Properties

Label 280.6.g.a
Level 280280
Weight 66
Character orbit 280.g
Analytic conductor 44.90744.907
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [280,6,Mod(169,280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("280.169"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 280=2357 280 = 2^{3} \cdot 5 \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 280.g (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 44.907469547644.9074695476
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x20+2997x18+3735306x16+2520827714x14+1008202629141x12+246520004342481x10++81 ⁣ ⁣00 x^{20} + 2997 x^{18} + 3735306 x^{16} + 2520827714 x^{14} + 1008202629141 x^{12} + 246520004342481 x^{10} + \cdots + 81\!\cdots\!00 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 22557 2^{25}\cdot 5^{7}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4+β3)q3+(β6+2β3+β1+1)q5+49β3q7+(β8+β7+2β157)q9+(β17+β16β9++42)q11++(26β1726β16+31822)q99+O(q100) q + (\beta_{4} + \beta_{3}) q^{3} + (\beta_{6} + 2 \beta_{3} + \beta_1 + 1) q^{5} + 49 \beta_{3} q^{7} + (\beta_{8} + \beta_{7} + 2 \beta_1 - 57) q^{9} + (\beta_{17} + \beta_{16} - \beta_{9} + \cdots + 42) q^{11}+ \cdots + ( - 26 \beta_{17} - 26 \beta_{16} + \cdots - 31822) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+14q51134q9+822q11+1322q15+3000q19882q211944q25+10406q298532q312058q35+71066q3928880q413922q4548020q49+34770q51+630244q99+O(q100) 20 q + 14 q^{5} - 1134 q^{9} + 822 q^{11} + 1322 q^{15} + 3000 q^{19} - 882 q^{21} - 1944 q^{25} + 10406 q^{29} - 8532 q^{31} - 2058 q^{35} + 71066 q^{39} - 28880 q^{41} - 3922 q^{45} - 48020 q^{49} + 34770 q^{51}+ \cdots - 630244 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x20+2997x18+3735306x16+2520827714x14+1008202629141x12+246520004342481x10++81 ⁣ ⁣00 x^{20} + 2997 x^{18} + 3735306 x^{16} + 2520827714 x^{14} + 1008202629141 x^{12} + 246520004342481 x^{10} + \cdots + 81\!\cdots\!00 : Copy content Toggle raw display

β1\beta_{1}== (87 ⁣ ⁣97ν18+31 ⁣ ⁣00)/53 ⁣ ⁣00 ( - 87\!\cdots\!97 \nu^{18} + \cdots - 31\!\cdots\!00 ) / 53\!\cdots\!00 Copy content Toggle raw display
β2\beta_{2}== (33 ⁣ ⁣09ν18++11 ⁣ ⁣00)/18 ⁣ ⁣00 ( 33\!\cdots\!09 \nu^{18} + \cdots + 11\!\cdots\!00 ) / 18\!\cdots\!00 Copy content Toggle raw display
β3\beta_{3}== (25 ⁣ ⁣47ν19+48 ⁣ ⁣00ν)/29 ⁣ ⁣00 ( 25\!\cdots\!47 \nu^{19} + \cdots - 48\!\cdots\!00 \nu ) / 29\!\cdots\!00 Copy content Toggle raw display
β4\beta_{4}== (25 ⁣ ⁣47ν19++77 ⁣ ⁣00ν)/29 ⁣ ⁣00 ( - 25\!\cdots\!47 \nu^{19} + \cdots + 77\!\cdots\!00 \nu ) / 29\!\cdots\!00 Copy content Toggle raw display
β5\beta_{5}== (10 ⁣ ⁣21ν19+19 ⁣ ⁣00)/14 ⁣ ⁣00 ( 10\!\cdots\!21 \nu^{19} + \cdots - 19\!\cdots\!00 ) / 14\!\cdots\!00 Copy content Toggle raw display
