Properties

Label 1152.2.w.b.719.7
Level $1152$
Weight $2$
Character 1152.719
Analytic conductor $9.199$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1152,2,Mod(143,1152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1152, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 1, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1152.143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.w (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.19876631285\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 719.7
Character \(\chi\) \(=\) 1152.719
Dual form 1152.2.w.b.431.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.78959 + 0.741273i) q^{5} +(2.33709 - 2.33709i) q^{7} +(0.683332 + 0.283045i) q^{11} +(2.43602 + 5.88107i) q^{13} +0.967834 q^{17} +(2.52772 - 1.04702i) q^{19} +(-5.00283 + 5.00283i) q^{23} +(-0.882385 - 0.882385i) q^{25} +(-0.563403 - 1.36018i) q^{29} -7.28582i q^{31} +(5.91486 - 2.45001i) q^{35} +(3.26572 - 7.88415i) q^{37} +(6.80014 + 6.80014i) q^{41} +(-1.36517 + 3.29581i) q^{43} +3.69279i q^{47} -3.92399i q^{49} +(1.85469 - 4.47761i) q^{53} +(1.01307 + 1.01307i) q^{55} +(-4.05615 + 9.79242i) q^{59} +(10.8180 - 4.48097i) q^{61} +12.3305i q^{65} +(-1.49290 - 3.60418i) q^{67} +(-9.85675 - 9.85675i) q^{71} +(-4.81362 + 4.81362i) q^{73} +(2.25851 - 0.935506i) q^{77} +11.0160 q^{79} +(1.15064 + 2.77789i) q^{83} +(1.73203 + 0.717429i) q^{85} +(-6.82624 + 6.82624i) q^{89} +(19.4378 + 8.05140i) q^{91} +5.29971 q^{95} +7.67976 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{11} - 16 q^{29} - 24 q^{35} - 16 q^{53} + 32 q^{55} - 32 q^{59} + 32 q^{61} + 16 q^{67} - 16 q^{71} - 16 q^{77} + 32 q^{79} + 40 q^{83} + 48 q^{91} + 80 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.78959 + 0.741273i 0.800329 + 0.331507i 0.745088 0.666966i \(-0.232407\pi\)
0.0552409 + 0.998473i \(0.482407\pi\)
\(6\) 0 0
\(7\) 2.33709 2.33709i 0.883337 0.883337i −0.110535 0.993872i \(-0.535256\pi\)
0.993872 + 0.110535i \(0.0352564\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.683332 + 0.283045i 0.206032 + 0.0853413i 0.483313 0.875448i \(-0.339433\pi\)
−0.277281 + 0.960789i \(0.589433\pi\)
\(12\) 0 0
\(13\) 2.43602 + 5.88107i 0.675630 + 1.63112i 0.771888 + 0.635759i \(0.219313\pi\)
−0.0962579 + 0.995356i \(0.530687\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.967834 0.234734 0.117367 0.993089i \(-0.462555\pi\)
0.117367 + 0.993089i \(0.462555\pi\)
\(18\) 0 0
\(19\) 2.52772 1.04702i 0.579899 0.240202i −0.0733991 0.997303i \(-0.523385\pi\)
0.653298 + 0.757100i \(0.273385\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.00283 + 5.00283i −1.04316 + 1.04316i −0.0441370 + 0.999025i \(0.514054\pi\)
−0.999025 + 0.0441370i \(0.985946\pi\)
\(24\) 0 0
\(25\) −0.882385 0.882385i −0.176477 0.176477i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.563403 1.36018i −0.104621 0.252578i 0.862897 0.505380i \(-0.168648\pi\)
−0.967518 + 0.252802i \(0.918648\pi\)
\(30\) 0 0
\(31\) 7.28582i 1.30857i −0.756247 0.654286i \(-0.772969\pi\)
0.756247 0.654286i \(-0.227031\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.91486 2.45001i 0.999793 0.414128i
\(36\) 0 0
\(37\) 3.26572 7.88415i 0.536881 1.29615i −0.390008 0.920812i \(-0.627528\pi\)
0.926889 0.375335i \(-0.122472\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.80014 + 6.80014i 1.06200 + 1.06200i 0.997946 + 0.0640576i \(0.0204041\pi\)
0.0640576 + 0.997946i \(0.479596\pi\)
\(42\) 0 0
\(43\) −1.36517 + 3.29581i −0.208187 + 0.502607i −0.993138 0.116951i \(-0.962688\pi\)
0.784951 + 0.619558i \(0.212688\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.69279i 0.538649i 0.963050 + 0.269324i \(0.0868004\pi\)
−0.963050 + 0.269324i \(0.913200\pi\)
\(48\) 0 0
\(49\) 3.92399i 0.560570i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.85469 4.47761i 0.254761 0.615047i −0.743816 0.668385i \(-0.766986\pi\)
0.998577 + 0.0533378i \(0.0169860\pi\)
\(54\) 0 0
\(55\) 1.01307 + 1.01307i 0.136602 + 0.136602i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.05615 + 9.79242i −0.528066 + 1.27486i 0.404722 + 0.914440i \(0.367368\pi\)
−0.932788 + 0.360425i \(0.882632\pi\)
\(60\) 0 0
\(61\) 10.8180 4.48097i 1.38511 0.573730i 0.439265 0.898358i \(-0.355239\pi\)
0.945842 + 0.324628i \(0.105239\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 12.3305i 1.52941i
\(66\) 0 0
\(67\) −1.49290 3.60418i −0.182387 0.440320i 0.806071 0.591819i \(-0.201590\pi\)
−0.988457 + 0.151499i \(0.951590\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.85675 9.85675i −1.16978 1.16978i −0.982261 0.187520i \(-0.939955\pi\)
−0.187520 0.982261i \(-0.560045\pi\)
\(72\) 0 0
\(73\) −4.81362 + 4.81362i −0.563391 + 0.563391i −0.930269 0.366878i \(-0.880427\pi\)
