Properties

Label 288.2.w.b.107.3
Level $288$
Weight $2$
Character 288.107
Analytic conductor $2.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [288,2,Mod(35,288)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(288, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("288.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 288.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.29969157821\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 107.3
Character \(\chi\) \(=\) 288.107
Dual form 288.2.w.b.35.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.430512 - 1.34709i) q^{2} +(-1.62932 + 1.15988i) q^{4} +(-1.78959 - 0.741273i) q^{5} +(-2.33709 + 2.33709i) q^{7} +(2.26391 + 1.69550i) q^{8} +(-0.228123 + 2.72987i) q^{10} +(0.683332 + 0.283045i) q^{11} +(2.43602 + 5.88107i) q^{13} +(4.15442 + 2.14213i) q^{14} +(1.30936 - 3.77963i) q^{16} -0.967834 q^{17} +(-2.52772 + 1.04702i) q^{19} +(3.77560 - 0.867939i) q^{20} +(0.0871059 - 1.04237i) q^{22} +(-5.00283 + 5.00283i) q^{23} +(-0.882385 - 0.882385i) q^{25} +(6.87361 - 5.81341i) q^{26} +(1.09712 - 6.51861i) q^{28} +(0.563403 + 1.36018i) q^{29} +7.28582i q^{31} +(-5.65520 - 0.136659i) q^{32} +(0.416664 + 1.30376i) q^{34} +(5.91486 - 2.45001i) q^{35} +(3.26572 - 7.88415i) q^{37} +(2.49864 + 2.95432i) q^{38} +(-2.79463 - 4.71243i) q^{40} +(-6.80014 - 6.80014i) q^{41} +(1.36517 - 3.29581i) q^{43} +(-1.44166 + 0.331411i) q^{44} +(8.89306 + 4.58550i) q^{46} +3.69279i q^{47} -3.92399i q^{49} +(-0.808777 + 1.56853i) q^{50} +(-10.7904 - 6.75665i) q^{52} +(-1.85469 + 4.47761i) q^{53} +(-1.01307 - 1.01307i) q^{55} +(-9.25350 + 1.32841i) q^{56} +(1.58973 - 1.34453i) q^{58} +(-4.05615 + 9.79242i) q^{59} +(10.8180 - 4.48097i) q^{61} +(9.81468 - 3.13663i) q^{62} +(2.25054 + 7.67692i) q^{64} -12.3305i q^{65} +(1.49290 + 3.60418i) q^{67} +(1.57691 - 1.12257i) q^{68} +(-5.84681 - 6.91310i) q^{70} +(-9.85675 - 9.85675i) q^{71} +(-4.81362 + 4.81362i) q^{73} +(-12.0266 - 1.00501i) q^{74} +(2.90405 - 4.63778i) q^{76} +(-2.25851 + 0.935506i) q^{77} -11.0160 q^{79} +(-5.14495 + 5.79339i) q^{80} +(-6.23288 + 12.0880i) q^{82} +(1.15064 + 2.77789i) q^{83} +(1.73203 + 0.717429i) q^{85} +(-5.02749 - 0.420125i) q^{86} +(1.06709 + 1.79938i) q^{88} +(6.82624 - 6.82624i) q^{89} +(-19.4378 - 8.05140i) q^{91} +(2.34853 - 13.9539i) q^{92} +(4.97453 - 1.58979i) q^{94} +5.29971 q^{95} +7.67976 q^{97} +(-5.28598 + 1.68932i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{2} + 4 q^{8} + 8 q^{10} + 8 q^{11} - 12 q^{14} + 8 q^{16} - 32 q^{20} + 16 q^{22} + 36 q^{26} + 16 q^{29} + 24 q^{32} - 24 q^{35} - 32 q^{38} - 32 q^{40} - 8 q^{44} - 32 q^{46} - 8 q^{50} - 56 q^{52}+ \cdots + 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.430512 1.34709i −0.304418 0.952539i
\(3\) 0 0
\(4\) −1.62932 + 1.15988i −0.814660 + 0.579939i
\(5\) −1.78959 0.741273i −0.800329 0.331507i −0.0552409 0.998473i \(-0.517593\pi\)
−0.745088 + 0.666966i \(0.767593\pi\)
\(6\) 0 0
\(7\) −2.33709 + 2.33709i −0.883337 + 0.883337i −0.993872 0.110535i \(-0.964744\pi\)
0.110535 + 0.993872i \(0.464744\pi\)
\(8\) 2.26391 + 1.69550i 0.800412 + 0.599451i
\(9\) 0 0
\(10\) −0.228123 + 2.72987i −0.0721389 + 0.863261i
\(11\) 0.683332 + 0.283045i 0.206032 + 0.0853413i 0.483313 0.875448i \(-0.339433\pi\)
−0.277281 + 0.960789i \(0.589433\pi\)
\(12\) 0 0
\(13\) 2.43602 + 5.88107i 0.675630 + 1.63112i 0.771888 + 0.635759i \(0.219313\pi\)
−0.0962579 + 0.995356i \(0.530687\pi\)
\(14\) 4.15442 + 2.14213i 1.11032 + 0.572509i
\(15\) 0 0
\(16\) 1.30936 3.77963i 0.327340 0.944906i
\(17\) −0.967834 −0.234734 −0.117367 0.993089i \(-0.537445\pi\)
−0.117367 + 0.993089i \(0.537445\pi\)
\(18\) 0 0
\(19\) −2.52772 + 1.04702i −0.579899 + 0.240202i −0.653298 0.757100i \(-0.726615\pi\)
0.0733991 + 0.997303i \(0.476615\pi\)
\(20\) 3.77560 0.867939i 0.844250 0.194077i
\(21\) 0 0
\(22\) 0.0871059 1.04237i 0.0185710 0.222233i
\(23\) −5.00283 + 5.00283i −1.04316 + 1.04316i −0.0441370 + 0.999025i \(0.514054\pi\)
−0.999025 + 0.0441370i \(0.985946\pi\)
\(24\) 0 0
\(25\) −0.882385 0.882385i −0.176477 0.176477i
\(26\) 6.87361 5.81341i 1.34803 1.14010i
\(27\) 0 0
\(28\) 1.09712 6.51861i 0.207337 1.23190i
\(29\) 0.563403 + 1.36018i 0.104621 + 0.252578i 0.967518 0.252802i \(-0.0813522\pi\)
−0.862897 + 0.505380i \(0.831352\pi\)
\(30\) 0 0
\(31\) 7.28582i 1.30857i 0.756247 + 0.654286i \(0.227031\pi\)
−0.756247 + 0.654286i \(0.772969\pi\)
\(32\) −5.65520 0.136659i −0.999708 0.0241581i
\(33\) 0 0
\(34\) 0.416664 + 1.30376i 0.0714573 + 0.223593i
\(35\) 5.91486 2.45001i 0.999793 0.414128i
\(36\) 0 0
\(37\) 3.26572 7.88415i 0.536881 1.29615i −0.390008 0.920812i \(-0.627528\pi\)
0.926889 0.375335i \(-0.122472\pi\)
\(38\) 2.49864 + 2.95432i 0.405334 + 0.479255i
\(39\) 0 0
\(40\) −2.79463 4.71243i −0.441871 0.745100i
\(41\) −6.80014 6.80014i −1.06200 1.06200i −0.997946 0.0640576i \(-0.979596\pi\)
−0.0640576 0.997946i \(-0.520404\pi\)
\(42\) 0 0
\(43\) 1.36517 3.29581i 0.208187 0.502607i −0.784951 0.619558i \(-0.787312\pi\)
0.993138 + 0.116951i \(0.0373120\pi\)
\(44\) −1.44166 + 0.331411i −0.217339 + 0.0499621i
\(45\) 0 0
\(46\) 8.89306 + 4.58550i 1.31121 + 0.676095i
\(47\) 3.69279i 0.538649i 0.963050 + 0.269324i \(0.0868004\pi\)
−0.963050 + 0.269324i \(0.913200\pi\)
\(48\) 0 0
\(49\) 3.92399i 0.560570i
\(50\) −0.808777 + 1.56853i −0.114378 + 0.221824i
\(51\) 0 0
\(52\) −10.7904 6.75665i −1.49636 0.936979i
\(53\) −1.85469 + 4.47761i −0.254761 + 0.615047i −0.998577 0.0533378i \(-0.983014\pi\)
0.743816 + 0.668385i \(0.233014\pi\)
\(54\) 0 0
\(55\) −1.01307 1.01307i −0.136602 0.136602i
\(56\) −9.25350 + 1.32841i −1.23655 + 0.177516i
\(57\) 0 0
\(58\) 1.58973 1.34453i 0.208742 0.176545i
\(59\) −4.05615 + 9.79242i −0.528066 + 1.27486i 0.404722 + 0.914440i \(0.367368\pi\)
−0.932788 + 0.360425i \(0.882632\pi\)
\(60\) 0 0
\(61\) 10.8180 4.48097i 1.38511 0.573730i 0.439265 0.898358i \(-0.355239\pi\)
0.945842 + 0.324628i \(0.105239\pi\)
\(62\) 9.81468 3.13663i 1.24647 0.398353i
\(63\) 0 0
\(64\) 2.25054 + 7.67692i 0.281318 + 0.959615i
\(65\) 12.3305i 1.52941i
\(66\) 0 0
\(67\) 1.49290 + 3.60418i 0.182387 + 0.440320i 0.988457 0.151499i \(-0.0484100\pi\)
−0.806071 + 0.591819i \(0.798410\pi\)
\(68\) 1.57691 1.12257i 0.191229 0.136132i