β6\beta_{6}== (53 ⁣ ⁣99ν19++22 ⁣ ⁣00)/49 ⁣ ⁣00 ( - 53\!\cdots\!99 \nu^{19} + \cdots + 22\!\cdots\!00 ) / 49\!\cdots\!00 Copy content Toggle raw display
β7\beta_{7}== (45 ⁣ ⁣17ν19+63 ⁣ ⁣00)/14 ⁣ ⁣00 ( - 45\!\cdots\!17 \nu^{19} + \cdots - 63\!\cdots\!00 ) / 14\!\cdots\!00 Copy content Toggle raw display
β8\beta_{8}== (45 ⁣ ⁣17ν19++52 ⁣ ⁣00)/14 ⁣ ⁣00 ( 45\!\cdots\!17 \nu^{19} + \cdots + 52\!\cdots\!00 ) / 14\!\cdots\!00 Copy content Toggle raw display
β9\beta_{9}== (45 ⁣ ⁣17ν19++39 ⁣ ⁣00)/14 ⁣ ⁣00 ( - 45\!\cdots\!17 \nu^{19} + \cdots + 39\!\cdots\!00 ) / 14\!\cdots\!00 Copy content Toggle raw display
β10\beta_{10}== (45 ⁣ ⁣17ν19++82 ⁣ ⁣00)/14 ⁣ ⁣00 ( 45\!\cdots\!17 \nu^{19} + \cdots + 82\!\cdots\!00 ) / 14\!\cdots\!00 Copy content Toggle raw display
β11\beta_{11}== (25 ⁣ ⁣94ν19++30 ⁣ ⁣00)/49 ⁣ ⁣00 ( 25\!\cdots\!94 \nu^{19} + \cdots + 30\!\cdots\!00 ) / 49\!\cdots\!00 Copy content Toggle raw display
β12\beta_{12}== (10 ⁣ ⁣13ν19++10 ⁣ ⁣00)/16 ⁣ ⁣00 ( - 10\!\cdots\!13 \nu^{19} + \cdots + 10\!\cdots\!00 ) / 16\!\cdots\!00 Copy content Toggle raw display
β13\beta_{13}== (10 ⁣ ⁣29ν19+69 ⁣ ⁣00)/14 ⁣ ⁣00 ( 10\!\cdots\!29 \nu^{19} + \cdots - 69\!\cdots\!00 ) / 14\!\cdots\!00 Copy content Toggle raw display
β14\beta_{14}== (41 ⁣ ⁣17ν19++22 ⁣ ⁣00)/49 ⁣ ⁣00 ( 41\!\cdots\!17 \nu^{19} + \cdots + 22\!\cdots\!00 ) / 49\!\cdots\!00 Copy content Toggle raw display
β15\beta_{15}== (19 ⁣ ⁣72ν19+66 ⁣ ⁣00)/14 ⁣ ⁣00 ( - 19\!\cdots\!72 \nu^{19} + \cdots - 66\!\cdots\!00 ) / 14\!\cdots\!00 Copy content Toggle raw display
β16\beta_{16}== (10 ⁣ ⁣39ν19++26 ⁣ ⁣00)/82 ⁣ ⁣00 ( - 10\!\cdots\!39 \nu^{19} + \cdots + 26\!\cdots\!00 ) / 82\!\cdots\!00 Copy content Toggle raw display
β17\beta_{17}== (14 ⁣ ⁣67ν19++17 ⁣ ⁣00)/74 ⁣ ⁣00 ( 14\!\cdots\!67 \nu^{19} + \cdots + 17\!\cdots\!00 ) / 74\!\cdots\!00 Copy content Toggle raw display
β18\beta_{18}== (35 ⁣ ⁣19ν19+66 ⁣ ⁣00)/14 ⁣ ⁣00 ( 35\!\cdots\!19 \nu^{19} + \cdots - 66\!\cdots\!00 ) / 14\!\cdots\!00 Copy content Toggle raw display
β19\beta_{19}== (49 ⁣ ⁣38ν19++66 ⁣ ⁣00)/14 ⁣ ⁣00 ( 49\!\cdots\!38 \nu^{19} + \cdots + 66\!\cdots\!00 ) / 14\!\cdots\!00 Copy content Toggle raw display
ν\nu== β4+β3 \beta_{4} + \beta_{3} Copy content Toggle raw display
ν2\nu^{2}== β8+β7+2β1300 \beta_{8} + \beta_{7} + 2\beta _1 - 300 Copy content Toggle raw display
ν3\nu^{3}== 4β182β17+2β164β15+2β146β132β12+3 4 \beta_{18} - 2 \beta_{17} + 2 \beta_{16} - 4 \beta_{15} + 2 \beta_{14} - 6 \beta_{13} - 2 \beta_{12} + \cdots - 3 Copy content Toggle raw display
ν4\nu^{4}== 44β17+44β16+109β13+13β12+13β11+16β10++151589 44 \beta_{17} + 44 \beta_{16} + 109 \beta_{13} + 13 \beta_{12} + 13 \beta_{11} + 16 \beta_{10} + \cdots + 151589 Copy content Toggle raw display