0.366878 + 0.930269i \(0.380427\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.25851 0.935506i 0.257381 0.106611i
\(78\) 0 0
\(79\) 11.0160 1.23940 0.619700 0.784839i \(-0.287254\pi\)
0.619700 + 0.784839i \(0.287254\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.15064 + 2.77789i 0.126299 + 0.304913i 0.974363 0.224981i \(-0.0722319\pi\)
−0.848064 + 0.529894i \(0.822232\pi\)
\(84\) 0 0
\(85\) 1.73203 + 0.717429i 0.187865 + 0.0778161i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.82624 + 6.82624i −0.723580 + 0.723580i −0.969333 0.245753i \(-0.920965\pi\)
0.245753 + 0.969333i \(0.420965\pi\)
\(90\) 0 0
\(91\) 19.4378 + 8.05140i 2.03763 + 0.844016i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.29971 0.543739
\(96\) 0 0
\(97\) 7.67976 0.779762 0.389881 0.920865i \(-0.372516\pi\)
0.389881 + 0.920865i \(0.372516\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.05030 0.435049i −0.104509 0.0432890i 0.329816 0.944045i \(-0.393013\pi\)
−0.434325 + 0.900756i \(0.643013\pi\)
\(102\) 0 0
\(103\) −7.06356 + 7.06356i −0.695993 + 0.695993i −0.963544 0.267551i \(-0.913786\pi\)
0.267551 + 0.963544i \(0.413786\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.1346 + 6.68316i 1.55979 + 0.646086i 0.985053 0.172253i \(-0.0551045\pi\)
0.574737 + 0.818338i \(0.305105\pi\)
\(108\) 0 0
\(109\) 0.771406 + 1.86234i 0.0738873 + 0.178380i 0.956508 0.291706i \(-0.0942230\pi\)
−0.882621 + 0.470086i \(0.844223\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.726213 −0.0683163 −0.0341582 0.999416i \(-0.510875\pi\)
−0.0341582 + 0.999416i \(0.510875\pi\)
\(114\) 0 0
\(115\) −12.6615 + 5.24456i −1.18069 + 0.489058i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.26192 2.26192i 0.207350 0.207350i
\(120\) 0 0
\(121\) −7.39135 7.39135i −0.671941 0.671941i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.63138 11.1811i −0.414243 1.00007i
\(126\) 0 0
\(127\) 11.5686i 1.02654i −0.858226 0.513272i \(-0.828433\pi\)
0.858226 0.513272i \(-0.171567\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 17.9241 7.42442i 1.56604 0.648674i 0.579913 0.814678i \(-0.303087\pi\)
0.986125 + 0.166004i \(0.0530866\pi\)
\(132\) 0 0
\(133\) 3.46054 8.35449i 0.300067 0.724426i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.9867 15.9867i −1.36584 1.36584i −0.866283 0.499553i \(-0.833497\pi\)
−0.499553 0.866283i \(-0.666503\pi\)
\(138\) 0 0
\(139\) −0.0365308 + 0.0881933i −0.00309851 + 0.00748046i −0.925421 0.378940i \(-0.876289\pi\)
0.922323 + 0.386421i \(0.126289\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.70822i 0.393721i
\(144\) 0 0
\(145\) 2.85179i 0.236828i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.79476 13.9898i 0.474725 1.14609i −0.487326 0.873220i \(-0.662028\pi\)
0.962051 0.272868i \(-0.0879722\pi\)
\(150\) 0 0
\(151\) −7.47087 7.47087i −0.607971 0.607971i 0.334445 0.942415i \(-0.391451\pi\)
−0.942415 + 0.334445i \(0.891451\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.40078 13.0386i 0.433801 1.04729i
\(156\) 0 0
\(157\) −11.0372 + 4.57177i −0.880867 + 0.364867i −0.776833 0.629707i \(-0.783175\pi\)
−0.104034 + 0.994574i \(0.533175\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 23.3841i 1.84293i
\(162\) 0 0
\(163\) 3.29972 + 7.96624i 0.258454 + 0.623964i 0.998837 0.0482221i \(-0.0153555\pi\)
−0.740382 + 0.672186i \(0.765356\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.0751100 + 0.0751100i 0.00581218 + 0.00581218i 0.710007 0.704195i \(-0.248692\pi\)
−0.704195 + 0.710007i \(0.748692\pi\)
\(168\) 0 0
\(169\) −19.4604 + 19.4604i −1.49695 + 1.49695i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −21.0041 + 8.70018i −1.59691 + 0.661463i −0.990975 0.134050i \(-0.957202\pi\)
−0.605937 + 0.795512i \(0.707202\pi\)
\(174\) 0 0
\(175\) −4.12443 −0.311777
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.35530 10.5146i −0.325530 0.785900i −0.998913 0.0466061i \(-0.985159\pi\)
0.673383 0.739294i \(-0.264841\pi\)
\(180\) 0 0
\(181\) −4.28737 1.77589i −0.318677 0.132001i 0.217610 0.976036i \(-0.430174\pi\)
−0.536288 + 0.844035i \(0.680174\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.6886 11.6886i 0.859364 0.859364i
\(186\) 0 0
\(187\) 0.661352 + 0.273941i 0.0483628 + 0.0200325i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −22.2718 −1.61153 −0.805766 0.592234i \(-0.798246\pi\)
−0.805766 + 0.592234i \(0.798246\pi\)
\(192\) 0 0
\(193\) 10.8858 0.783575 0.391787 0.920056i \(-0.371857\pi\)
0.391787 + 0.920056i \(0.371857\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.10110 + 2.52716i 0.434686 + 0.180053i 0.589286 0.807924i \(-0.299409\pi\)
−0.154601 + 0.987977i \(0.549409\pi\)
\(198\) 0 0