\(69\) 0 0
\(70\) −5.84681 6.91310i −0.698828 0.826274i
\(71\) −9.85675 9.85675i −1.16978 1.16978i −0.982261 0.187520i \(-0.939955\pi\)
−0.187520 0.982261i \(-0.560045\pi\)
\(72\) 0 0
\(73\) −4.81362 + 4.81362i −0.563391 + 0.563391i −0.930269 0.366878i \(-0.880427\pi\)
0.366878 + 0.930269i \(0.380427\pi\)
\(74\) −12.0266 1.00501i −1.39807 0.116830i
\(75\) 0 0
\(76\) 2.90405 4.63778i 0.333118 0.531990i
\(77\) −2.25851 + 0.935506i −0.257381 + 0.106611i
\(78\) 0 0
\(79\) −11.0160 −1.23940 −0.619700 0.784839i \(-0.712746\pi\)
−0.619700 + 0.784839i \(0.712746\pi\)
\(80\) −5.14495 + 5.79339i −0.575223 + 0.647721i
\(81\) 0 0
\(82\) −6.23288 + 12.0880i −0.688307 + 1.33489i
\(83\) 1.15064 + 2.77789i 0.126299 + 0.304913i 0.974363 0.224981i \(-0.0722319\pi\)
−0.848064 + 0.529894i \(0.822232\pi\)
\(84\) 0 0
\(85\) 1.73203 + 0.717429i 0.187865 + 0.0778161i
\(86\) −5.02749 0.420125i −0.542128 0.0453033i
\(87\) 0 0
\(88\) 1.06709 + 1.79938i 0.113753 + 0.191814i
\(89\) 6.82624 6.82624i 0.723580 0.723580i −0.245753 0.969333i \(-0.579035\pi\)
0.969333 + 0.245753i \(0.0790352\pi\)
\(90\) 0 0
\(91\) −19.4378 8.05140i −2.03763 0.844016i
\(92\) 2.34853 13.9539i 0.244851 1.45479i
\(93\) 0 0
\(94\) 4.97453 1.58979i 0.513084 0.163974i
\(95\) 5.29971 0.543739
\(96\) 0 0
\(97\) 7.67976 0.779762 0.389881 0.920865i \(-0.372516\pi\)
0.389881 + 0.920865i \(0.372516\pi\)
\(98\) −5.28598 + 1.68932i −0.533964 + 0.170647i
\(99\) 0 0
\(100\) 2.46115 + 0.414227i 0.246115 + 0.0414227i
\(101\) 1.05030 + 0.435049i 0.104509 + 0.0432890i 0.434325 0.900756i \(-0.356987\pi\)
−0.329816 + 0.944045i \(0.606987\pi\)
\(102\) 0 0
\(103\) 7.06356 7.06356i 0.695993 0.695993i −0.267551 0.963544i \(-0.586214\pi\)
0.963544 + 0.267551i \(0.0862143\pi\)
\(104\) −4.45645 + 17.4445i −0.436991 + 1.71057i
\(105\) 0 0
\(106\) 6.83022 + 0.570771i 0.663410 + 0.0554382i
\(107\) 16.1346 + 6.68316i 1.55979 + 0.646086i 0.985053 0.172253i \(-0.0551045\pi\)
0.574737 + 0.818338i \(0.305105\pi\)
\(108\) 0 0
\(109\) 0.771406 + 1.86234i 0.0738873 + 0.178380i 0.956508 0.291706i \(-0.0942230\pi\)
−0.882621 + 0.470086i \(0.844223\pi\)
\(110\) −0.928561 + 1.80084i −0.0885348 + 0.171703i
\(111\) 0 0
\(112\) 5.77323 + 11.8934i 0.545519 + 1.12382i
\(113\) 0.726213 0.0683163 0.0341582 0.999416i \(-0.489125\pi\)
0.0341582 + 0.999416i \(0.489125\pi\)
\(114\) 0 0
\(115\) 12.6615 5.24456i 1.18069 0.489058i
\(116\) −2.49560 1.56268i −0.231711 0.145091i
\(117\) 0 0
\(118\) 14.9375 + 1.24826i 1.37511 + 0.114912i
\(119\) 2.26192 2.26192i 0.207350 0.207350i
\(120\) 0 0
\(121\) −7.39135 7.39135i −0.671941 0.671941i
\(122\) −10.6936 12.6438i −0.968151 1.14471i
\(123\) 0 0
\(124\) −8.45067 11.8709i −0.758893 1.06604i
\(125\) 4.63138 + 11.1811i 0.414243 + 1.00007i
\(126\) 0 0
\(127\) 11.5686i 1.02654i 0.858226 + 0.513272i \(0.171567\pi\)
−0.858226 + 0.513272i \(0.828433\pi\)
\(128\) 9.37264 6.33669i 0.828432 0.560090i
\(129\) 0 0
\(130\) −16.6103 + 5.30841i −1.45682 + 0.465578i
\(131\) 17.9241 7.42442i 1.56604 0.648674i 0.579913 0.814678i \(-0.303087\pi\)
0.986125 + 0.166004i \(0.0530866\pi\)
\(132\) 0 0
\(133\) 3.46054 8.35449i 0.300067 0.724426i
\(134\) 4.21245 3.56271i 0.363900 0.307772i
\(135\) 0 0
\(136\) −2.19109 1.64097i −0.187884 0.140712i
\(137\) 15.9867 + 15.9867i 1.36584 + 1.36584i 0.866283 + 0.499553i \(0.166503\pi\)
0.499553 + 0.866283i \(0.333497\pi\)
\(138\) 0 0
\(139\) 0.0365308 0.0881933i 0.00309851 0.00748046i −0.922323 0.386421i \(-0.873711\pi\)
0.925421 + 0.378940i \(0.123711\pi\)
\(140\) −6.79547 + 10.8524i −0.574322 + 0.917193i
\(141\) 0 0
\(142\) −9.03451 + 17.5214i −0.758159 + 1.47036i
\(143\) 4.70822i 0.393721i
\(144\) 0 0
\(145\) 2.85179i 0.236828i
\(146\) 8.55671 + 4.41207i 0.708158 + 0.365145i
\(147\) 0 0
\(148\) 3.82376 + 16.6336i 0.314311 + 1.36728i
\(149\) −5.79476 + 13.9898i −0.474725 + 1.14609i 0.487326 + 0.873220i \(0.337972\pi\)
−0.962051 + 0.272868i \(0.912028\pi\)
\(150\) 0 0
\(151\) 7.47087 + 7.47087i 0.607971 + 0.607971i 0.942415 0.334445i \(-0.108549\pi\)
−0.334445 + 0.942415i \(0.608549\pi\)
\(152\) −7.49775 1.91541i −0.608148 0.155361i
\(153\) 0 0
\(154\) 2.23253 + 2.63968i 0.179902 + 0.212711i
\(155\) 5.40078 13.0386i 0.433801 1.04729i
\(156\) 0 0
\(157\) −11.0372 + 4.57177i −0.880867 + 0.364867i −0.776833 0.629707i \(-0.783175\pi\)
−0.104034 + 0.994574i \(0.533175\pi\)
\(158\) 4.74253 + 14.8396i 0.377295 + 1.18058i
\(159\) 0 0
\(160\) 10.0192 + 4.43661i 0.792087 + 0.350745i
\(161\) 23.3841i 1.84293i
\(162\) 0 0
\(163\) −3.29972 7.96624i −0.258454 0.623964i 0.740382 0.672186i \(-0.234644\pi\)
−0.998837 + 0.0482221i \(0.984644\pi\)
\(164\) 18.9669 + 3.19226i 1.48107 + 0.249274i
\(165\) 0 0
\(166\) 3.24671 2.74593i 0.251994 0.213126i
\(167\) 0.0751100 + 0.0751100i 0.00581218 + 0.00581218i 0.710007 0.704195i \(-0.248692\pi\)
−0.704195 + 0.710007i \(0.748692\pi\)
\(168\) 0 0
\(169\) −19.4604 + 19.4604i −1.49695 + 1.49695i
\(170\) 0.220786 2.64206i 0.0169335 0.202637i
\(171\) 0 0
\(172\) 1.59845 + 6.95337i 0.121880 + 0.530189i
\(173\) 21.0041 8.70018i 1.59691 0.661463i 0.605937 0.795512i \(-0.292798\pi\)
0.990975 + 0.134050i \(0.0427982\pi\)
\(174\) 0 0
\(175\) 4.12443 0.311777
\(176\) 1.96453 2.21213i 0.148082 0.166746i
\(177\) 0 0
\(178\) −12.1344 6.25680i −0.909508 0.468967i
\(179\) −4.35530 10.5146i −0.325530 0.785900i −0.998913 0.0466061i \(-0.985159\pi\)
0.673383 0.739294i \(-0.264841\pi\)
\(180\) 0 0
\(181\) −4.28737 1.77589i −0.318677 0.132001i 0.217610 0.976036i \(-0.430174\pi\)
−0.536288 + 0.844035i \(0.680174\pi\)
\(182\) −2.47778 + 29.6507i −0.183665 + 2.19786i
\(183\) 0 0
\(184\) −19.8083 + 2.84362i −1.46028 + 0.209635i
\(185\) −11.6886 + 11.6886i −0.859364 + 0.859364i
\(186\) 0 0
\(187\) −0.661352 0.273941i −0.0483628 0.0200325i
\(188\) −4.28319 6.01673i −0.312384 0.438815i
\(189\) 0 0
\(190\) −2.28159 7.13921i −0.165524 0.517933i
\(191\) −22.2718 −1.61153 −0.805766 0.592234i \(-0.798246\pi\)
−0.805766 + 0.592234i \(0.798246\pi\)
\(192\) 0 0
\(193\) 10.8858 0.783575 0.391787 0.920056i \(-0.371857\pi\)
0.391787 + 0.920056i \(0.371857\pi\)
\(194\) −3.30623 10.3454i −0.237373 0.742753i
\(195\) 0 0
\(196\) 4.55135 + 6.39343i 0.325096 + 0.456673i
