Properties

Label 279.3.v.a.46.2
Level $279$
Weight $3$
Character 279.46
Analytic conductor $7.602$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [279,3,Mod(46,279)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(279, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("279.46"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 279 = 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 279.v (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,3,0,-11,14,0,-1,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60219937565\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 20 x^{18} - 33 x^{17} + 250 x^{16} - 510 x^{15} + 2908 x^{14} - 6447 x^{13} + \cdots + 731025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 46.2
Root \(-0.453363 - 1.39531i\) of defining polynomial
Character \(\chi\) \(=\) 279.46
Dual form 279.3.v.a.91.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.18692 + 0.862348i) q^{2} +(-0.570933 + 1.75715i) q^{4} +4.14776 q^{5} +(1.06697 - 3.28380i) q^{7} +(-2.65108 - 8.15917i) q^{8} +(-4.92306 + 3.57681i) q^{10} +(13.6300 + 4.42864i) q^{11} +(5.41722 - 7.45616i) q^{13} +(1.56537 + 4.81771i) q^{14} +(4.20377 + 3.05422i) q^{16} +(1.46101 - 0.474711i) q^{17} +(16.5438 - 12.0198i) q^{19} +(-2.36809 + 7.28825i) q^{20} +(-19.9967 + 6.49732i) q^{22} +(-17.2964 + 5.61995i) q^{23} -7.79606 q^{25} +13.5214i q^{26} +(5.16097 + 3.74966i) q^{28} +(23.9358 + 32.9448i) q^{29} +(20.1838 + 23.5290i) q^{31} +26.6929 q^{32} +(-1.32474 + 1.82334i) q^{34} +(4.42555 - 13.6204i) q^{35} +42.0983i q^{37} +(-9.27096 + 28.5331i) q^{38} +(-10.9960 - 33.8423i) q^{40} +(61.3917 - 44.6037i) q^{41} +(15.1894 + 20.9064i) q^{43} +(-15.5636 + 21.4214i) q^{44} +(15.6831 - 21.5860i) q^{46} +(3.99548 + 2.90289i) q^{47} +(29.9969 + 21.7940i) q^{49} +(9.25330 - 6.72292i) q^{50} +(10.0087 + 13.7758i) q^{52} +(-38.5605 + 12.5291i) q^{53} +(56.5338 + 18.3689i) q^{55} -29.6217 q^{56} +(-56.8198 - 18.4619i) q^{58} +(-36.1430 - 26.2594i) q^{59} -84.8005i q^{61} +(-44.2468 - 10.5215i) q^{62} +(-48.4974 + 35.2354i) q^{64} +(22.4693 - 30.9264i) q^{65} -109.556 q^{67} +2.83825i q^{68} +(6.49278 + 19.9827i) q^{70} +(19.6220 + 60.3903i) q^{71} +(-85.9266 - 27.9192i) q^{73} +(-36.3034 - 49.9674i) q^{74} +(11.6752 + 35.9325i) q^{76} +(29.0856 - 40.0328i) q^{77} +(142.262 - 46.2236i) q^{79} +(17.4362 + 12.6682i) q^{80} +(-34.4032 + 105.882i) q^{82} +(-25.0530 - 34.4824i) q^{83} +(6.05993 - 1.96899i) q^{85} +(-36.0572 - 11.7157i) q^{86} -122.950i q^{88} +(-46.3352 - 15.0552i) q^{89} +(-18.7045 - 25.7446i) q^{91} -33.6011i q^{92} -7.24561 q^{94} +(68.6199 - 49.8553i) q^{95} +(15.1554 - 46.6434i) q^{97} -54.3979 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 3 q^{2} - 11 q^{4} + 14 q^{5} - q^{7} + 19 q^{8} + 12 q^{10} + 10 q^{11} + 10 q^{13} - 103 q^{16} - 35 q^{17} + 47 q^{19} + 125 q^{20} + 150 q^{22} - 75 q^{23} + 82 q^{25} + 88 q^{28} - 5 q^{29}+ \cdots + 1000 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/279\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(218\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.18692 + 0.862348i −0.593460 + 0.431174i −0.843551 0.537048i \(-0.819539\pi\)