\(199\) −10.1086 + 10.1086i −0.716582 + 0.716582i −0.967904 0.251322i \(-0.919135\pi\)
0.251322 + 0.967904i \(0.419135\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.49558 1.86213i −0.315528 0.130696i
\(204\) 0 0
\(205\) 7.12871 + 17.2102i 0.497891 + 1.20201i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.02363 0.139977
\(210\) 0 0
\(211\) −18.8236 + 7.79698i −1.29587 + 0.536766i −0.920729 0.390202i \(-0.872405\pi\)
−0.375139 + 0.926969i \(0.622405\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.88619 + 4.88619i −0.333236 + 0.333236i
\(216\) 0 0
\(217\) −17.0276 17.0276i −1.15591 1.15591i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.35766 + 5.69190i 0.158593 + 0.382879i
\(222\) 0 0
\(223\) 14.8162i 0.992164i −0.868276 0.496082i \(-0.834771\pi\)
0.868276 0.496082i \(-0.165229\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.9755 + 4.96040i −0.794839 + 0.329233i −0.742887 0.669416i \(-0.766544\pi\)
−0.0519519 + 0.998650i \(0.516544\pi\)
\(228\) 0 0
\(229\) −2.65080 + 6.39960i −0.175170 + 0.422897i −0.986942 0.161077i \(-0.948503\pi\)
0.811772 + 0.583975i \(0.198503\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.35926 8.35926i −0.547634 0.547634i 0.378122 0.925756i \(-0.376570\pi\)
−0.925756 + 0.378122i \(0.876570\pi\)
\(234\) 0 0
\(235\) −2.73736 + 6.60858i −0.178566 + 0.431096i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.44122i 0.157909i −0.996878 0.0789547i \(-0.974842\pi\)
0.996878 0.0789547i \(-0.0251582\pi\)
\(240\) 0 0
\(241\) 1.86406i 0.120074i 0.998196 + 0.0600372i \(0.0191219\pi\)
−0.998196 + 0.0600372i \(0.980878\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.90874 7.02233i 0.185833 0.448640i
\(246\) 0 0
\(247\) 12.3152 + 12.3152i 0.783595 + 0.783595i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.30926 + 15.2319i −0.398237 + 0.961430i 0.589847 + 0.807515i \(0.299188\pi\)
−0.988084 + 0.153915i \(0.950812\pi\)
\(252\) 0 0
\(253\) −4.83462 + 2.00257i −0.303950 + 0.125900i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.84660i 0.364701i −0.983234 0.182350i \(-0.941629\pi\)
0.983234 0.182350i \(-0.0583705\pi\)
\(258\) 0 0
\(259\) −10.7937 26.0583i −0.670687 1.61918i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.4239 11.4239i −0.704427 0.704427i 0.260930 0.965358i \(-0.415971\pi\)
−0.965358 + 0.260930i \(0.915971\pi\)
\(264\) 0 0
\(265\) 6.63826 6.63826i 0.407785 0.407785i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.42511 1.00451i 0.147862 0.0612463i −0.307525 0.951540i \(-0.599501\pi\)
0.455387 + 0.890294i \(0.349501\pi\)
\(270\) 0 0
\(271\) 10.6956 0.649711 0.324856 0.945764i \(-0.394684\pi\)
0.324856 + 0.945764i \(0.394684\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.353207 0.852716i −0.0212992 0.0514207i
\(276\) 0 0
\(277\) −13.7497 5.69533i −0.826142 0.342199i −0.0707678 0.997493i \(-0.522545\pi\)
−0.755374 + 0.655294i \(0.772545\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.63475 1.63475i 0.0975211 0.0975211i −0.656663 0.754184i \(-0.728033\pi\)
0.754184 + 0.656663i \(0.228033\pi\)
\(282\) 0 0
\(283\) 4.75108 + 1.96796i 0.282423 + 0.116983i 0.519398 0.854532i \(-0.326156\pi\)
−0.236976 + 0.971516i \(0.576156\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 31.7851 1.87622
\(288\) 0 0
\(289\) −16.0633 −0.944900
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.0434 + 5.40274i 0.762001 + 0.315631i 0.729628 0.683845i \(-0.239693\pi\)
0.0323737 + 0.999476i \(0.489693\pi\)
\(294\) 0 0
\(295\) −14.5177 + 14.5177i −0.845254 + 0.845254i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −41.6090 17.2350i −2.40631 0.996726i
\(300\) 0 0
\(301\) 4.51209 + 10.8931i 0.260072 + 0.627870i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 22.6815 1.29874
\(306\) 0 0
\(307\) −13.7332 + 5.68846i −0.783793 + 0.324658i −0.738445 0.674313i \(-0.764440\pi\)
−0.0453480 + 0.998971i \(0.514440\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.93693 1.93693i 0.109833 0.109833i −0.650055 0.759888i \(-0.725254\pi\)
0.759888 + 0.650055i \(0.225254\pi\)
\(312\) 0 0
\(313\) 20.8065 + 20.8065i 1.17606 + 1.17606i 0.980741 + 0.195315i \(0.0625728\pi\)
0.195315 + 0.980741i \(0.437427\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.99169 16.8794i −0.392692 0.948043i −0.989351 0.145548i \(-0.953505\pi\)
0.596659 0.802495i \(-0.296495\pi\)
\(318\) 0 0
\(319\) 1.08892i 0.0609678i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.44642 1.01334i 0.136122 0.0563837i
\(324\) 0 0
\(325\) 3.03986 7.33887i 0.168621 0.407087i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.63039 + 8.63039i 0.475809 + 0.475809i
\(330\) 0 0
\(331\) −7.57715 + 18.2929i −0.416478 + 1.00547i 0.566882 + 0.823799i \(0.308150\pi\)
