 0.611272 + 0.253197i 0.666772 0.745261i \(-0.267675\pi\)
−0.0555001 + 0.998459i \(0.517675\pi\)
\(830\) 28.0397 7.06317i 0.973273 0.245166i
\(831\) 0 0
\(832\) −32.5961 17.0904i −1.13007 0.592505i
\(833\) 34.3362i 1.18968i
\(834\) 0 0
\(835\) −10.7397 + 25.9280i −0.371663 + 0.897274i
\(836\) 19.0626 10.2544i 0.659295 0.354656i
\(837\) 0 0
\(838\) 4.05302 27.5755i 0.140009 0.952581i
\(839\) −4.74463 + 4.74463i −0.163803 + 0.163803i −0.784249 0.620446i \(-0.786952\pi\)
0.620446 + 0.784249i \(0.286952\pi\)
\(840\) 0 0
\(841\) 10.1370 + 10.1370i 0.349553 + 0.349553i
\(842\) 22.6480 16.8436i 0.780503 0.580469i
\(843\) 0 0
\(844\) −27.6160 + 2.79403i −0.950583 + 0.0961744i
\(845\) 13.4616 + 5.57596i 0.463092 + 0.191819i
\(846\) 0 0
\(847\) −8.94160 −0.307237
\(848\) 38.8887 + 7.52090i 1.33544 + 0.258269i
\(849\) 0 0
\(850\) 13.4504 + 8.03763i 0.461347 + 0.275688i
\(851\) 1.71177 4.13257i 0.0586787 0.141663i
\(852\) 0 0
\(853\) 21.3984 8.86349i 0.732666 0.303480i 0.0150190 0.999887i \(-0.495219\pi\)
0.717647 + 0.696407i \(0.245219\pi\)
\(854\) 14.8912 11.0747i 0.509565 0.378969i
\(855\) 0 0
\(856\) 9.95804 + 4.66134i 0.340359 + 0.159321i
\(857\) −14.9755 14.9755i −0.511554 0.511554i 0.403448 0.915003i \(-0.367812\pi\)
−0.915003 + 0.403448i \(0.867812\pi\)
\(858\) 0 0
\(859\) −3.68023 + 1.52440i −0.125568 + 0.0520119i −0.444583 0.895738i \(-0.646648\pi\)
0.319015 + 0.947750i \(0.396648\pi\)
\(860\) −29.6007 8.89349i −1.00938 0.303265i
\(861\) 0 0
\(862\) −21.5541 + 5.42944i −0.734134 + 0.184928i
\(863\) −52.6581 −1.79250 −0.896252 0.443545i \(-0.853721\pi\)
−0.896252 + 0.443545i \(0.853721\pi\)
\(864\) 0 0
\(865\) 18.6667 0.634687
\(866\) −2.80239 + 0.705920i −0.0952292 + 0.0239881i
\(867\) 0 0
\(868\) −15.4462 + 51.4104i −0.524277 + 1.74498i
\(869\) −31.9513 + 13.2347i −1.08387 + 0.448955i
\(870\) 0 0
\(871\) 0.458016 + 0.458016i 0.0155193 + 0.0155193i
\(872\) 41.0434 14.8703i 1.38991 0.503572i
\(873\) 0 0
\(874\) −3.13366 + 2.33054i −0.105998 + 0.0788317i
\(875\) 39.9289 16.5391i 1.34984 0.559124i
\(876\) 0 0
\(877\) −4.99743 + 12.0649i −0.168751 + 0.407401i −0.985519 0.169565i \(-0.945764\pi\)
0.816768 + 0.576966i \(0.195764\pi\)
\(878\) 14.5479 + 8.69344i 0.490968 + 0.293390i
\(879\) 0 0
\(880\) −4.16416 20.3685i −0.140374 0.686623i
\(881\) 38.6516 1.30221 0.651103 0.758989i \(-0.274306\pi\)
0.651103 + 0.758989i \(0.274306\pi\)
\(882\) 0 0
\(883\) −10.8231 4.48306i −0.364226 0.150867i 0.193062 0.981186i \(-0.438158\pi\)
−0.557288 + 0.830319i \(0.688158\pi\)
\(884\) −5.65135 55.8577i −0.190076 1.87870i
\(885\) 0 0
\(886\) 38.0017 28.2623i 1.27669 0.949490i
\(887\) −3.30593 3.30593i −0.111002 0.111002i 0.649424 0.760426i \(-0.275010\pi\)
−0.760426 + 0.649424i \(0.775010\pi\)