\(197\) −6.10110 2.52716i −0.434686 0.180053i 0.154601 0.987977i \(-0.450591\pi\)
−0.589286 + 0.807924i \(0.700591\pi\)
\(198\) 0 0
\(199\) 10.1086 10.1086i 0.716582 0.716582i −0.251322 0.967904i \(-0.580865\pi\)
0.967904 + 0.251322i \(0.0808653\pi\)
\(200\) −0.501550 3.49372i −0.0354650 0.247044i
\(201\) 0 0
\(202\) 0.133884 1.60215i 0.00942007 0.112727i
\(203\) −4.49558 1.86213i −0.315528 0.130696i
\(204\) 0 0
\(205\) 7.12871 + 17.2102i 0.497891 + 1.20201i
\(206\) −12.5562 6.47432i −0.874833 0.451087i
\(207\) 0 0
\(208\) 25.4179 1.50679i 1.76241 0.104477i
\(209\) −2.02363 −0.139977
\(210\) 0 0
\(211\) 18.8236 7.79698i 1.29587 0.536766i 0.375139 0.926969i \(-0.377595\pi\)
0.920729 + 0.390202i \(0.127595\pi\)
\(212\) −2.17161 9.44667i −0.149147 0.648800i
\(213\) 0 0
\(214\) 2.05671 24.6120i 0.140594 1.68244i
\(215\) −4.88619 + 4.88619i −0.333236 + 0.333236i
\(216\) 0 0
\(217\) −17.0276 17.0276i −1.15591 1.15591i
\(218\) 2.17664 1.84091i 0.147421 0.124682i
\(219\) 0 0
\(220\) 2.82565 + 0.475576i 0.190505 + 0.0320633i
\(221\) −2.35766 5.69190i −0.158593 0.382879i
\(222\) 0 0
\(223\) 14.8162i 0.992164i 0.868276 + 0.496082i \(0.165229\pi\)
−0.868276 + 0.496082i \(0.834771\pi\)
\(224\) 13.5361 12.8973i 0.904419 0.861740i
\(225\) 0 0
\(226\) −0.312643 0.978276i −0.0207967 0.0650739i
\(227\) −11.9755 + 4.96040i −0.794839 + 0.329233i −0.742887 0.669416i \(-0.766544\pi\)
−0.0519519 + 0.998650i \(0.516544\pi\)
\(228\) 0 0
\(229\) −2.65080 + 6.39960i −0.175170 + 0.422897i −0.986942 0.161077i \(-0.948503\pi\)
0.811772 + 0.583975i \(0.198503\pi\)
\(230\) −12.5158 14.7983i −0.825269 0.975774i
\(231\) 0 0
\(232\) −1.03069 + 4.03456i −0.0676681 + 0.264882i
\(233\) 8.35926 + 8.35926i 0.547634 + 0.547634i 0.925756 0.378122i \(-0.123430\pi\)
−0.378122 + 0.925756i \(0.623430\pi\)
\(234\) 0 0
\(235\) 2.73736 6.60858i 0.178566 0.431096i
\(236\) −4.74925 20.6596i −0.309150 1.34483i
\(237\) 0 0
\(238\) −4.02079 2.07323i −0.260629 0.134388i
\(239\) 2.44122i 0.157909i −0.996878 0.0789547i \(-0.974842\pi\)
0.996878 0.0789547i \(-0.0251582\pi\)
\(240\) 0 0
\(241\) 1.86406i 0.120074i 0.998196 + 0.0600372i \(0.0191219\pi\)
−0.998196 + 0.0600372i \(0.980878\pi\)
\(242\) −6.77477 + 13.1389i −0.435499 + 0.844600i
\(243\) 0 0
\(244\) −12.4286 + 19.8485i −0.795662 + 1.27067i
\(245\) −2.90874 + 7.02233i −0.185833 + 0.448640i
\(246\) 0 0
\(247\) −12.3152 12.3152i −0.783595 0.783595i
\(248\) −12.3531 + 16.4944i −0.784425 + 1.04740i
\(249\) 0 0
\(250\) 13.0682 11.0525i 0.826504 0.699023i
\(251\) −6.30926 + 15.2319i −0.398237 + 0.961430i 0.589847 + 0.807515i \(0.299188\pi\)
−0.988084 + 0.153915i \(0.950812\pi\)
\(252\) 0 0
\(253\) −4.83462 + 2.00257i −0.303950 + 0.125900i
\(254\) 15.5839 4.98040i 0.977822 0.312498i
\(255\) 0 0
\(256\) −12.5711 9.89780i −0.785696 0.618612i
\(257\) 5.84660i 0.364701i 0.983234 + 0.182350i \(0.0583705\pi\)
−0.983234 + 0.182350i \(0.941629\pi\)
\(258\) 0 0
\(259\) 10.7937 + 26.0583i 0.670687 + 1.61918i
\(260\) 14.3018 + 20.0903i 0.886962 + 1.24594i
\(261\) 0 0
\(262\) −17.7179 20.9492i −1.09462 1.29424i
\(263\) −11.4239 11.4239i −0.704427 0.704427i 0.260930 0.965358i \(-0.415971\pi\)
−0.965358 + 0.260930i \(0.915971\pi\)
\(264\) 0 0
\(265\) 6.63826 6.63826i 0.407785 0.407785i
\(266\) −12.7441 1.06497i −0.781390 0.0652973i
\(267\) 0 0
\(268\) −6.61281 4.14077i −0.403942 0.252938i
\(269\) −2.42511 + 1.00451i −0.147862 + 0.0612463i −0.455387 0.890294i \(-0.650499\pi\)
0.307525 + 0.951540i \(0.400499\pi\)
\(270\) 0 0
\(271\) −10.6956 −0.649711 −0.324856 0.945764i \(-0.605316\pi\)
−0.324856 + 0.945764i \(0.605316\pi\)
\(272\) −1.26725 + 3.65805i −0.0768380 + 0.221802i
\(273\) 0 0
\(274\) 14.6531 28.4180i 0.885227 1.71680i
\(275\) −0.353207 0.852716i −0.0212992 0.0514207i
\(276\) 0 0
\(277\) −13.7497 5.69533i −0.826142 0.342199i −0.0707678 0.997493i \(-0.522545\pi\)
−0.755374 + 0.655294i \(0.772545\pi\)
\(278\) −0.134532 0.0112422i −0.00806866 0.000674263i
\(279\) 0 0
\(280\) 17.5447 + 4.48206i 1.04850 + 0.267854i
\(281\) −1.63475 + 1.63475i −0.0975211 + 0.0975211i −0.754184 0.656663i \(-0.771967\pi\)
0.656663 + 0.754184i \(0.271967\pi\)
\(282\) 0 0
\(283\) −4.75108 1.96796i −0.282423 0.116983i 0.236976 0.971516i \(-0.423844\pi\)
−0.519398 + 0.854532i \(0.673844\pi\)
\(284\) 27.4924 + 4.62716i 1.63138 + 0.274571i
\(285\) 0 0
\(286\) 6.34242 2.02695i 0.375035 0.119856i
\(287\) 31.7851 1.87622
\(288\) 0 0
\(289\) −16.0633 −0.944900
\(290\) −3.84163 + 1.22773i −0.225588 + 0.0720948i
\(291\) 0 0
\(292\) 2.25970 13.4261i 0.132239 0.785705i
\(293\) −13.0434 5.40274i −0.762001 0.315631i −0.0323737 0.999476i \(-0.510307\pi\)
−0.729628 + 0.683845i \(0.760307\pi\)
\(294\) 0 0
\(295\) 14.5177 14.5177i 0.845254 0.845254i
\(296\) 20.7609 12.3119i 1.20670 0.715617i
\(297\) 0 0
\(298\) 21.3403 + 1.78331i 1.23621 + 0.103304i
\(299\) −41.6090 17.2350i −2.40631 0.996726i
\(300\) 0 0
\(301\) 4.51209 + 10.8931i 0.260072 + 0.627870i
\(302\) 6.84766 13.2803i 0.394039 0.764193i
\(303\) 0 0
\(304\) 0.647629 + 10.9248i 0.0371441 + 0.626579i
\(305\) −22.6815 −1.29874
\(306\) 0 0
\(307\) 13.7332 5.68846i 0.783793 0.324658i 0.0453480 0.998971i \(-0.485560\pi\)
0.738445 + 0.674313i \(0.235560\pi\)
\(308\) 2.59476 4.14384i 0.147850 0.236117i
\(309\) 0 0
\(310\) −19.8894 1.66207i −1.12964 0.0943990i
\(311\) 1.93693 1.93693i 0.109833 0.109833i −0.650055 0.759888i \(-0.725254\pi\)
0.759888 + 0.650055i \(0.225254\pi\)
\(312\) 0 0
\(313\) 20.8065 + 20.8065i 1.17606 + 1.17606i 0.980741 + 0.195315i \(0.0625728\pi\)
0.195315 + 0.980741i \(0.437427\pi\)
\(314\) 10.9103 + 12.9000i 0.615702 + 0.727988i
\(315\) 0 0
\(316\) 17.9486 12.7773i 1.00969 0.718777i
\(317\) 6.99169 + 16.8794i 0.392692 + 0.948043i 0.989351 + 0.145548i \(0.0464945\pi\)
−0.596659 + 0.802495i \(0.703505\pi\)
\(318\) 0 0
\(319\) 1.08892i 0.0609678i
\(320\) 1.66314 15.4068i 0.0929726 0.861266i
\(321\) 0 0
\(322\) −31.5006 + 10.0672i −1.75546 + 0.561020i
\(323\) 2.44642 1.01334i 0.136122 0.0563837i
\(324\) 0 0
\(325\) 3.03986 7.33887i 0.168621 0.407087i
\(326\) −9.31069 + 7.87459i −0.515672 + 0.436133i
\(327\) 0 0
\(328\) −3.86522 26.9245i −0.213421 1.48666i
\(329\) −8.63039 8.63039i −0.475809 0.475809i
\(330\) 0 0
\(331\) 7.57715 18.2929i 0.416478 1.00547i −0.566882 0.823799i \(-0.691850\pi\)