−0.983360 + 0.181668i \(0.941850\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.55664i 0.412863i
\(336\) 0 0
\(337\) 6.73391i 0.366820i 0.983037 + 0.183410i \(0.0587135\pi\)
−0.983037 + 0.183410i \(0.941286\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.06222 4.97863i 0.111675 0.269608i
\(342\) 0 0
\(343\) 7.18892 + 7.18892i 0.388165 + 0.388165i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.79644 + 6.75121i −0.150121 + 0.362424i −0.980994 0.194038i \(-0.937842\pi\)
0.830873 + 0.556462i \(0.187842\pi\)
\(348\) 0 0
\(349\) −3.16816 + 1.31229i −0.169588 + 0.0702455i −0.465862 0.884857i \(-0.654256\pi\)
0.296274 + 0.955103i \(0.404256\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 29.8578i 1.58917i −0.607151 0.794586i \(-0.707688\pi\)
0.607151 0.794586i \(-0.292312\pi\)
\(354\) 0 0
\(355\) −10.3330 24.9461i −0.548419 1.32400i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.44266 9.44266i −0.498365 0.498365i 0.412564 0.910929i \(-0.364633\pi\)
−0.910929 + 0.412564i \(0.864633\pi\)
\(360\) 0 0
\(361\) −8.14189 + 8.14189i −0.428521 + 0.428521i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.1826 + 5.04620i −0.637667 + 0.264130i
\(366\) 0 0
\(367\) −26.8327 −1.40065 −0.700327 0.713822i \(-0.746962\pi\)
−0.700327 + 0.713822i \(0.746962\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −6.13001 14.7991i −0.318254 0.768334i
\(372\) 0 0
\(373\) −12.3312 5.10777i −0.638487 0.264470i 0.0398670 0.999205i \(-0.487307\pi\)
−0.678354 + 0.734735i \(0.737307\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.62683 6.62683i 0.341299 0.341299i
\(378\) 0 0
\(379\) 5.26078 + 2.17909i 0.270228 + 0.111932i 0.513683 0.857980i \(-0.328281\pi\)
−0.243455 + 0.969912i \(0.578281\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.14683 0.416283 0.208142 0.978099i \(-0.433258\pi\)
0.208142 + 0.978099i \(0.433258\pi\)
\(384\) 0 0
\(385\) 4.73527 0.241332
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.22236 3.40581i −0.416890 0.172682i 0.164371 0.986399i \(-0.447441\pi\)
−0.581261 + 0.813717i \(0.697441\pi\)
\(390\) 0 0
\(391\) −4.84191 + 4.84191i −0.244866 + 0.244866i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 19.7142 + 8.16588i 0.991927 + 0.410870i
\(396\) 0 0
\(397\) −0.328403 0.792834i −0.0164821 0.0397912i 0.915424 0.402490i \(-0.131855\pi\)
−0.931906 + 0.362699i \(0.881855\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.3098 −0.864411 −0.432206 0.901775i \(-0.642265\pi\)
−0.432206 + 0.901775i \(0.642265\pi\)
\(402\) 0 0
\(403\) 42.8484 17.7484i 2.13443 0.884111i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.46314 4.46314i 0.221230 0.221230i
\(408\) 0 0
\(409\) 5.00972 + 5.00972i 0.247715 + 0.247715i 0.820032 0.572317i \(-0.193955\pi\)
−0.572317 + 0.820032i \(0.693955\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 13.4062 + 32.3654i 0.659675 + 1.59260i
\(414\) 0 0
\(415\) 5.82422i 0.285900i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.01103 2.90406i 0.342511 0.141873i −0.204796 0.978805i \(-0.565653\pi\)
0.547307 + 0.836932i \(0.315653\pi\)
\(420\) 0 0
\(421\) 3.94749 9.53009i 0.192389 0.464468i −0.798021 0.602630i \(-0.794119\pi\)
0.990410 + 0.138162i \(0.0441195\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.854002 0.854002i −0.0414252 0.0414252i
\(426\) 0 0
\(427\) 14.8103 35.7552i 0.716719 1.73031i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.8098i 0.568858i 0.958697 + 0.284429i \(0.0918040\pi\)
−0.958697 + 0.284429i \(0.908196\pi\)
\(432\) 0 0
\(433\) 3.26662i 0.156984i 0.996915 + 0.0784919i \(0.0250105\pi\)
−0.996915 + 0.0784919i \(0.974990\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.40772 + 17.8838i −0.354359 + 0.855499i
\(438\) 0 0
\(439\) −13.7003 13.7003i −0.653877 0.653877i 0.300047 0.953924i \(-0.402998\pi\)
−0.953924 + 0.300047i \(0.902998\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.53737 + 18.1968i −0.358111 + 0.864557i 0.637454 + 0.770488i \(0.279988\pi\)
−0.995566 + 0.0940692i \(0.970012\pi\)
\(444\) 0 0
\(445\) −17.2763 + 7.15607i −0.818974 + 0.339230i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.46488i 0.116325i −0.998307 0.0581625i \(-0.981476\pi\)
0.998307 0.0581625i \(-0.0185241\pi\)
\(450\) 0 0
\(451\) 2.72200 + 6.57150i 0.128174 + 0.309440i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 28.8174 + 28.8174i 1.35098 + 1.35098i
\(456\) 0 0
\(457\) 3.04617 3.04617i 0.142494 0.142494i −0.632261 0.774755i \(-0.717873\pi\)
0.774755 + 0.632261i \(0.217873\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.85993 4.08412i 0.459223 0.190216i −0.141065 0.990000i \(-0.545053\pi\)
0.600288 + 0.799784i \(0.295053\pi\)
\(462\) 0 0
\(463\) 28.1511 1.30829 0.654147 0.756367i \(-0.273028\pi\)