\(888\) 0 0
\(889\) 49.1137 49.1137i 1.64722 1.64722i
\(890\) −3.10118 + 21.0995i −0.103952 + 0.707257i
\(891\) 0 0
\(892\) −11.3242 21.0513i −0.379161 0.704850i
\(893\) −12.2271 + 29.5189i −0.409165 + 0.987811i
\(894\) 0 0
\(895\) 31.0340i 1.03735i
\(896\) 32.5128 + 23.6478i 1.08618 + 0.790017i
\(897\) 0 0
\(898\) 27.1367 6.83570i 0.905563 0.228110i
\(899\) 26.7224 + 11.0688i 0.891241 + 0.369164i
\(900\) 0 0
\(901\) 23.1221 + 55.8217i 0.770309 + 1.85969i
\(902\) −17.5440 2.57860i −0.584153 0.0858581i
\(903\) 0 0
\(904\) 31.6735 + 34.6678i 1.05345 + 1.15303i
\(905\) 22.6171 22.6171i 0.751819 0.751819i
\(906\) 0 0
\(907\) 14.0586 + 33.9405i 0.466809 + 1.12698i 0.965548 + 0.260225i \(0.0837967\pi\)
−0.498739 + 0.866752i \(0.666203\pi\)
\(908\) 16.3073 1.64988i 0.541178 0.0547532i
\(909\) 0 0
\(910\) −35.4142 21.1626i −1.17397 0.701533i
\(911\) 28.5526i 0.945990i 0.881065 + 0.472995i \(0.156827\pi\)
−0.881065 + 0.472995i \(0.843173\pi\)
\(912\) 0 0
\(913\) 33.3744i 1.10453i
\(914\) 9.70695 16.2440i 0.321077 0.537302i
\(915\) 0 0
\(916\) 17.6802 + 14.4313i 0.584169 + 0.476824i
\(917\) −8.79124 21.2239i −0.290312 0.700876i
\(918\) 0 0
\(919\) 14.1101 14.1101i 0.465448 0.465448i −0.434988 0.900436i \(-0.643247\pi\)
0.900436 + 0.434988i \(0.143247\pi\)
\(920\) 1.27769 + 3.52654i 0.0421242 + 0.116267i
\(921\) 0 0
\(922\) −1.81810 + 12.3698i −0.0598760 + 0.407378i
\(923\) −3.27762 7.91289i −0.107884 0.260456i
\(924\) 0 0
\(925\) −10.0974 4.18247i −0.331999 0.137519i
\(926\) 13.5520 + 53.7992i 0.445345 + 1.76795i
\(927\) 0 0
\(928\) 14.4405 16.1469i 0.474034 0.530047i
\(929\) 1.88348i 0.0617951i 0.999523 + 0.0308975i \(0.00983656\pi\)
−0.999523 + 0.0308975i \(0.990163\pi\)
\(930\) 0 0
\(931\) −8.00185 + 19.3182i −0.262250 + 0.633127i
\(932\) 13.5140 44.9793i 0.442664 1.47335i
\(933\) 0 0
\(934\) −25.3911 3.73195i −0.830821 0.122113i
\(935\) 22.4247 22.4247i 0.733365 0.733365i
\(936\) 0 0
\(937\) −15.2871 15.2871i −0.499409 0.499409i 0.411845 0.911254i \(-0.364885\pi\)
−0.911254 + 0.411845i \(0.864885\pi\)
\(938\) −0.422237 0.567743i −0.0137865 0.0185375i
\(939\) 0 0
\(940\) 23.7735 + 19.4049i 0.775405 + 0.632919i
\(941\) −35.4271 14.6744i −1.15489 0.478372i −0.278721 0.960372i \(-0.589910\pi\)
−0.876171 + 0.482000i \(0.839910\pi\)
\(942\) 0 0
\(943\) 3.19927 0.104183
\(944\) −38.3183 7.41059i −1.24716 0.241194i
\(945\) 0 0
\(946\) 18.2994 30.6228i 0.594963 0.995633i
\(947\) −8.28542 + 20.0028i −0.269240 + 0.650003i −0.999448 0.0332221i \(-0.989423\pi\)
0.730208 + 0.683225i \(0.239423\pi\)
\(948\) 0 0
\(949\) 65.6555 27.1954i 2.13127 0.882800i
\(950\) 5.69435 + 7.65667i 0.184749 + 0.248415i
\(951\) 0 0
\(952\) −2.76509 + 61.2645i −0.0896171 + 1.98559i