ν5\nu^{5}== 522β193566β18+1198β171198β16+2150β151714β14++2337 - 522 \beta_{19} - 3566 \beta_{18} + 1198 \beta_{17} - 1198 \beta_{16} + 2150 \beta_{15} - 1714 \beta_{14} + \cdots + 2337 Copy content Toggle raw display
ν6\nu^{6}== 44878β1744878β16113855β1312599β1212599β11+90120013 - 44878 \beta_{17} - 44878 \beta_{16} - 113855 \beta_{13} - 12599 \beta_{12} - 12599 \beta_{11} + \cdots - 90120013 Copy content Toggle raw display
ν7\nu^{7}== 592824β19+2695548β18703722β17+703722β16985452β15+1582161 592824 \beta_{19} + 2695548 \beta_{18} - 703722 \beta_{17} + 703722 \beta_{16} - 985452 \beta_{15} + \cdots - 1582161 Copy content Toggle raw display
ν8\nu^{8}== 35972904β17+35972904β16+90109635β13+10145175β12++56891394015 35972904 \beta_{17} + 35972904 \beta_{16} + 90109635 \beta_{13} + 10145175 \beta_{12} + \cdots + 56891394015 Copy content Toggle raw display
ν9\nu^{9}== 492483654β191934900794β18+419074214β17419074214β16++972678045 - 492483654 \beta_{19} - 1934900794 \beta_{18} + 419074214 \beta_{17} - 419074214 \beta_{16} + \cdots + 972678045 Copy content Toggle raw display
ν10\nu^{10}== 26580446786β1726580446786β1665337815563β137749533827β12+36753172867013 - 26580446786 \beta_{17} - 26580446786 \beta_{16} - 65337815563 \beta_{13} - 7749533827 \beta_{12} + \cdots - 36753172867013 Copy content Toggle raw display
ν11\nu^{11}== 367181260956β19+1358626618880β18248925660682β17+248925660682β16+553324823745 367181260956 \beta_{19} + 1358626618880 \beta_{18} - 248925660682 \beta_{17} + 248925660682 \beta_{16} + \cdots - 553324823745 Copy content Toggle raw display
ν12\nu^{12}== 18923252477524β17+18923252477524β16+45780247643771β13++23 ⁣ ⁣47 18923252477524 \beta_{17} + 18923252477524 \beta_{16} + 45780247643771 \beta_{13} + \cdots + 23\!\cdots\!47 Copy content Toggle raw display
ν13\nu^{13}== 261393824486442β19943672566072510β18+146047128989622β17++291609194490789 - 261393824486442 \beta_{19} - 943672566072510 \beta_{18} + 146047128989622 \beta_{17} + \cdots + 291609194490789 Copy content Toggle raw display
ν14\nu^{14}== 13 ⁣ ⁣86β17+15 ⁣ ⁣29 - 13\!\cdots\!86 \beta_{17} + \cdots - 15\!\cdots\!29 Copy content Toggle raw display
ν15\nu^{15}== 18 ⁣ ⁣96β19+13 ⁣ ⁣29 18\!\cdots\!96 \beta_{19} + \cdots - 13\!\cdots\!29 Copy content Toggle raw display
ν16\nu^{16}== 91 ⁣ ⁣56β17++10 ⁣ ⁣55 91\!\cdots\!56 \beta_{17} + \cdots + 10\!\cdots\!55 Copy content Toggle raw display
ν17\nu^{17}== 12 ⁣ ⁣34β19++54 ⁣ ⁣37 - 12\!\cdots\!34 \beta_{19} + \cdots + 54\!\cdots\!37 Copy content Toggle raw display
ν18\nu^{18}== 62 ⁣ ⁣14β17+68 ⁣ ⁣65 - 62\!\cdots\!14 \beta_{17} + \cdots - 68\!\cdots\!65 Copy content Toggle raw display
ν19\nu^{19}== 85 ⁣ ⁣60β19+11 ⁣ ⁣33 85\!\cdots\!60 \beta_{19} + \cdots - 11\!\cdots\!33 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/280Z)×\left(\mathbb{Z}/280\mathbb{Z}\right)^\times.

