L(s) = 1 | + 5.80i·3-s + (49.5 − 25.8i)5-s + 49i·7-s + 209.·9-s + 415.·11-s + 419. i·13-s + (150. + 287. i)15-s − 47.1i·17-s − 1.30e3·19-s − 284.·21-s − 887. i·23-s + (1.78e3 − 2.56e3i)25-s + 2.62e3i·27-s + 7.31e3·29-s − 3.10e3·31-s + ⋯ |
L(s) = 1 | + 0.372i·3-s + (0.886 − 0.462i)5-s + 0.377i·7-s + 0.861·9-s + 1.03·11-s + 0.687i·13-s + (0.172 + 0.330i)15-s − 0.0395i·17-s − 0.826·19-s − 0.140·21-s − 0.349i·23-s + (0.571 − 0.820i)25-s + 0.693i·27-s + 1.61·29-s − 0.580·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.886 - 0.462i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.886 - 0.462i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.870163796\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.870163796\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-49.5 + 25.8i)T \) |
| 7 | \( 1 - 49iT \) |
good | 3 | \( 1 - 5.80iT - 243T^{2} \) |
| 11 | \( 1 - 415.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 419. iT - 3.71e5T^{2} \) |
| 17 | \( 1 + 47.1iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 1.30e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 887. iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 7.31e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 3.10e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 3.81e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 2.04e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 8.66e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.23e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 1.23e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 1.19e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 1.64e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 2.89e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 6.52e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 5.47e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 2.79e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 9.32e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 - 1.27e5T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.02e5iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95438278649767054783118859054, −9.982504984916510532236643004359, −9.249532870746788637008309551715, −8.527712088143126460131695568858, −6.93063254975603638553334191175, −6.15068423682976666834947306142, −4.86565320865004187328664696649, −4.00197255063097386221042787717, −2.25464864944665854140160837860, −1.14270660264733427328516025134,
0.967991456225453252359967568714, 2.04716972877557486087795037165, 3.51214327732507298112705328070, 4.81652196996012019725749927199, 6.25668338069727180844832540542, 6.79903317694295534640923467137, 7.925656067252891093892607397962, 9.167943077251667969031974896066, 10.08329148672805476246259132450, 10.73752137289725408668469795228