0.983360 0.181668i \(-0.0581496\pi\)
\(332\) −5.09677 3.19146i −0.279722 0.175154i
\(333\) 0 0
\(334\) 0.0688444 0.133516i 0.00376700 0.00730566i
\(335\) 7.55664i 0.412863i
\(336\) 0 0
\(337\) 6.73391i 0.366820i 0.983037 + 0.183410i \(0.0587135\pi\)
−0.983037 + 0.183410i \(0.941286\pi\)
\(338\) 34.5929 + 17.8370i 1.88161 + 0.970207i
\(339\) 0 0
\(340\) −3.65415 + 0.840020i −0.198174 + 0.0455565i
\(341\) −2.06222 + 4.97863i −0.111675 + 0.269608i
\(342\) 0 0
\(343\) −7.18892 7.18892i −0.388165 0.388165i
\(344\) 8.67868 5.14676i 0.467923 0.277495i
\(345\) 0 0
\(346\) −20.7625 24.5489i −1.11620 1.31976i
\(347\) −2.79644 + 6.75121i −0.150121 + 0.362424i −0.980994 0.194038i \(-0.937842\pi\)
0.830873 + 0.556462i \(0.187842\pi\)
\(348\) 0 0
\(349\) −3.16816 + 1.31229i −0.169588 + 0.0702455i −0.465862 0.884857i \(-0.654256\pi\)
0.296274 + 0.955103i \(0.404256\pi\)
\(350\) −1.77561 5.55599i −0.0949106 0.296980i
\(351\) 0 0
\(352\) −3.82570 1.69406i −0.203910 0.0902938i
\(353\) 29.8578i 1.58917i 0.607151 + 0.794586i \(0.292312\pi\)
−0.607151 + 0.794586i \(0.707688\pi\)
\(354\) 0 0
\(355\) 10.3330 + 24.9461i 0.548419 + 1.32400i
\(356\) −3.20451 + 19.0397i −0.169839 + 1.00910i
\(357\) 0 0
\(358\) −12.2892 + 10.3937i −0.649503 + 0.549322i
\(359\) −9.44266 9.44266i −0.498365 0.498365i 0.412564 0.910929i \(-0.364633\pi\)
−0.910929 + 0.412564i \(0.864633\pi\)
\(360\) 0 0
\(361\) −8.14189 + 8.14189i −0.428521 + 0.428521i
\(362\) −0.546521 + 6.54002i −0.0287245 + 0.343736i
\(363\) 0 0
\(364\) 41.0090 9.42719i 2.14946 0.494119i
\(365\) 12.1826 5.04620i 0.637667 0.264130i
\(366\) 0 0
\(367\) 26.8327 1.40065 0.700327 0.713822i \(-0.253038\pi\)
0.700327 + 0.713822i \(0.253038\pi\)
\(368\) 12.3583 + 25.4593i 0.644222 + 1.32716i
\(369\) 0 0
\(370\) 20.7777 + 10.7136i 1.08018 + 0.556972i
\(371\) −6.13001 14.7991i −0.318254 0.768334i
\(372\) 0 0
\(373\) −12.3312 5.10777i −0.638487 0.264470i 0.0398670 0.999205i \(-0.487307\pi\)
−0.678354 + 0.734735i \(0.737307\pi\)
\(374\) −0.0843041 + 1.00884i −0.00435926 + 0.0521657i
\(375\) 0 0
\(376\) −6.26114 + 8.36013i −0.322893 + 0.431141i
\(377\) −6.62683 + 6.62683i −0.341299 + 0.341299i
\(378\) 0 0
\(379\) −5.26078 2.17909i −0.270228 0.111932i 0.243455 0.969912i \(-0.421719\pi\)
−0.513683 + 0.857980i \(0.671719\pi\)
\(380\) −8.63493 + 6.14703i −0.442962 + 0.315336i
\(381\) 0 0
\(382\) 9.58828 + 30.0022i 0.490579 + 1.53505i
\(383\) 8.14683 0.416283 0.208142 0.978099i \(-0.433258\pi\)
0.208142 + 0.978099i \(0.433258\pi\)
\(384\) 0 0
\(385\) 4.73527 0.241332
\(386\) −4.68645 14.6641i −0.238534 0.746385i
\(387\) 0 0
\(388\) −12.5128 + 8.90760i −0.635240 + 0.452215i
\(389\) 8.22236 + 3.40581i 0.416890 + 0.172682i 0.581261 0.813717i \(-0.302559\pi\)
−0.164371 + 0.986399i \(0.552559\pi\)
\(390\) 0 0
\(391\) 4.84191 4.84191i 0.244866 0.244866i
\(392\) 6.65313 8.88354i 0.336034 0.448686i
\(393\) 0 0
\(394\) −0.777722 + 9.30672i −0.0391811 + 0.468866i
\(395\) 19.7142 + 8.16588i 0.991927 + 0.410870i
\(396\) 0 0
\(397\) −0.328403 0.792834i −0.0164821 0.0397912i 0.915424 0.402490i \(-0.131855\pi\)
−0.931906 + 0.362699i \(0.881855\pi\)
\(398\) −17.9691 9.26538i −0.900712 0.464431i
\(399\) 0 0
\(400\) −4.49045 + 2.17972i −0.224522 + 0.108986i
\(401\) 17.3098 0.864411 0.432206 0.901775i \(-0.357735\pi\)
0.432206 + 0.901775i \(0.357735\pi\)
\(402\) 0 0
\(403\) −42.8484 + 17.7484i −2.13443 + 0.884111i
\(404\) −2.21588 + 0.509388i −0.110244 + 0.0253430i
\(405\) 0 0
\(406\) −0.573062 + 6.85763i −0.0284406 + 0.340338i
\(407\) 4.46314 4.46314i 0.221230 0.221230i
\(408\) 0 0
\(409\) 5.00972 + 5.00972i 0.247715 + 0.247715i 0.820032 0.572317i \(-0.193955\pi\)
−0.572317 + 0.820032i \(0.693955\pi\)
\(410\) 20.1148 17.0122i 0.993398 0.840175i
\(411\) 0 0
\(412\) −3.31592 + 19.7017i −0.163364 + 0.970631i
\(413\) −13.4062 32.3654i −0.659675 1.59260i
\(414\) 0 0
\(415\) 5.82422i 0.285900i
\(416\) −12.9725 33.5915i −0.636028 1.64696i
\(417\) 0 0
\(418\) 0.871195 + 2.72601i 0.0426115 + 0.133334i
\(419\) 7.01103 2.90406i 0.342511 0.141873i −0.204796 0.978805i \(-0.565653\pi\)
0.547307 + 0.836932i \(0.315653\pi\)
\(420\) 0 0
\(421\) 3.94749 9.53009i 0.192389 0.464468i −0.798021 0.602630i \(-0.794119\pi\)
0.990410 + 0.138162i \(0.0441195\pi\)
\(422\) −18.6070 22.0004i −0.905776 1.07096i
\(423\) 0 0
\(424\) −11.7906 + 6.99226i −0.572604 + 0.339574i
\(425\) 0.854002 + 0.854002i 0.0414252 + 0.0414252i
\(426\) 0 0
\(427\) −14.8103 + 35.7552i −0.716719 + 1.73031i
\(428\) −34.0401 + 7.82516i −1.64539 + 0.378243i
\(429\) 0 0
\(430\) 8.68572 + 4.47859i 0.418863 + 0.215977i
\(431\) 11.8098i 0.568858i 0.958697 + 0.284429i \(0.0918040\pi\)
−0.958697 + 0.284429i \(0.908196\pi\)
\(432\) 0 0
\(433\) 3.26662i 0.156984i 0.996915 + 0.0784919i \(0.0250105\pi\)
−0.996915 + 0.0784919i \(0.974990\pi\)
\(434\) −15.6072 + 30.2684i −0.749170 + 1.45293i
\(435\) 0 0
\(436\) −3.41695 2.13961i −0.163642 0.102469i
\(437\) 7.40772 17.8838i 0.354359 0.855499i
\(438\) 0 0
\(439\) 13.7003 + 13.7003i 0.653877 + 0.653877i 0.953924 0.300047i \(-0.0970024\pi\)
−0.300047 + 0.953924i \(0.597002\pi\)
\(440\) −0.575832 4.01116i −0.0274517 0.191224i
\(441\) 0 0
\(442\) −6.65252 + 5.62642i −0.316428 + 0.267621i
\(443\) −7.53737 + 18.1968i −0.358111 + 0.864557i 0.637454 + 0.770488i \(0.279988\pi\)
−0.995566 + 0.0940692i \(0.970012\pi\)
\(444\) 0 0
\(445\) −17.2763 + 7.15607i −0.818974 + 0.339230i
\(446\) 19.9588 6.37854i 0.945075 0.302032i
\(447\) 0 0
\(448\) −23.2014 12.6819i −1.09616 0.599165i
\(449\) 2.46488i 0.116325i 0.998307 + 0.0581625i \(0.0185241\pi\)
−0.998307 + 0.0581625i \(0.981476\pi\)
\(450\) 0 0
\(451\) −2.72200 6.57150i −0.128174 0.309440i
\(452\) −1.18323 + 0.842319i −0.0556546 + 0.0396193i
\(453\) 0 0
\(454\) 11.8377 + 13.9965i 0.555571 + 0.656891i
\(455\) 28.8174 + 28.8174i 1.35098 + 1.35098i
\(456\) 0 0
\(457\) 3.04617 3.04617i 0.142494 0.142494i −0.632261 0.774755i \(-0.717873\pi\)
0.774755 + 0.632261i \(0.217873\pi\)
\(458\) 9.76206 + 0.815772i 0.456151 + 0.0381185i
\(459\) 0 0
\(460\) −14.5465 + 23.2308i −0.678236 + 1.08314i
\(461\) −9.85993 + 4.08412i −0.459223 + 0.190216i −0.600288 0.799784i \(-0.704947\pi\)
0.141065 + 0.990000i \(0.454947\pi\)