0.654147 + 0.756367i \(0.273028\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.133756 + 0.322916i 0.00618951 + 0.0149428i 0.926944 0.375200i \(-0.122426\pi\)
−0.920755 + 0.390142i \(0.872426\pi\)
\(468\) 0 0
\(469\) −11.9123 4.93425i −0.550060 0.227842i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.86573 + 1.86573i −0.0857863 + 0.0857863i
\(474\) 0 0
\(475\) −3.15430 1.30655i −0.144729 0.0599487i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.3551 1.15850 0.579251 0.815149i \(-0.303345\pi\)
0.579251 + 0.815149i \(0.303345\pi\)
\(480\) 0 0
\(481\) 54.3226 2.47690
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.7436 + 5.69280i 0.624066 + 0.258497i
\(486\) 0 0
\(487\) 15.5211 15.5211i 0.703327 0.703327i −0.261796 0.965123i \(-0.584315\pi\)
0.965123 + 0.261796i \(0.0843149\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.79527 3.22890i −0.351795 0.145718i 0.199786 0.979840i \(-0.435975\pi\)
−0.551581 + 0.834121i \(0.685975\pi\)
\(492\) 0 0
\(493\) −0.545281 1.31642i −0.0245582 0.0592888i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −46.0722 −2.06662
\(498\) 0 0
\(499\) 2.14784 0.889664i 0.0961504 0.0398268i −0.334090 0.942541i \(-0.608429\pi\)
0.430240 + 0.902714i \(0.358429\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10.4975 + 10.4975i −0.468062 + 0.468062i −0.901286 0.433224i \(-0.857376\pi\)
0.433224 + 0.901286i \(0.357376\pi\)
\(504\) 0 0
\(505\) −1.55712 1.55712i −0.0692908 0.0692908i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.62373 + 20.8195i 0.382240 + 0.922810i 0.991532 + 0.129863i \(0.0414539\pi\)
−0.609292 + 0.792946i \(0.708546\pi\)
\(510\) 0 0
\(511\) 22.4997i 0.995329i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −17.8769 + 7.40485i −0.787750 + 0.326297i
\(516\) 0 0
\(517\) −1.04523 + 2.52340i −0.0459690 + 0.110979i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −23.6260 23.6260i −1.03508 1.03508i −0.999362 0.0357139i \(-0.988630\pi\)
−0.0357139 0.999362i \(-0.511370\pi\)
\(522\) 0 0
\(523\) 0.967311 2.33529i 0.0422975 0.102115i −0.901319 0.433156i \(-0.857400\pi\)
0.943616 + 0.331041i \(0.107400\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.05147i 0.307167i
\(528\) 0 0
\(529\) 27.0566i 1.17638i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −23.4268 + 56.5574i −1.01473 + 2.44977i
\(534\) 0 0
\(535\) 23.9203 + 23.9203i 1.03416 + 1.03416i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.11067 2.68138i 0.0478398 0.115495i
\(540\) 0 0
\(541\) 13.3578 5.53299i 0.574298 0.237882i −0.0765813 0.997063i \(-0.524400\pi\)
0.650879 + 0.759181i \(0.274400\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.90464i 0.167257i
\(546\) 0 0
\(547\) 16.5682 + 39.9992i 0.708406 + 1.71024i 0.703945 + 0.710254i \(0.251420\pi\)
0.00446097 + 0.999990i \(0.498580\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.84825 2.84825i −0.121340 0.121340i
\(552\) 0 0
\(553\) 25.7454 25.7454i 1.09481 1.09481i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.70924 + 2.36484i −0.241908 + 0.100202i −0.500344 0.865827i \(-0.666793\pi\)
0.258436 + 0.966029i \(0.416793\pi\)
\(558\) 0 0
\(559\) −22.7085 −0.960467
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.89410 + 14.2296i 0.248407 + 0.599707i 0.998069 0.0621133i \(-0.0197840\pi\)
−0.749662 + 0.661821i \(0.769784\pi\)
\(564\) 0 0
\(565\) −1.29962 0.538322i −0.0546756 0.0226474i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.242674 + 0.242674i −0.0101734 + 0.0101734i −0.712175 0.702002i \(-0.752290\pi\)
0.702002 + 0.712175i \(0.252290\pi\)
\(570\) 0 0
\(571\) −25.8985 10.7275i −1.08382 0.448933i −0.231972 0.972722i \(-0.574518\pi\)
−0.851848 + 0.523789i \(0.824518\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.82885 0.368188
\(576\) 0 0
\(577\) 17.7896 0.740589 0.370294 0.928914i \(-0.379257\pi\)
0.370294 + 0.928914i \(0.379257\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9.18133 + 3.80303i 0.380906 + 0.157776i
\(582\) 0 0
\(583\) 2.53473 2.53473i 0.104978 0.104978i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 30.9718 + 12.8289i 1.27834 + 0.529507i 0.915490 0.402340i \(-0.131803\pi\)
0.362852 + 0.931847i \(0.381803\pi\)
\(588\) 0 0
\(589\) −7.62838 18.4165i −0.314322 0.758840i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 41.4635 1.70270 0.851351 0.524596i \(-0.175784\pi\)
0.851351 + 0.524596i \(0.175784\pi\)
\(594\) 0 0
\(595\) 5.72460 2.37121i 0.234686 0.0972100i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 32.9148 32.9148i 1.34486 1.34486i 0.453719 0.891145i \(-0.350097\pi\)
0.891145 0.453719i \(-0.149903\pi\)
\(600\) 0 0
\(601\) −12.5748 12.5748i −0.512936 0.512936i 0.402489 0.915425i \(-0.368145\pi\)