0.250092 + 0.968222i \(0.419539\pi\)
\(3\) 0 0
\(4\) −0.570933 + 1.75715i −0.142733 + 0.439288i
\(5\) 4.14776 0.829553 0.414776 0.909923i \(-0.363860\pi\)
0.414776 + 0.909923i \(0.363860\pi\)
\(6\) 0 0
\(7\) 1.06697 3.28380i 0.152425 0.469115i −0.845466 0.534029i \(-0.820677\pi\)
0.997891 + 0.0649142i \(0.0206774\pi\)
\(8\) −2.65108 8.15917i −0.331384 1.01990i
\(9\) 0 0
\(10\) −4.92306 + 3.57681i −0.492306 + 0.357681i
\(11\) 13.6300 + 4.42864i 1.23909 + 0.402604i 0.853998 0.520276i \(-0.174171\pi\)
0.385088 + 0.922880i \(0.374171\pi\)
\(12\) 0 0
\(13\) 5.41722 7.45616i 0.416709 0.573551i −0.548130 0.836393i \(-0.684660\pi\)
0.964839 + 0.262842i \(0.0846599\pi\)
\(14\) 1.56537 + 4.81771i 0.111812 + 0.344122i
\(15\) 0 0
\(16\) 4.20377 + 3.05422i 0.262735 + 0.190888i
\(17\) 1.46101 0.474711i 0.0859418 0.0279242i −0.265730 0.964047i \(-0.585613\pi\)
0.351672 + 0.936123i \(0.385613\pi\)
\(18\) 0 0
\(19\) 16.5438 12.0198i 0.870728 0.632621i −0.0600541 0.998195i \(-0.519127\pi\)
0.930782 + 0.365574i \(0.119127\pi\)
\(20\) −2.36809 + 7.28825i −0.118405 + 0.364412i
\(21\) 0 0
\(22\) −19.9967 + 6.49732i −0.908940 + 0.295333i
\(23\) −17.2964 + 5.61995i −0.752019 + 0.244346i −0.659850 0.751397i \(-0.729380\pi\)
−0.0921694 + 0.995743i \(0.529380\pi\)
\(24\) 0 0
\(25\) −7.79606 −0.311843
\(26\) 13.5214i 0.520054i
\(27\) 0 0
\(28\) 5.16097 + 3.74966i 0.184320 + 0.133917i
\(29\) 23.9358 + 32.9448i 0.825373 + 1.13603i 0.988767 + 0.149468i \(0.0477560\pi\)
−0.163393 + 0.986561i \(0.552244\pi\)
\(30\) 0 0
\(31\) 20.1838 + 23.5290i 0.651092 + 0.758999i
\(32\) 26.6929 0.834154
\(33\) 0 0
\(34\) −1.32474 + 1.82334i −0.0389629 + 0.0536278i
\(35\) 4.42555 13.6204i 0.126444 0.389155i
\(36\) 0 0
\(37\) 42.0983i 1.13779i 0.822409 + 0.568897i \(0.192630\pi\)
−0.822409 + 0.568897i \(0.807370\pi\)
\(38\) −9.27096 + 28.5331i −0.243973 + 0.750870i
\(39\) 0 0
\(40\) −10.9960 33.8423i −0.274901 0.846058i
\(41\) 61.3917 44.6037i 1.49736 1.08790i 0.525941 0.850521i \(-0.323713\pi\)
0.971418 0.237374i \(-0.0762866\pi\)
\(42\) 0 0
\(43\) 15.1894 + 20.9064i 0.353242 + 0.486196i 0.948250 0.317523i \(-0.102851\pi\)
−0.595008 + 0.803720i \(0.702851\pi\)
\(44\) −15.5636 + 21.4214i −0.353718 + 0.486851i
\(45\) 0 0
\(46\) 15.6831 21.5860i 0.340938 0.469260i
\(47\) 3.99548 + 2.90289i 0.0850102 + 0.0617635i 0.629479 0.777018i \(-0.283269\pi\)
−0.544468 + 0.838781i \(0.683269\pi\)
\(48\) 0 0
\(49\) 29.9969 + 21.7940i 0.612182 + 0.444776i
\(50\) 9.25330 6.72292i 0.185066 0.134458i
\(51\) 0 0
\(52\) 10.0087 + 13.7758i 0.192476 + 0.264920i
\(53\) −38.5605 + 12.5291i −0.727557 + 0.236398i −0.649296 0.760535i \(-0.724937\pi\)
−0.0782603 + 0.996933i \(0.524937\pi\)
\(54\) 0 0
\(55\) 56.5338 + 18.3689i 1.02789 + 0.333981i
\(56\) −29.6217 −0.528959
\(57\) 0 0
\(58\) −56.8198 18.4619i −0.979652 0.318308i
\(59\) −36.1430 26.2594i −0.612592 0.445074i 0.237734 0.971330i \(-0.423595\pi\)
−0.850326 + 0.526256i \(0.823595\pi\)