\(462\) 0 0
\(463\) −28.1511 −1.30829 −0.654147 0.756367i \(-0.726972\pi\)
−0.654147 + 0.756367i \(0.726972\pi\)
\(464\) 5.87865 0.348491i 0.272910 0.0161783i
\(465\) 0 0
\(466\) 7.66194 14.8595i 0.354933 0.688352i
\(467\) 0.133756 + 0.322916i 0.00618951 + 0.0149428i 0.926944 0.375200i \(-0.122426\pi\)
−0.920755 + 0.390142i \(0.872426\pi\)
\(468\) 0 0
\(469\) −11.9123 4.93425i −0.550060 0.227842i
\(470\) −10.0808 0.842412i −0.464995 0.0388576i
\(471\) 0 0
\(472\) −25.7858 + 15.2919i −1.18689 + 0.703867i
\(473\) 1.86573 1.86573i 0.0857863 0.0857863i
\(474\) 0 0
\(475\) 3.15430 + 1.30655i 0.144729 + 0.0599487i
\(476\) −1.06183 + 6.30893i −0.0486691 + 0.289169i
\(477\) 0 0
\(478\) −3.28855 + 1.05097i −0.150415 + 0.0480704i
\(479\) 25.3551 1.15850 0.579251 0.815149i \(-0.303345\pi\)
0.579251 + 0.815149i \(0.303345\pi\)
\(480\) 0 0
\(481\) 54.3226 2.47690
\(482\) 2.51106 0.802498i 0.114376 0.0365528i
\(483\) 0 0
\(484\) 20.6159 + 3.46980i 0.937088 + 0.157718i
\(485\) −13.7436 5.69280i −0.624066 0.258497i
\(486\) 0 0
\(487\) −15.5211 + 15.5211i −0.703327 + 0.703327i −0.965123 0.261796i \(-0.915685\pi\)
0.261796 + 0.965123i \(0.415685\pi\)
\(488\) 32.0885 + 8.19749i 1.45258 + 0.371083i
\(489\) 0 0
\(490\) 10.7120 + 0.895153i 0.483918 + 0.0404389i
\(491\) −7.79527 3.22890i −0.351795 0.145718i 0.199786 0.979840i \(-0.435975\pi\)
−0.551581 + 0.834121i \(0.685975\pi\)
\(492\) 0 0
\(493\) −0.545281 1.31642i −0.0245582 0.0592888i
\(494\) −11.2878 + 21.8915i −0.507864 + 0.984945i
\(495\) 0 0
\(496\) 27.5377 + 9.53978i 1.23648 + 0.428349i
\(497\) 46.0722 2.06662
\(498\) 0 0
\(499\) −2.14784 + 0.889664i −0.0961504 + 0.0398268i −0.430240 0.902714i \(-0.641571\pi\)
0.334090 + 0.942541i \(0.391571\pi\)
\(500\) −20.5148 12.8458i −0.917449 0.574482i
\(501\) 0 0
\(502\) 23.2350 + 1.94165i 1.03703 + 0.0866600i
\(503\) −10.4975 + 10.4975i −0.468062 + 0.468062i −0.901286 0.433224i \(-0.857376\pi\)
0.433224 + 0.901286i \(0.357376\pi\)
\(504\) 0 0
\(505\) −1.55712 1.55712i −0.0692908 0.0692908i
\(506\) 4.77900 + 5.65056i 0.212453 + 0.251198i
\(507\) 0 0
\(508\) −13.4181 18.8489i −0.595333 0.836283i
\(509\) −8.62373 20.8195i −0.382240 0.922810i −0.991532 0.129863i \(-0.958546\pi\)
0.609292 0.792946i \(-0.291454\pi\)
\(510\) 0 0
\(511\) 22.4997i 0.995329i
\(512\) −7.92123 + 21.1956i −0.350072 + 0.936723i
\(513\) 0 0
\(514\) 7.87592 2.51703i 0.347392 0.111021i
\(515\) −17.8769 + 7.40485i −0.787750 + 0.326297i
\(516\) 0 0
\(517\) −1.04523 + 2.52340i −0.0459690 + 0.110979i
\(518\) 30.4561 25.7585i 1.33816 1.13176i
\(519\) 0 0
\(520\) 20.9063 27.9150i 0.916803 1.22415i
\(521\) 23.6260 + 23.6260i 1.03508 + 1.03508i 0.999362 + 0.0357139i \(0.0113705\pi\)
0.0357139 + 0.999362i \(0.488630\pi\)
\(522\) 0 0
\(523\) −0.967311 + 2.33529i −0.0422975 + 0.102115i −0.943616 0.331041i \(-0.892600\pi\)
0.901319 + 0.433156i \(0.142600\pi\)
\(524\) −20.5927 + 32.8866i −0.899596 + 1.43666i
\(525\) 0 0
\(526\) −10.4709 + 20.3072i −0.456554 + 0.885434i
\(527\) 7.05147i 0.307167i
\(528\) 0 0
\(529\) 27.0566i 1.17638i
\(530\) −11.8002 6.08450i −0.512568 0.264294i
\(531\) 0 0
\(532\) 4.05187 + 17.6259i 0.175671 + 0.764182i
\(533\) 23.4268 56.5574i 1.01473 2.44977i
\(534\) 0 0
\(535\) −23.9203 23.9203i −1.03416 1.03416i
\(536\) −2.73111 + 10.6907i −0.117966 + 0.461769i
\(537\) 0 0
\(538\) 2.39721 + 2.83440i 0.103351 + 0.122199i
\(539\) 1.11067 2.68138i 0.0478398 0.115495i
\(540\) 0 0
\(541\) 13.3578 5.53299i 0.574298 0.237882i −0.0765813 0.997063i \(-0.524400\pi\)
0.650879 + 0.759181i \(0.274400\pi\)
\(542\) 4.60458 + 14.4080i 0.197784 + 0.618875i
\(543\) 0 0
\(544\) 5.47330 + 0.132263i 0.234666 + 0.00567072i
\(545\) 3.90464i 0.167257i
\(546\) 0 0
\(547\) −16.5682 39.9992i −0.708406 1.71024i −0.703945 0.710254i \(-0.748580\pi\)
−0.00446097 0.999990i \(-0.501420\pi\)
\(548\) −44.5901 7.50480i −1.90479 0.320589i
\(549\) 0 0
\(550\) −0.996629 + 0.842907i −0.0424964 + 0.0359417i
\(551\) −2.84825 2.84825i −0.121340 0.121340i
\(552\) 0 0
\(553\) 25.7454 25.7454i 1.09481 1.09481i
\(554\) −1.75271 + 20.9741i −0.0744656 + 0.891104i
\(555\) 0 0
\(556\) 0.0427731 + 0.186066i 0.00181398 + 0.00789097i
\(557\) 5.70924 2.36484i 0.241908 0.100202i −0.258436 0.966029i \(-0.583207\pi\)
0.500344 + 0.865827i \(0.333207\pi\)
\(558\) 0 0
\(559\) 22.7085 0.960467
\(560\) −1.51545 25.5639i −0.0640394 1.08027i
\(561\) 0 0
\(562\) 2.90594 + 1.49838i 0.122580 + 0.0632055i
\(563\) 5.89410 + 14.2296i 0.248407 + 0.599707i 0.998069 0.0621133i \(-0.0197840\pi\)
−0.749662 + 0.661821i \(0.769784\pi\)
\(564\) 0 0
\(565\) −1.29962 0.538322i −0.0546756 0.0226474i
\(566\) −0.605632 + 7.24738i −0.0254566 + 0.304630i
\(567\) 0 0
\(568\) −5.60261 39.0269i −0.235080 1.63753i
\(569\) 0.242674 0.242674i 0.0101734 0.0101734i −0.702002 0.712175i \(-0.747710\pi\)
0.712175 + 0.702002i \(0.247710\pi\)
\(570\) 0 0
\(571\) 25.8985 + 10.7275i 1.08382 + 0.448933i 0.851848 0.523789i \(-0.175482\pi\)
0.231972 + 0.972722i \(0.425482\pi\)
\(572\) −5.46097 7.67120i −0.228335 0.320749i
\(573\) 0 0
\(574\) −13.6839 42.8175i −0.571153 1.78717i
\(575\) 8.82885 0.368188
\(576\) 0 0
\(577\) 17.7896 0.740589 0.370294 0.928914i \(-0.379257\pi\)
0.370294 + 0.928914i \(0.379257\pi\)
\(578\) 6.91544 + 21.6388i 0.287644 + 0.900054i
\(579\) 0 0
\(580\) 3.30773 + 4.64648i 0.137346 + 0.192935i
\(581\) −9.18133 3.80303i −0.380906 0.157776i
\(582\) 0 0
\(583\) −2.53473 + 2.53473i −0.104978 + 0.104978i
\(584\) −19.0591 + 2.73607i −0.788670 + 0.113220i
\(585\) 0 0
\(586\) −1.66267 + 19.8966i −0.0686842 + 0.821920i
\(587\) 30.9718 + 12.8289i 1.27834 + 0.529507i 0.915490 0.402340i \(-0.131803\pi\)
0.362852 + 0.931847i \(0.381803\pi\)
\(588\) 0 0
\(589\) −7.62838 18.4165i −0.314322 0.758840i
\(590\) −25.8067 13.3067i −1.06245 0.547826i
\(591\) 0 0
\(592\) −25.5231 22.6664i −1.04899 0.931584i
\(593\) −41.4635 −1.70270 −0.851351 0.524596i \(-0.824216\pi\)
−0.851351 + 0.524596i \(0.824216\pi\)
\(594\) 0 0
\(595\) −5.72460 + 2.37121i −0.234686 + 0.0972100i
\(596\) −6.78495 29.5150i −0.277922 1.20898i
\(597\) 0 0
\(598\) −5.30400 + 63.4711i −0.216897 + 2.59552i
\(599\) 32.9148 32.9148i 1.34486 1.34486i 0.453719 0.891145i \(-0.350097\pi\)
0.891145 0.453719i \(-0.149903\pi\)
\(600\) 0 0