−0.915425 + 0.402489i \(0.868145\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.74848 18.7065i −0.315021 0.760527i
\(606\) 0 0
\(607\) 46.0240i 1.86806i 0.357198 + 0.934029i \(0.383732\pi\)
−0.357198 + 0.934029i \(0.616268\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21.7176 + 8.99570i −0.878598 + 0.363927i
\(612\) 0 0
\(613\) 3.81762 9.21655i 0.154192 0.372253i −0.827841 0.560963i \(-0.810431\pi\)
0.982033 + 0.188711i \(0.0604308\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.42700 + 9.42700i 0.379517 + 0.379517i 0.870928 0.491411i \(-0.163519\pi\)
−0.491411 + 0.870928i \(0.663519\pi\)
\(618\) 0 0
\(619\) 10.4213 25.1593i 0.418868 1.01124i −0.563808 0.825906i \(-0.690664\pi\)
0.982676 0.185332i \(-0.0593359\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 31.9071i 1.27833i
\(624\) 0 0
\(625\) 17.2034i 0.688136i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.16068 7.63055i 0.126024 0.304250i
\(630\) 0 0
\(631\) −15.7973 15.7973i −0.628879 0.628879i 0.318907 0.947786i \(-0.396684\pi\)
−0.947786 + 0.318907i \(0.896684\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.57545 20.7030i 0.340307 0.821573i
\(636\) 0 0
\(637\) 23.0772 9.55891i 0.914354 0.378738i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.2466i 0.444215i −0.975022 0.222107i \(-0.928706\pi\)
0.975022 0.222107i \(-0.0712936\pi\)
\(642\) 0 0
\(643\) −4.46309 10.7749i −0.176007 0.424919i 0.811115 0.584886i \(-0.198861\pi\)
−0.987122 + 0.159968i \(0.948861\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.9908 + 22.9908i 0.903861 + 0.903861i 0.995768 0.0919063i \(-0.0292960\pi\)
−0.0919063 + 0.995768i \(0.529296\pi\)
\(648\) 0 0
\(649\) −5.54340 + 5.54340i −0.217597 + 0.217597i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.731559 0.303022i 0.0286281 0.0118582i −0.368323 0.929698i \(-0.620068\pi\)
0.396952 + 0.917840i \(0.370068\pi\)
\(654\) 0 0
\(655\) 37.5804 1.46839
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.48735 8.41921i −0.135848 0.327966i 0.841286 0.540590i \(-0.181799\pi\)
−0.977134 + 0.212624i \(0.931799\pi\)
\(660\) 0 0
\(661\) 22.6551 + 9.38406i 0.881182 + 0.364998i 0.776955 0.629556i \(-0.216763\pi\)
0.104227 + 0.994554i \(0.466763\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.3859 12.3859i 0.480305 0.480305i
\(666\) 0 0
\(667\) 9.62334 + 3.98612i 0.372617 + 0.154343i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.66062 0.334340
\(672\) 0 0
\(673\) −17.3835 −0.670084 −0.335042 0.942203i \(-0.608751\pi\)
−0.335042 + 0.942203i \(0.608751\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −39.4502 16.3408i −1.51620 0.628029i −0.539371 0.842068i \(-0.681338\pi\)
−0.976825 + 0.214040i \(0.931338\pi\)
\(678\) 0 0
\(679\) 17.9483 17.9483i 0.688793 0.688793i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −40.6471 16.8366i −1.55532 0.644234i −0.571049 0.820916i \(-0.693464\pi\)
−0.984268 + 0.176682i \(0.943464\pi\)
\(684\) 0 0
\(685\) −16.7591 40.4602i −0.640334 1.54590i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 30.8512 1.17534
\(690\) 0 0
\(691\) 0.769203 0.318614i 0.0292619 0.0121207i −0.368005 0.929824i \(-0.619959\pi\)
0.397266 + 0.917703i \(0.369959\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.130751 + 0.130751i −0.00495965 + 0.00495965i
\(696\) 0 0
\(697\) 6.58141 + 6.58141i 0.249289 + 0.249289i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10.7572 + 25.9701i 0.406292 + 0.980876i 0.986105 + 0.166126i \(0.0531259\pi\)
−0.579812 + 0.814750i \(0.696874\pi\)
\(702\) 0 0
\(703\) 23.3482i 0.880595i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.47140 + 1.43790i −0.130555 + 0.0540778i
\(708\) 0 0
\(709\) −13.7081 + 33.0944i −0.514820 + 1.24289i 0.426229 + 0.904615i \(0.359842\pi\)
−0.941049 + 0.338270i \(0.890158\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 36.4497 + 36.4497i 1.36505 + 1.36505i
\(714\) 0 0
\(715\) −3.49008 + 8.42579i −0.130522 + 0.315107i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24.7319i 0.922345i −0.887311 0.461172i \(-0.847429\pi\)
0.887311 0.461172i \(-0.152571\pi\)
\(720\) 0 0
\(721\) 33.0163i 1.22959i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.703060 + 1.69734i −0.0261110 + 0.0630375i
\(726\) 0 0
\(727\) −4.89101 4.89101i −0.181397 0.181397i 0.610567 0.791965i \(-0.290942\pi\)
−0.791965 + 0.610567i \(0.790942\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.32126 + 3.18980i −0.0488685 + 0.117979i
\(732\) 0 0
\(733\) −10.2058 + 4.22736i −0.376958 + 0.156141i −0.563114 0.826379i \(-0.690397\pi\)
0.186156 + 0.982520i \(0.440397\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.88540i 0.106285i
\(738\) 0 0
\(739\) −1.71029 4.12900i −0.0629139 0.151888i 0.889296 0.457332i \(-0.151195\pi\)