nn 5757 7171 141141 241241
χ(n)\chi(n) 1-1 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
169.1
26.0724i
25.5859i
24.9999i
18.2561i
14.6692i
13.4485i
12.7619i
10.5491i
5.80939i
0.606190i
0.606190i
5.80939i
10.5491i
12.7619i
13.4485i
14.6692i
18.2561i
24.9999i
25.5859i
26.0724i
0 26.0724i 0 −26.2314 + 49.3651i 0 49.0000i 0 −436.769 0
169.2 0 25.5859i 0 55.1122 + 9.36183i 0 49.0000i 0 −411.637 0
169.3 0 24.9999i 0 12.8465 54.4056i 0 49.0000i 0 −381.993 0
169.4 0 18.2561i 0 −4.28740 + 55.7370i 0 49.0000i 0 −90.2867 0
169.5 0 14.6692i 0 −55.0879 + 9.50366i 0 49.0000i 0 27.8149 0
169.6 0 13.4485i 0 −39.5814 39.4754i 0 49.0000i 0 62.1374 0
169.7 0 12.7619i 0 3.33191 55.8023i 0 49.0000i 0 80.1346 0
169.8 0 10.5491i 0 −39.5926 + 39.4643i 0 49.0000i 0 131.716 0
169.9 0 5.80939i 0 49.5511 + 25.8783i 0 49.0000i 0 209.251 0
169.10 0 0.606190i 0 50.9390 + 23.0264i 0 49.0000i 0 242.633 0
169.11 0 0.606190i 0 50.9390 23.0264i 0 49.0000i 0 242.633 0
169.12 0 5.80939i 0 49.5511 25.8783i 0 49.0000i 0 209.251 0
169.13 0 10.5491i 0 −39.5926 39.4643i 0 49.0000i 0 131.716 0
169.14 0 12.7619i 0 3.33191 + 55.8023i 0 49.0000i 0 80.1346 0
169.15 0 13.4485i 0 −39.5814 + 39.4754i 0 49.0000i 0 62.1374 0
169.16 0 14.6692i 0 −55.0879 9.50366i 0 49.0000i 0 27.8149 0
169.17 0 18.2561i 0 −4.28740 55.7370i 0 49.0000i 0 −90.2867 0
169.18 0 24.9999i 0 12.8465 + 54.4056i 0 49.0000i 0 −381.993 0
169.19 0 25.5859i 0 55.1122 9.36183i 0 49.0000i 0 −411.637 0
169.20 0 26.0724i 0 −26.2314 49.3651i 0 49.0000i 0 −436.769 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 169.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.6.g.a 20
4.b odd 2 1 560.6.g.g 20
5.b even 2 1 inner 280.6.g.a 20
20.d odd 2 1 560.6.g.g 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.6.g.a 20 1.a even 1 1 trivial
280.6.g.a 20 5.b even 2 1 inner
560.6.g.g 20 4.b odd 2 1
560.6.g.g 20 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T320+2997T318+3735306T316+2520827714T314+1008202629141T312++81 ⁣ ⁣00 T_{3}^{20} + 2997 T_{3}^{18} + 3735306 T_{3}^{16} + 2520827714 T_{3}^{14} + 1008202629141 T_{3}^{12} + \cdots + 81\!\cdots\!00 acting on S6new(280,[χ])S_{6}^{\mathrm{new}}(280, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20 T^{20} Copy content Toggle raw display