\(601\) −12.5748 12.5748i −0.512936 0.512936i 0.402489 0.915425i \(-0.368145\pi\)
−0.915425 + 0.402489i \(0.868145\pi\)
\(602\) 12.7316 10.7678i 0.518900 0.438864i
\(603\) 0 0
\(604\) −20.8377 3.50713i −0.847875 0.142703i
\(605\) 7.74848 + 18.7065i 0.315021 + 0.760527i
\(606\) 0 0
\(607\) 46.0240i 1.86806i −0.357198 0.934029i \(-0.616268\pi\)
0.357198 0.934029i \(-0.383732\pi\)
\(608\) 14.4379 5.57566i 0.585533 0.226123i
\(609\) 0 0
\(610\) 9.76464 + 30.5540i 0.395359 + 1.23710i
\(611\) −21.7176 + 8.99570i −0.878598 + 0.363927i
\(612\) 0 0
\(613\) 3.81762 9.21655i 0.154192 0.372253i −0.827841 0.560963i \(-0.810431\pi\)
0.982033 + 0.188711i \(0.0604308\pi\)
\(614\) −13.5752 16.0509i −0.547850 0.647762i
\(615\) 0 0
\(616\) −6.69921 1.71141i −0.269919 0.0689548i
\(617\) −9.42700 9.42700i −0.379517 0.379517i 0.491411 0.870928i \(-0.336481\pi\)
−0.870928 + 0.491411i \(0.836481\pi\)
\(618\) 0 0
\(619\) −10.4213 + 25.1593i −0.418868 + 1.01124i 0.563808 + 0.825906i \(0.309336\pi\)
−0.982676 + 0.185332i \(0.940664\pi\)
\(620\) 6.32365 + 27.5084i 0.253964 + 1.10476i
\(621\) 0 0
\(622\) −3.44309 1.77535i −0.138055 0.0711851i
\(623\) 31.9071i 1.27833i
\(624\) 0 0
\(625\) 17.2034i 0.688136i
\(626\) 19.0709 36.9858i 0.762226 1.47825i
\(627\) 0 0
\(628\) 12.6805 20.2507i 0.506006 0.808092i
\(629\) −3.16068 + 7.63055i −0.126024 + 0.304250i
\(630\) 0 0
\(631\) 15.7973 + 15.7973i 0.628879 + 0.628879i 0.947786 0.318907i \(-0.103316\pi\)
−0.318907 + 0.947786i \(0.603316\pi\)
\(632\) −24.9392 18.6777i −0.992030 0.742959i
\(633\) 0 0
\(634\) 19.7282 16.6852i 0.783505 0.662656i
\(635\) 8.57545 20.7030i 0.340307 0.821573i
\(636\) 0 0
\(637\) 23.0772 9.55891i 0.914354 0.378738i
\(638\) 1.46688 0.468793i 0.0580742 0.0185597i
\(639\) 0 0
\(640\) −21.4704 + 4.39240i −0.848692 + 0.173625i
\(641\) 11.2466i 0.444215i 0.975022 + 0.222107i \(0.0712936\pi\)
−0.975022 + 0.222107i \(0.928706\pi\)
\(642\) 0 0
\(643\) 4.46309 + 10.7749i 0.176007 + 0.424919i 0.987122 0.159968i \(-0.0511390\pi\)
−0.811115 + 0.584886i \(0.801139\pi\)
\(644\) 27.1228 + 38.1002i 1.06879 + 1.50136i
\(645\) 0 0
\(646\) −2.41827 2.85930i −0.0951457 0.112497i
\(647\) 22.9908 + 22.9908i 0.903861 + 0.903861i 0.995768 0.0919063i \(-0.0292960\pi\)
−0.0919063 + 0.995768i \(0.529296\pi\)
\(648\) 0 0
\(649\) −5.54340 + 5.54340i −0.217597 + 0.217597i
\(650\) −11.1948 0.935504i −0.439098 0.0366935i
\(651\) 0 0
\(652\) 14.6162 + 9.15226i 0.572414 + 0.358430i
\(653\) −0.731559 + 0.303022i −0.0286281 + 0.0118582i −0.396952 0.917840i \(-0.629932\pi\)
0.368323 + 0.929698i \(0.379932\pi\)
\(654\) 0 0
\(655\) −37.5804 −1.46839
\(656\) −34.6058 + 16.7981i −1.35113 + 0.655857i
\(657\) 0 0
\(658\) −7.91045 + 15.3414i −0.308381 + 0.598071i
\(659\) −3.48735 8.41921i −0.135848 0.327966i 0.841286 0.540590i \(-0.181799\pi\)
−0.977134 + 0.212624i \(0.931799\pi\)
\(660\) 0 0
\(661\) 22.6551 + 9.38406i 0.881182 + 0.364998i 0.776955 0.629556i \(-0.216763\pi\)
0.104227 + 0.994554i \(0.466763\pi\)
\(662\) −27.9042 2.33184i −1.08453 0.0906293i
\(663\) 0 0
\(664\) −2.10498 + 8.23979i −0.0816890 + 0.319766i
\(665\) −12.3859 + 12.3859i −0.480305 + 0.480305i
\(666\) 0 0
\(667\) −9.62334 3.98612i −0.372617 0.154343i
\(668\) −0.209497 0.0352596i −0.00810567 0.00136424i
\(669\) 0 0
\(670\) −10.1795 + 3.25322i −0.393268 + 0.125683i
\(671\) 8.66062 0.334340
\(672\) 0 0
\(673\) −17.3835 −0.670084 −0.335042 0.942203i \(-0.608751\pi\)
−0.335042 + 0.942203i \(0.608751\pi\)
\(674\) 9.07121 2.89903i 0.349410 0.111666i
\(675\) 0 0
\(676\) 9.13549 54.2789i 0.351365 2.08765i
\(677\) 39.4502 + 16.3408i 1.51620 + 0.628029i 0.976825 0.214040i \(-0.0686621\pi\)
0.539371 + 0.842068i \(0.318662\pi\)
\(678\) 0 0
\(679\) −17.9483 + 17.9483i −0.688793 + 0.688793i
\(680\) 2.70474 + 4.56085i 0.103722 + 0.174901i
\(681\) 0 0
\(682\) 7.59449 + 0.634638i 0.290808 + 0.0243016i
\(683\) −40.6471 16.8366i −1.55532 0.644234i −0.571049 0.820916i \(-0.693464\pi\)
−0.984268 + 0.176682i \(0.943464\pi\)
\(684\) 0 0
\(685\) −16.7591 40.4602i −0.640334 1.54590i
\(686\) −6.58923 + 12.7791i −0.251578 + 0.487907i
\(687\) 0 0
\(688\) −10.6694 9.47525i −0.406769 0.361240i
\(689\) −30.8512 −1.17534
\(690\) 0 0
\(691\) −0.769203 + 0.318614i −0.0292619 + 0.0121207i −0.397266 0.917703i \(-0.630041\pi\)
0.368005 + 0.929824i \(0.380041\pi\)
\(692\) −24.1312 + 38.5376i −0.917331 + 1.46498i
\(693\) 0 0
\(694\) 10.2984 + 0.860593i 0.390922 + 0.0326677i
\(695\) −0.130751 + 0.130751i −0.00495965 + 0.00495965i
\(696\) 0 0
\(697\) 6.58141 + 6.58141i 0.249289 + 0.249289i
\(698\) 3.13171 + 3.70285i 0.118537 + 0.140155i
\(699\) 0 0
\(700\) −6.72001 + 4.78384i −0.253992 + 0.180812i
\(701\) −10.7572 25.9701i −0.406292 0.980876i −0.986105 0.166126i \(-0.946874\pi\)
0.579812 0.814750i \(-0.303126\pi\)
\(702\) 0 0
\(703\) 23.3482i 0.880595i
\(704\) −0.635050 + 5.88289i −0.0239343 + 0.221720i
\(705\) 0 0
\(706\) 40.2213 12.8542i 1.51375 0.483773i
\(707\) −3.47140 + 1.43790i −0.130555 + 0.0540778i
\(708\) 0 0
\(709\) −13.7081 + 33.0944i −0.514820 + 1.24289i 0.426229 + 0.904615i \(0.359842\pi\)
−0.941049 + 0.338270i \(0.890158\pi\)
\(710\) 29.1562 24.6591i 1.09421 0.925440i
\(711\) 0 0
\(712\) 27.0279 3.88005i 1.01291 0.145411i
\(713\) −36.4497 36.4497i −1.36505 1.36505i
\(714\) 0 0
\(715\) 3.49008 8.42579i 0.130522 0.315107i
\(716\) 19.2919 + 12.0801i 0.720971 + 0.451453i
\(717\) 0 0
\(718\) −8.65497 + 16.7853i −0.323001 + 0.626423i
\(719\) 24.7319i 0.922345i −0.887311 0.461172i \(-0.847429\pi\)
0.887311 0.461172i \(-0.152571\pi\)
\(720\) 0 0
\(721\) 33.0163i 1.22959i
\(722\) 14.4731 + 7.46270i 0.538632 + 0.277733i
\(723\) 0 0
\(724\) 9.04530 2.07934i 0.336166 0.0772781i
\(725\) 0.703060 1.69734i 0.0261110 0.0630375i
\(726\) 0 0
\(727\) 4.89101 + 4.89101i 0.181397 + 0.181397i 0.791965 0.610567i \(-0.209058\pi\)
−0.610567 + 0.791965i \(0.709058\pi\)
\(728\) −30.3542 51.1844i −1.12500 1.89702i
\(729\) 0 0
\(730\) −12.0425 14.2386i −0.445711 0.526996i
\(731\) −1.32126 + 3.18980i −0.0488685 + 0.117979i
\(732\) 0 0
\(733\) −10.2058 + 4.22736i −0.376958 + 0.156141i −0.563114 0.826379i \(-0.690397\pi\)
0.186156 + 0.982520i \(0.440397\pi\)
\(734\) −11.5518 36.1461i −0.426384 1.33418i
\(735\) 0 0