−0.952210 + 0.305445i \(0.901195\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.6977 + 12.6977i 0.465832 + 0.465832i 0.900561 0.434729i \(-0.143156\pi\)
−0.434729 + 0.900561i \(0.643156\pi\)
\(744\) 0 0
\(745\) 20.7405 20.7405i 0.759873 0.759873i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 53.3272 22.0888i 1.94853 0.807108i
\(750\) 0 0
\(751\) 25.3864 0.926362 0.463181 0.886264i \(-0.346708\pi\)
0.463181 + 0.886264i \(0.346708\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.83185 18.9078i −0.285030 0.688123i
\(756\) 0 0
\(757\) 48.9351 + 20.2696i 1.77858 + 0.736711i 0.993023 + 0.117918i \(0.0376220\pi\)
0.785554 + 0.618793i \(0.212378\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.18378 + 7.18378i −0.260412 + 0.260412i −0.825221 0.564809i \(-0.808950\pi\)
0.564809 + 0.825221i \(0.308950\pi\)
\(762\) 0 0
\(763\) 6.15530 + 2.54961i 0.222837 + 0.0923020i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −67.4708 −2.43623
\(768\) 0 0
\(769\) −48.6570 −1.75462 −0.877309 0.479926i \(-0.840663\pi\)
−0.877309 + 0.479926i \(0.840663\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7.43579 3.08000i −0.267447 0.110780i 0.244930 0.969541i \(-0.421235\pi\)
−0.512377 + 0.858761i \(0.671235\pi\)
\(774\) 0 0
\(775\) −6.42890 + 6.42890i −0.230933 + 0.230933i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.3087 + 10.0690i 0.870951 + 0.360760i
\(780\) 0 0
\(781\) −3.94552 9.52534i −0.141182 0.340843i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −23.1411 −0.825940
\(786\) 0 0
\(787\) −14.9915 + 6.20966i −0.534388 + 0.221351i −0.633524 0.773723i \(-0.718392\pi\)
0.0991360 + 0.995074i \(0.468392\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.69722 + 1.69722i −0.0603464 + 0.0603464i
\(792\) 0 0
\(793\) 52.7058 + 52.7058i 1.87164 + 1.87164i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.43692 5.88325i −0.0863202 0.208395i 0.874825 0.484439i \(-0.160976\pi\)
−0.961145 + 0.276044i \(0.910976\pi\)
\(798\) 0 0
\(799\) 3.57401i 0.126439i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4.65177 + 1.92682i −0.164157 + 0.0679962i
\(804\) 0 0
\(805\) −17.3340 + 41.8480i −0.610944 + 1.47495i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −9.30765 9.30765i −0.327240 0.327240i 0.524296 0.851536i \(-0.324328\pi\)
−0.851536 + 0.524296i \(0.824328\pi\)
\(810\) 0 0
\(811\) 8.10599 19.5696i 0.284640 0.687181i −0.715292 0.698825i \(-0.753706\pi\)
0.999932 + 0.0116440i \(0.00370648\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16.7023i 0.585056i
\(816\) 0 0
\(817\) 9.76026i 0.341468i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.81353 + 9.20668i −0.133093 + 0.321315i −0.976350 0.216195i \(-0.930635\pi\)
0.843257 + 0.537511i \(0.180635\pi\)
\(822\) 0 0
\(823\) 16.5761 + 16.5761i 0.577808 + 0.577808i 0.934299 0.356491i \(-0.116027\pi\)
−0.356491 + 0.934299i \(0.616027\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11.1677 + 26.9613i −0.388340 + 0.937537i 0.601951 + 0.798533i \(0.294390\pi\)
−0.990292 + 0.139004i \(0.955610\pi\)
\(828\) 0 0
\(829\) 8.82768 3.65654i 0.306598 0.126997i −0.224080 0.974571i \(-0.571938\pi\)
0.530678 + 0.847574i \(0.321938\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.79777i 0.131585i
\(834\) 0 0
\(835\) 0.0787391 + 0.190093i 0.00272488 + 0.00657844i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4.55814 4.55814i −0.157364 0.157364i 0.624033 0.781398i \(-0.285493\pi\)
−0.781398 + 0.624033i \(0.785493\pi\)
\(840\) 0 0
\(841\) 18.9734 18.9734i 0.654257 0.654257i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −49.2516 + 20.4007i −1.69431 + 0.701805i
\(846\) 0 0
\(847\) −34.5485 −1.18710
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 23.1052 + 55.7809i 0.792037 + 1.91215i
\(852\) 0 0
\(853\) 13.7268 + 5.68583i 0.469997 + 0.194679i 0.605095 0.796153i \(-0.293135\pi\)
−0.135098 + 0.990832i \(0.543135\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.1744 + 11.1744i −0.381711 + 0.381711i −0.871718 0.490007i \(-0.836994\pi\)
0.490007 + 0.871718i \(0.336994\pi\)
\(858\) 0 0
\(859\) −39.1836 16.2304i −1.33693 0.553773i −0.404304 0.914625i \(-0.632486\pi\)
−0.932623 + 0.360851i \(0.882486\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22.2298 0.756710 0.378355 0.925661i \(-0.376490\pi\)
0.378355 + 0.925661i \(0.376490\pi\)
\(864\) 0 0
\(865\) −44.0379 −1.49733
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.52760 + 3.11803i 0.255356 + 0.105772i
\(870\) 0 0
\(871\) 17.5597 17.5597i 0.594987 0.594987i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −36.9553 15.3074i −1.24932 0.517484i
\(876\) 0 0
\(877\) 3.13025 + 7.55709i 0.105701 + 0.255185i 0.967877 0.251424i \(-0.0808989\pi\)