\(953\) 27.6252 + 27.6252i 0.894867 + 0.894867i 0.994976 0.100110i \(-0.0319194\pi\)
−0.100110 + 0.994976i \(0.531919\pi\)
\(954\) 0 0
\(955\) −0.899317 + 0.372509i −0.0291012 + 0.0120541i
\(956\) −18.7801 34.9117i −0.607392 1.12913i
\(957\) 0 0
\(958\) −3.68995 14.6486i −0.119217 0.473273i
\(959\) 70.0731 2.26278
\(960\) 0 0
\(961\) −26.0511 −0.840358
\(962\) 9.56561 + 37.9740i 0.308408 + 1.22433i
\(963\) 0 0
\(964\) −7.37858 13.7166i −0.237648 0.441782i
\(965\) −22.6655 + 9.38836i −0.729629 + 0.302222i
\(966\) 0 0
\(967\) −32.5133 32.5133i −1.04556 1.04556i −0.998911 0.0466463i \(-0.985147\pi\)
−0.0466463 0.998911i \(-0.514853\pi\)
\(968\) −7.10989 0.320895i −0.228520 0.0103140i
\(969\) 0 0
\(970\) −4.84214 6.51079i −0.155472 0.209049i
\(971\) −49.5609 + 20.5288i −1.59048 + 0.658800i −0.990030 0.140859i \(-0.955014\pi\)
−0.600455 + 0.799659i \(0.705014\pi\)
\(972\) 0 0
\(973\) −18.1556 + 43.8315i −0.582042 + 1.40517i
\(974\) −7.87313 + 13.1752i −0.252271 + 0.422160i
\(975\) 0 0
\(976\) 12.2381 8.27163i 0.391733 0.264768i
\(977\) −29.2129 −0.934603 −0.467301 0.884098i \(-0.654774\pi\)
−0.467301 + 0.884098i \(0.654774\pi\)
\(978\) 0 0
\(979\) −22.7410 9.41962i −0.726805 0.301052i
\(980\) 15.5582 + 12.6993i 0.496988 + 0.405663i
\(981\) 0 0
\(982\) −35.3415 47.5205i −1.12779 1.51644i
\(983\) −33.7320 33.7320i −1.07588 1.07588i −0.996874 0.0790094i \(-0.974824\pi\)
−0.0790094 0.996874i \(-0.525176\pi\)
\(984\) 0 0
\(985\) 5.11378 5.11378i 0.162939 0.162939i
\(986\) 32.6928 + 4.80515i 1.04115 + 0.153027i
\(987\) 0 0
\(988\) 9.83776 32.7436i 0.312981 1.04171i
\(989\) −2.46303 + 5.94629i −0.0783199 + 0.189081i
\(990\) 0 0
\(991\) 2.34392i 0.0744571i −0.999307 0.0372285i \(-0.988147\pi\)
0.999307 0.0372285i \(-0.0118530\pi\)
\(992\) −14.1270 + 40.3245i −0.448532 + 1.28030i
\(993\) 0 0
\(994\) 2.28530 + 9.07229i 0.0724853 + 0.287755i
\(995\) −22.6829 9.39555i −0.719095 0.297859i
\(996\) 0 0
\(997\) −14.7502 35.6102i −0.467145 1.12779i −0.965404 0.260759i \(-0.916027\pi\)
0.498259 0.867028i \(-0.333973\pi\)
\(998\) 4.04153 27.4974i 0.127932 0.870413i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.2.w.a.35.4 32
3.2 odd 2 288.2.w.b.35.5 yes 32
4.3 odd 2 1152.2.w.b.431.3 32
12.11 even 2 1152.2.w.a.431.6 32
32.11 odd 8 288.2.w.b.107.5 yes 32
32.21 even 8 1152.2.w.a.719.6 32
96.11 even 8 inner 288.2.w.a.107.4 yes 32
96.53 odd 8 1152.2.w.b.719.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.w.a.35.4 32 1.1 even 1 trivial
288.2.w.a.107.4 yes 32 96.11 even 8 inner
288.2.w.b.35.5 yes 32 3.2 odd 2
288.2.w.b.107.5 yes 32 32.11 odd 8
1152.2.w.a.431.6 32 12.11 even 2
1152.2.w.a.719.6 32 32.21 even 8
1152.2.w.b.431.3 32 4.3 odd 2
1152.2.w.b.719.3 32 96.53 odd 8