\(736\) 28.9757 27.6083i 1.06806 1.01766i
\(737\) 2.88540i 0.106285i
\(738\) 0 0
\(739\) 1.71029 + 4.12900i 0.0629139 + 0.151888i 0.952210 0.305445i \(-0.0988051\pi\)
−0.889296 + 0.457332i \(0.848805\pi\)
\(740\) 5.48710 32.6019i 0.201710 1.19847i
\(741\) 0 0
\(742\) −17.2968 + 14.6289i −0.634985 + 0.537044i
\(743\) 12.6977 + 12.6977i 0.465832 + 0.465832i 0.900561 0.434729i \(-0.143156\pi\)
−0.434729 + 0.900561i \(0.643156\pi\)
\(744\) 0 0
\(745\) 20.7405 20.7405i 0.759873 0.759873i
\(746\) −1.57189 + 18.8103i −0.0575511 + 0.688693i
\(747\) 0 0
\(748\) 1.39529 0.320751i 0.0510169 0.0117278i
\(749\) −53.3272 + 22.0888i −1.94853 + 0.807108i
\(750\) 0 0
\(751\) −25.3864 −0.926362 −0.463181 0.886264i \(-0.653292\pi\)
−0.463181 + 0.886264i \(0.653292\pi\)
\(752\) 13.9574 + 4.83520i 0.508973 + 0.176322i
\(753\) 0 0
\(754\) 11.7799 + 6.07402i 0.428998 + 0.221203i
\(755\) −7.83185 18.9078i −0.285030 0.688123i
\(756\) 0 0
\(757\) 48.9351 + 20.2696i 1.77858 + 0.736711i 0.993023 + 0.117918i \(0.0376220\pi\)
0.785554 + 0.618793i \(0.212378\pi\)
\(758\) −0.670604 + 8.02488i −0.0243574 + 0.291477i
\(759\) 0 0
\(760\) 11.9981 + 8.98568i 0.435215 + 0.325945i
\(761\) 7.18378 7.18378i 0.260412 0.260412i −0.564809 0.825221i \(-0.691050\pi\)
0.825221 + 0.564809i \(0.191050\pi\)
\(762\) 0 0
\(763\) −6.15530 2.54961i −0.222837 0.0923020i
\(764\) 36.2879 25.8326i 1.31285 0.934591i
\(765\) 0 0
\(766\) −3.50731 10.9745i −0.126724 0.396526i
\(767\) −67.4708 −2.43623
\(768\) 0 0
\(769\) −48.6570 −1.75462 −0.877309 0.479926i \(-0.840663\pi\)
−0.877309 + 0.479926i \(0.840663\pi\)
\(770\) −2.03859 6.37885i −0.0734657 0.229878i
\(771\) 0 0
\(772\) −17.7364 + 12.6262i −0.638347 + 0.454426i
\(773\) 7.43579 + 3.08000i 0.267447 + 0.110780i 0.512377 0.858761i \(-0.328765\pi\)
−0.244930 + 0.969541i \(0.578765\pi\)
\(774\) 0 0
\(775\) 6.42890 6.42890i 0.230933 0.230933i
\(776\) 17.3863 + 13.0211i 0.624130 + 0.467429i
\(777\) 0 0
\(778\) 1.04812 12.5425i 0.0375770 0.449671i
\(779\) 24.3087 + 10.0690i 0.870951 + 0.360760i
\(780\) 0 0
\(781\) −3.94552 9.52534i −0.141182 0.340843i
\(782\) −8.60700 4.43800i −0.307786 0.158703i
\(783\) 0 0
\(784\) −14.8312 5.13792i −0.529686 0.183497i
\(785\) 23.1411 0.825940
\(786\) 0 0
\(787\) 14.9915 6.20966i 0.534388 0.221351i −0.0991360 0.995074i \(-0.531608\pi\)
0.633524 + 0.773723i \(0.281608\pi\)
\(788\) 12.8718 2.95899i 0.458540 0.105410i
\(789\) 0 0
\(790\) 2.51301 30.0723i 0.0894090 1.06993i
\(791\) −1.69722 + 1.69722i −0.0603464 + 0.0603464i
\(792\) 0 0
\(793\) 52.7058 + 52.7058i 1.87164 + 1.87164i
\(794\) −0.926640 + 0.783713i −0.0328852 + 0.0278129i
\(795\) 0 0
\(796\) −4.74540 + 28.1950i −0.168196 + 0.999344i
\(797\) 2.43692 + 5.88325i 0.0863202 + 0.208395i 0.961145 0.276044i \(-0.0890236\pi\)
−0.874825 + 0.484439i \(0.839024\pi\)
\(798\) 0 0
\(799\) 3.57401i 0.126439i
\(800\) 4.86948 + 5.11065i 0.172162 + 0.180689i
\(801\) 0 0
\(802\) −7.45208 23.3179i −0.263142 0.823385i
\(803\) −4.65177 + 1.92682i −0.164157 + 0.0679962i
\(804\) 0 0
\(805\) −17.3340 + 41.8480i −0.610944 + 1.47495i
\(806\) 42.3555 + 50.0799i 1.49191 + 1.76399i
\(807\) 0 0
\(808\) 1.64016 + 2.76570i 0.0577005 + 0.0972969i
\(809\) 9.30765 + 9.30765i 0.327240 + 0.327240i 0.851536 0.524296i \(-0.175672\pi\)
−0.524296 + 0.851536i \(0.675672\pi\)
\(810\) 0 0
\(811\) −8.10599 + 19.5696i −0.284640 + 0.687181i −0.999932 0.0116440i \(-0.996294\pi\)
0.715292 + 0.698825i \(0.246294\pi\)
\(812\) 9.48458 2.18032i 0.332843 0.0765143i
\(813\) 0 0
\(814\) −7.93370 4.09083i −0.278076 0.143384i
\(815\) 16.7023i 0.585056i
\(816\) 0 0
\(817\) 9.76026i 0.341468i
\(818\) 4.59182 8.90530i 0.160549 0.311367i
\(819\) 0 0
\(820\) −31.5767 19.7725i −1.10271 0.690486i
\(821\) 3.81353 9.20668i 0.133093 0.321315i −0.843257 0.537511i \(-0.819365\pi\)
0.976350 + 0.216195i \(0.0693648\pi\)
\(822\) 0 0
\(823\) −16.5761 16.5761i −0.577808 0.577808i 0.356491 0.934299i \(-0.383973\pi\)
−0.934299 + 0.356491i \(0.883973\pi\)
\(824\) 27.9675 4.01495i 0.974294 0.139867i
\(825\) 0 0
\(826\) −37.8277 + 31.9930i −1.31619 + 1.11318i
\(827\) −11.1677 + 26.9613i −0.388340 + 0.937537i 0.601951 + 0.798533i \(0.294390\pi\)
−0.990292 + 0.139004i \(0.955610\pi\)
\(828\) 0 0
\(829\) 8.82768 3.65654i 0.306598 0.126997i −0.224080 0.974571i \(-0.571938\pi\)
0.530678 + 0.847574i \(0.321938\pi\)
\(830\) −7.84577 + 2.50740i −0.272331 + 0.0870330i
\(831\) 0 0
\(832\) −39.6661 + 31.9367i −1.37518 + 1.10721i
\(833\) 3.79777i 0.131585i
\(834\) 0 0
\(835\) −0.0787391 0.190093i −0.00272488 0.00657844i
\(836\) 3.29713 2.34716i 0.114034 0.0811783i
\(837\) 0 0
\(838\) −6.93037 8.19427i −0.239406 0.283066i
\(839\) −4.55814 4.55814i −0.157364 0.157364i 0.624033 0.781398i \(-0.285493\pi\)
−0.781398 + 0.624033i \(0.785493\pi\)
\(840\) 0 0
\(841\) 18.9734 18.9734i 0.654257 0.654257i
\(842\) −14.5374 1.21482i −0.500990 0.0418656i
\(843\) 0 0
\(844\) −21.6261 + 34.5368i −0.744399 + 1.18881i
\(845\) 49.2516 20.4007i 1.69431 0.701805i
\(846\) 0 0
\(847\) 34.5485 1.18710
\(848\) 14.4952 + 12.8728i 0.497768 + 0.442055i
\(849\) 0 0
\(850\) 0.782762 1.51808i 0.0268485 0.0520697i
\(851\) 23.1052 + 55.7809i 0.792037 + 1.91215i
\(852\) 0 0
\(853\) 13.7268 + 5.68583i 0.469997 + 0.194679i 0.605095 0.796153i \(-0.293135\pi\)
−0.135098 + 0.990832i \(0.543135\pi\)
\(854\) 54.5415 + 4.55780i 1.86637 + 0.155965i
\(855\) 0 0
\(856\) 25.1959 + 42.4863i 0.861177 + 1.45215i
\(857\) 11.1744 11.1744i 0.381711 0.381711i −0.490007 0.871718i \(-0.663006\pi\)
0.871718 + 0.490007i \(0.163006\pi\)
\(858\) 0 0
\(859\) 39.1836 + 16.2304i 1.33693 + 0.553773i 0.932623 0.360851i \(-0.117514\pi\)
0.404304 + 0.914625i \(0.367514\pi\)
\(860\) 2.29378 13.6286i 0.0782171 0.464730i
\(861\) 0 0
\(862\) 15.9089 5.08426i 0.541859 0.173171i
\(863\) 22.2298 0.756710 0.378355 0.925661i \(-0.376490\pi\)
0.378355 + 0.925661i \(0.376490\pi\)
\(864\) 0 0
\(865\) −44.0379 −1.49733
\(866\) 4.40044 1.40632i 0.149533 0.0477887i
\(867\) 0 0
\(868\) 47.4934 + 7.99345i 1.61203 + 0.271316i
\(869\) −7.52760 3.11803i −0.255356 0.105772i
\(870\) 0 0
\(871\) −17.5597 + 17.5597i −0.594987 + 0.594987i
\(872\) −1.41121 + 5.52408i −0.0477896 + 0.187069i
\(873\) 0 0
\(874\) −27.2803 2.27969i −0.922769 0.0771118i
