L(s) = 1 | − 0.606i·3-s + (50.9 + 23.0i)5-s + 49i·7-s + 242.·9-s − 116.·11-s − 1.12e3i·13-s + (13.9 − 30.8i)15-s − 1.27e3i·17-s + 981.·19-s + 29.7·21-s + 1.94e3i·23-s + (2.06e3 + 2.34e3i)25-s − 294. i·27-s − 7.65e3·29-s + 8.73e3·31-s + ⋯ |
L(s) = 1 | − 0.0388i·3-s + (0.911 + 0.411i)5-s + 0.377i·7-s + 0.998·9-s − 0.291·11-s − 1.84i·13-s + (0.0160 − 0.0354i)15-s − 1.07i·17-s + 0.623·19-s + 0.0146·21-s + 0.765i·23-s + (0.660 + 0.750i)25-s − 0.0777i·27-s − 1.68·29-s + 1.63·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.911 + 0.411i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.911 + 0.411i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.658852494\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.658852494\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-50.9 - 23.0i)T \) |
| 7 | \( 1 - 49iT \) |
good | 3 | \( 1 + 0.606iT - 243T^{2} \) |
| 11 | \( 1 + 116.T + 1.61e5T^{2} \) |
| 13 | \( 1 + 1.12e3iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 1.27e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 981.T + 2.47e6T^{2} \) |
| 23 | \( 1 - 1.94e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 7.65e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 8.73e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 8.23e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 3.97e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 3.29e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 1.35e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 3.20e3iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 3.58e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 1.46e3T + 8.44e8T^{2} \) |
| 67 | \( 1 - 9.42e3iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 3.10e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 2.89e3iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 6.08e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 1.15e5iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 2.72e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 4.26e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75934992403198984407694071811, −9.966199458469800490604545099033, −9.323861438084890028205262418358, −7.87471482598074899666145713003, −7.09739803143260340437913985130, −5.78845285223263099977617923222, −5.10827374221326364499138725963, −3.37015520397601891475142515391, −2.28359003518004476015659768115, −0.835823819675397543484547790025,
1.18775107060693882976768054397, 2.13709779555190148414196857149, 3.98650539933843203378026273452, 4.84704862277901646628666433008, 6.21208977121710314806485710028, 6.99358243651653127659298094290, 8.268052179625003506675472215199, 9.388341310166519179495231916446, 9.963559336031658642917917222076, 10.95712690971045992809894676980