−0.862176 + 0.506609i \(0.830899\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −4.77921 −0.161016 −0.0805078 0.996754i \(-0.525654\pi\)
−0.0805078 + 0.996754i \(0.525654\pi\)
\(882\) 0 0
\(883\) 45.1752 18.7122i 1.52027 0.629716i 0.542622 0.839977i \(-0.317431\pi\)
0.977645 + 0.210261i \(0.0674314\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.92890 + 6.92890i −0.232650 + 0.232650i −0.813798 0.581148i \(-0.802604\pi\)
0.581148 + 0.813798i \(0.302604\pi\)
\(888\) 0 0
\(889\) −27.0368 27.0368i −0.906784 0.906784i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.86641 + 9.33435i 0.129385 + 0.312362i
\(894\) 0 0
\(895\) 22.0453i 0.736894i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9.91000 + 4.10486i −0.330517 + 0.136905i
\(900\) 0 0
\(901\) 1.79503 4.33358i 0.0598011 0.144373i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.35622 6.35622i −0.211288 0.211288i
\(906\) 0 0
\(907\) −14.4242 + 34.8230i −0.478946 + 1.15628i 0.481157 + 0.876634i \(0.340217\pi\)
−0.960104 + 0.279644i \(0.909783\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 44.7402i 1.48231i −0.671335 0.741154i \(-0.734279\pi\)
0.671335 0.741154i \(-0.265721\pi\)
\(912\) 0 0
\(913\) 2.22390i 0.0736004i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 24.5388 59.2418i 0.810342 1.95634i
\(918\) 0 0
\(919\) −25.4709 25.4709i −0.840207 0.840207i 0.148678 0.988886i \(-0.452498\pi\)
−0.988886 + 0.148678i \(0.952498\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 33.9570 81.9795i 1.11771 2.69839i
\(924\) 0 0
\(925\) −9.83848 + 4.07523i −0.323487 + 0.133993i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23.0747i 0.757058i −0.925589 0.378529i \(-0.876430\pi\)
0.925589 0.378529i \(-0.123570\pi\)
\(930\) 0 0
\(931\) −4.10848 9.91875i −0.134650 0.325074i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.980484 + 0.980484i 0.0320652 + 0.0320652i
\(936\) 0 0
\(937\) 6.57961 6.57961i 0.214947 0.214947i −0.591418 0.806365i \(-0.701432\pi\)
0.806365 + 0.591418i \(0.201432\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 40.5076 16.7788i 1.32051 0.546973i 0.392577 0.919719i \(-0.371584\pi\)
0.927934 + 0.372746i \(0.121584\pi\)
\(942\) 0 0
\(943\) −68.0399 −2.21569
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.7966 + 52.6218i 0.708296 + 1.70998i 0.704216 + 0.709986i \(0.251299\pi\)
0.00407986 + 0.999992i \(0.498701\pi\)
\(948\) 0 0
\(949\) −40.0353 16.5831i −1.29960 0.538312i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −24.5821 + 24.5821i −0.796293 + 0.796293i −0.982509 0.186216i \(-0.940378\pi\)
0.186216 + 0.982509i \(0.440378\pi\)
\(954\) 0 0
\(955\) −39.8574 16.5095i −1.28976 0.534234i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −74.7248 −2.41299
\(960\) 0 0
\(961\) −22.0832 −0.712362
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.4811 + 8.06932i 0.627118 + 0.259761i
\(966\) 0 0
\(967\) 19.1878 19.1878i 0.617037 0.617037i −0.327734 0.944770i \(-0.606285\pi\)
0.944770 + 0.327734i \(0.106285\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 35.5982 + 14.7453i 1.14240 + 0.473198i 0.871979 0.489544i \(-0.162837\pi\)
0.270422 + 0.962742i \(0.412837\pi\)
\(972\) 0 0
\(973\) 0.120740 + 0.291492i 0.00387074 + 0.00934479i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.7488 −0.343885 −0.171943 0.985107i \(-0.555004\pi\)
−0.171943 + 0.985107i \(0.555004\pi\)
\(978\) 0 0
\(979\) −6.59672 + 2.73245i −0.210832 + 0.0873295i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −15.2745 + 15.2745i −0.487181 + 0.487181i −0.907416 0.420234i \(-0.861948\pi\)
0.420234 + 0.907416i \(0.361948\pi\)
\(984\) 0 0
\(985\) 9.04516 + 9.04516i 0.288203 + 0.288203i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9.65868 23.3181i −0.307128 0.741473i
\(990\) 0 0
\(991\) 15.5708i 0.494622i 0.968936 + 0.247311i \(0.0795469\pi\)
−0.968936 + 0.247311i \(0.920453\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −25.5836 + 10.5971i −0.811053 + 0.335949i
\(996\) 0 0
\(997\) −1.71754 + 4.14652i −0.0543951 + 0.131321i −0.948741 0.316055i \(-0.897642\pi\)
0.894346 + 0.447376i \(0.147642\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.2.w.b.719.7 32
3.2 odd 2 1152.2.w.a.719.2 32
4.3 odd 2 288.2.w.a.107.6 yes 32
12.11 even 2 288.2.w.b.107.3 yes 32
32.3 odd 8 1152.2.w.a.431.2 32
32.29 even 8 288.2.w.b.35.3 yes 32
96.29 odd 8 288.2.w.a.35.6 32
96.35 even 8 inner 1152.2.w.b.431.7 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.w.a.35.6 32 96.29 odd 8
288.2.w.a.107.6 yes 32 4.3 odd 2
288.2.w.b.35.3 yes 32 32.29 even 8
288.2.w.b.107.3 yes 32 12.11 even 2
1152.2.w.a.431.2 32 32.3 odd 8
1152.2.w.a.719.2 32 3.2 odd 2
1152.2.w.b.431.7 32 96.35 even 8 inner
1152.2.w.b.719.7 32 1.1 even 1 trivial