\(875\) −36.9553 15.3074i −1.24932 0.517484i
\(876\) 0 0
\(877\) 3.13025 + 7.55709i 0.105701 + 0.255185i 0.967877 0.251424i \(-0.0808989\pi\)
−0.862176 + 0.506609i \(0.830899\pi\)
\(878\) 12.5574 24.3536i 0.423792 0.821895i
\(879\) 0 0
\(880\) −5.15550 + 2.50255i −0.173792 + 0.0843610i
\(881\) 4.77921 0.161016 0.0805078 0.996754i \(-0.474346\pi\)
0.0805078 + 0.996754i \(0.474346\pi\)
\(882\) 0 0
\(883\) −45.1752 + 18.7122i −1.52027 + 0.629716i −0.977645 0.210261i \(-0.932569\pi\)
−0.542622 + 0.839977i \(0.682569\pi\)
\(884\) 10.4433 + 6.53932i 0.351246 + 0.219941i
\(885\) 0 0
\(886\) 27.7578 + 2.31959i 0.932540 + 0.0779283i
\(887\) −6.92890 + 6.92890i −0.232650 + 0.232650i −0.813798 0.581148i \(-0.802604\pi\)
0.581148 + 0.813798i \(0.302604\pi\)
\(888\) 0 0
\(889\) −27.0368 27.0368i −0.906784 0.906784i
\(890\) 17.0775 + 20.1920i 0.572440 + 0.676836i
\(891\) 0 0
\(892\) −17.1850 24.1403i −0.575395 0.808276i
\(893\) −3.86641 9.33435i −0.129385 0.312362i
\(894\) 0 0
\(895\) 22.0453i 0.736894i
\(896\) −7.09529 + 36.7141i −0.237037 + 1.22653i
\(897\) 0 0
\(898\) 3.32043 1.06116i 0.110804 0.0354114i
\(899\) −9.91000 + 4.10486i −0.330517 + 0.136905i
\(900\) 0 0
\(901\) 1.79503 4.33358i 0.0598011 0.144373i
\(902\) −7.68057 + 6.49590i −0.255735 + 0.216290i
\(903\) 0 0
\(904\) 1.64408 + 1.23130i 0.0546812 + 0.0409523i
\(905\) 6.35622 + 6.35622i 0.211288 + 0.211288i
\(906\) 0 0
\(907\) 14.4242 34.8230i 0.478946 1.15628i −0.481157 0.876634i \(-0.659783\pi\)
0.960104 0.279644i \(-0.0902166\pi\)
\(908\) 13.7584 21.9722i 0.456588 0.729172i
\(909\) 0 0
\(910\) 26.4135 51.2260i 0.875599 1.69812i
\(911\) 44.7402i 1.48231i −0.671335 0.741154i \(-0.734279\pi\)
0.671335 0.741154i \(-0.265721\pi\)
\(912\) 0 0
\(913\) 2.22390i 0.0736004i
\(914\) −5.41488 2.79206i −0.179108 0.0923531i
\(915\) 0 0
\(916\) −3.10376 13.5016i −0.102551 0.446105i
\(917\) −24.5388 + 59.2418i −0.810342 + 1.95634i
\(918\) 0 0
\(919\) 25.4709 + 25.4709i 0.840207 + 0.840207i 0.988886 0.148678i \(-0.0475019\pi\)
−0.148678 + 0.988886i \(0.547502\pi\)
\(920\) 37.5566 + 9.59439i 1.23820 + 0.316318i
\(921\) 0 0
\(922\) 9.74650 + 11.5240i 0.320984 + 0.379522i
\(923\) 33.9570 81.9795i 1.11771 2.69839i
\(924\) 0 0
\(925\) −9.83848 + 4.07523i −0.323487 + 0.133993i
\(926\) 12.1194 + 37.9222i 0.398268 + 1.24620i
\(927\) 0 0
\(928\) −3.00028 7.76906i −0.0984890 0.255032i
\(929\) 23.0747i 0.757058i 0.925589 + 0.378529i \(0.123570\pi\)
−0.925589 + 0.378529i \(0.876430\pi\)
\(930\) 0 0
\(931\) 4.10848 + 9.91875i 0.134650 + 0.325074i
\(932\) −23.3156 3.92418i −0.763729 0.128541i
\(933\) 0 0
\(934\) 0.377415 0.319202i 0.0123494 0.0104446i
\(935\) 0.980484 + 0.980484i 0.0320652 + 0.0320652i
\(936\) 0 0
\(937\) 6.57961 6.57961i 0.214947 0.214947i −0.591418 0.806365i \(-0.701432\pi\)
0.806365 + 0.591418i \(0.201432\pi\)
\(938\) −1.51849 + 18.1713i −0.0495805 + 0.593313i
\(939\) 0 0
\(940\) 3.20511 + 13.9425i 0.104539 + 0.454754i
\(941\) −40.5076 + 16.7788i −1.32051 + 0.546973i −0.927934 0.372746i \(-0.878416\pi\)
−0.392577 + 0.919719i \(0.628416\pi\)
\(942\) 0 0
\(943\) 68.0399 2.21569
\(944\) 31.7007 + 28.1526i 1.03177 + 0.916288i
\(945\) 0 0
\(946\) −3.31653 1.71009i −0.107830 0.0555999i
\(947\) 21.7966 + 52.6218i 0.708296 + 1.70998i 0.704216 + 0.709986i \(0.251299\pi\)
0.00407986 + 0.999992i \(0.498701\pi\)
\(948\) 0 0
\(949\) −40.0353 16.5831i −1.29960 0.538312i
\(950\) 0.402086 4.81162i 0.0130454 0.156109i
\(951\) 0 0
\(952\) 8.95585 1.28568i 0.290261 0.0416691i
\(953\) 24.5821 24.5821i 0.796293 0.796293i −0.186216 0.982509i \(-0.559622\pi\)
0.982509 + 0.186216i \(0.0596224\pi\)
\(954\) 0 0
\(955\) 39.8574 + 16.5095i 1.28976 + 0.534234i
\(956\) 2.83152 + 3.97753i 0.0915779 + 0.128642i
\(957\) 0 0
\(958\) −10.9157 34.1556i −0.352669 1.10352i
\(959\) −74.7248 −2.41299
\(960\) 0 0
\(961\) −22.0832 −0.712362
\(962\) −23.3865 73.1776i −0.754012 2.35934i
\(963\) 0 0
\(964\) −2.16208 3.03714i −0.0696359 0.0978198i
\(965\) −19.4811 8.06932i −0.627118 0.259761i
\(966\) 0 0
\(967\) −19.1878 + 19.1878i −0.617037 + 0.617037i −0.944770 0.327734i \(-0.893715\pi\)
0.327734 + 0.944770i \(0.393715\pi\)
\(968\) −4.20126 29.2654i −0.135034 0.940624i
\(969\) 0 0
\(970\) −1.75193 + 20.9648i −0.0562512 + 0.673138i
\(971\) 35.5982 + 14.7453i 1.14240 + 0.473198i 0.871979 0.489544i \(-0.162837\pi\)
0.270422 + 0.962742i \(0.412837\pi\)
\(972\) 0 0
\(973\) 0.120740 + 0.291492i 0.00387074 + 0.00934479i
\(974\) 27.5903 + 14.2263i 0.884051 + 0.455841i
\(975\) 0 0
\(976\) −2.77169 46.7553i −0.0887197 1.49660i
\(977\) 10.7488 0.343885 0.171943 0.985107i \(-0.444996\pi\)
0.171943 + 0.985107i \(0.444996\pi\)
\(978\) 0 0
\(979\) 6.59672 2.73245i 0.210832 0.0873295i
\(980\) −3.40578 14.8154i −0.108794 0.473261i
\(981\) 0 0
\(982\) −0.993681 + 11.8910i −0.0317096 + 0.379458i
\(983\) −15.2745 + 15.2745i −0.487181 + 0.487181i −0.907416 0.420234i \(-0.861948\pi\)
0.420234 + 0.907416i \(0.361948\pi\)
\(984\) 0 0
\(985\) 9.04516 + 9.04516i 0.288203 + 0.288203i
\(986\) −1.53860 + 1.30128i −0.0489989 + 0.0414412i
\(987\) 0 0
\(988\) 34.3494 + 5.78123i 1.09280 + 0.183925i
\(989\) 9.65868 + 23.3181i 0.307128 + 0.741473i
\(990\) 0 0
\(991\) 15.5708i 0.494622i −0.968936 0.247311i \(-0.920453\pi\)
0.968936 0.247311i \(-0.0795469\pi\)
\(992\) 0.995670 41.2028i 0.0316126 1.30819i
\(993\) 0 0
\(994\) −19.8346 62.0636i −0.629117 1.96854i
\(995\) −25.5836 + 10.5971i −0.811053 + 0.335949i
\(996\) 0 0
\(997\) −1.71754 + 4.14652i −0.0543951 + 0.131321i −0.948741 0.316055i \(-0.897642\pi\)
0.894346 + 0.447376i \(0.147642\pi\)
\(998\) 2.12313 + 2.51033i 0.0672065 + 0.0794630i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.2.w.b.107.3 yes 32
3.2 odd 2 288.2.w.a.107.6 yes 32
4.3 odd 2 1152.2.w.a.719.2 32
12.11 even 2 1152.2.w.b.719.7 32
32.3 odd 8 288.2.w.a.35.6 32
32.29 even 8 1152.2.w.b.431.7 32
96.29 odd 8 1152.2.w.a.431.2 32
96.35 even 8 inner 288.2.w.b.35.3 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.w.a.35.6 32 32.3 odd 8
288.2.w.a.107.6 yes 32 3.2 odd 2
288.2.w.b.35.3 yes 32 96.35 even 8 inner
288.2.w.b.107.3 yes 32 1.1 even 1 trivial
1152.2.w.a.431.2 32 96.29 odd 8
1152.2.w.a.719.2 32 4.3 odd 2
1152.2.w.b.431.7 32 32.29 even 8
1152.2.w.b.719.7 32 12.11 even 2