33 T20++81 ⁣ ⁣00 T^{20} + \cdots + 81\!\cdots\!00 Copy content Toggle raw display
55 T20++88 ⁣ ⁣25 T^{20} + \cdots + 88\!\cdots\!25 Copy content Toggle raw display
77 (T2+2401)10 (T^{2} + 2401)^{10} Copy content Toggle raw display
1111 (T10++50 ⁣ ⁣00)2 (T^{10} + \cdots + 50\!\cdots\!00)^{2} Copy content Toggle raw display
1313 T20++63 ⁣ ⁣00 T^{20} + \cdots + 63\!\cdots\!00 Copy content Toggle raw display
1717 T20++14 ⁣ ⁣24 T^{20} + \cdots + 14\!\cdots\!24 Copy content Toggle raw display
1919 (T10+14 ⁣ ⁣76)2 (T^{10} + \cdots - 14\!\cdots\!76)^{2} Copy content Toggle raw display
2323 T20++20 ⁣ ⁣00 T^{20} + \cdots + 20\!\cdots\!00 Copy content Toggle raw display
2929 (T10+18 ⁣ ⁣52)2 (T^{10} + \cdots - 18\!\cdots\!52)^{2} Copy content Toggle raw display
3131 (T10++32 ⁣ ⁣96)2 (T^{10} + \cdots + 32\!\cdots\!96)^{2} Copy content Toggle raw display
3737 T20++77 ⁣ ⁣04 T^{20} + \cdots + 77\!\cdots\!04 Copy content Toggle raw display
4141 (T10++80 ⁣ ⁣00)2 (T^{10} + \cdots + 80\!\cdots\!00)^{2} Copy content Toggle raw display
4343 T20++21 ⁣ ⁣00 T^{20} + \cdots + 21\!\cdots\!00 Copy content Toggle raw display
4747 T20++39 ⁣ ⁣44 T^{20} + \cdots + 39\!\cdots\!44 Copy content Toggle raw display
5353 T20++60 ⁣ ⁣00 T^{20} + \cdots + 60\!\cdots\!00 Copy content Toggle raw display
5959 (T10+19 ⁣ ⁣00)2 (T^{10} + \cdots - 19\!\cdots\!00)^{2} Copy content Toggle raw display
6161 (T10+15 ⁣ ⁣56)2 (T^{10} + \cdots - 15\!\cdots\!56)^{2} Copy content Toggle raw display
6767 T20++97 ⁣ ⁣00 T^{20} + \cdots + 97\!\cdots\!00 Copy content Toggle raw display
7171 (T10++61 ⁣ ⁣00)2 (T^{10} + \cdots + 61\!\cdots\!00)^{2} Copy content Toggle raw display
7373 T20++49 ⁣ ⁣00 T^{20} + \cdots + 49\!\cdots\!00 Copy content Toggle raw display
7979 (T10+36 ⁣ ⁣84)2 (T^{10} + \cdots - 36\!\cdots\!84)^{2} Copy content Toggle raw display
8383 T20++39 ⁣ ⁣84 T^{20} + \cdots + 39\!\cdots\!84 Copy content Toggle raw display
8989 (T10++98 ⁣ ⁣00)2 (T^{10} + \cdots + 98\!\cdots\!00)^{2} Copy content Toggle raw display
9797 T20++83 ⁣ ⁣84 T^{20} + \cdots + 83\!\cdots\!84 Copy content Toggle raw display
show more
show less