\(60\) 0 0
\(61\) 84.8005i 1.39017i −0.718927 0.695086i \(-0.755366\pi\)
0.718927 0.695086i \(-0.244634\pi\)
\(62\) −44.2468 10.5215i −0.713657 0.169702i
\(63\) 0 0
\(64\) −48.4974 + 35.2354i −0.757772 + 0.550554i
\(65\) 22.4693 30.9264i 0.345682 0.475791i
\(66\) 0 0
\(67\) −109.556 −1.63517 −0.817583 0.575811i \(-0.804686\pi\)
−0.817583 + 0.575811i \(0.804686\pi\)
\(68\) 2.83825i 0.0417389i
\(69\) 0 0
\(70\) 6.49278 + 19.9827i 0.0927540 + 0.285467i
\(71\) 19.6220 + 60.3903i 0.276366 + 0.850568i 0.988855 + 0.148884i \(0.0475682\pi\)
−0.712488 + 0.701684i \(0.752432\pi\)
\(72\) 0 0
\(73\) −85.9266 27.9192i −1.17708 0.382455i −0.345796 0.938310i \(-0.612391\pi\)
−0.831280 + 0.555854i \(0.812391\pi\)
\(74\) −36.3034 49.9674i −0.490587 0.675235i
\(75\) 0 0
\(76\) 11.6752 + 35.9325i 0.153621 + 0.472796i
\(77\) 29.0856 40.0328i 0.377735 0.519907i
\(78\) 0 0
\(79\) 142.262 46.2236i 1.80078 0.585108i 0.800873 0.598834i \(-0.204369\pi\)
0.999906 + 0.0137258i \(0.00436918\pi\)
\(80\) 17.4362 + 12.6682i 0.217953 + 0.158352i
\(81\) 0 0
\(82\) −34.4032 + 105.882i −0.419551 + 1.29124i
\(83\) −25.0530 34.4824i −0.301843 0.415451i 0.630973 0.775805i \(-0.282656\pi\)
−0.932816 + 0.360354i \(0.882656\pi\)
\(84\) 0 0
\(85\) 6.05993 1.96899i 0.0712933 0.0231646i
\(86\) −36.0572 11.7157i −0.419270 0.136229i
\(87\) 0 0
\(88\) 122.950i 1.39716i
\(89\) −46.3352 15.0552i −0.520620 0.169160i 0.0369067 0.999319i \(-0.488250\pi\)
−0.557527 + 0.830159i \(0.688250\pi\)
\(90\) 0 0
\(91\) −18.7045 25.7446i −0.205544 0.282908i
\(92\) 33.6011i 0.365229i
\(93\) 0 0
\(94\) −7.24561 −0.0770810
\(95\) 68.6199 49.8553i 0.722315 0.524792i
\(96\) 0 0
\(97\) 15.1554 46.6434i 0.156241 0.480860i −0.842044 0.539409i \(-0.818648\pi\)
0.998284 + 0.0585497i \(0.0186476\pi\)
\(98\) −54.3979 −0.555081
\(99\) 0 0
\(100\) 4.45103 13.6989i 0.0445103 0.136989i
\(101\) −17.7682 54.6850i −0.175923 0.541435i 0.823751 0.566951i \(-0.191877\pi\)
−0.999674 + 0.0255158i \(0.991877\pi\)
\(102\) 0 0
\(103\) 51.9380 37.7352i 0.504253 0.366361i −0.306386 0.951907i \(-0.599120\pi\)
0.810639 + 0.585546i \(0.199120\pi\)
\(104\) −75.1976 24.4332i −0.723054 0.234934i
\(105\) 0 0
\(106\) 34.9638 48.1236i 0.329847 0.453996i
\(107\) 40.4335 + 124.442i 0.377883 + 1.16300i 0.941513 + 0.336977i \(0.109405\pi\)
−0.563630 + 0.826028i \(0.690595\pi\)
\(108\) 0 0
\(109\) −123.474 89.7092i −1.13279 0.823020i −0.146692 0.989182i \(-0.546863\pi\)
−0.986099 + 0.166162i \(0.946863\pi\)
\(110\) −82.9415 + 26.9493i −0.754014 + 0.244994i
\(111\) 0 0
\(112\) 14.5147 10.5456i 0.129596 0.0941570i
\(113\) 37.7786 116.270i 0.334324 1.02894i −0.632731 0.774372i \(-0.718066\pi\)
0.967054 0.254570i \(-0.0819340\pi\)
\(114\) 0 0
\(115\) −71.7415 + 23.3102i −0.623839 + 0.202698i
\(116\) −71.5548 + 23.2496i −0.616852 + 0.200427i
\(117\) 0 0
\(118\) 65.5435 0.555453
\(119\) 5.30418i 0.0445729i
\(120\) 0 0
\(121\) 68.2717 + 49.6023i 0.564229 + 0.409936i
\(122\) 73.1275 + 100.651i 0.599406 + 0.825011i
\(123\) 0 0
\(124\) −52.8676 + 22.0326i −0.426351 + 0.177682i
\(125\) −136.030 −1.08824
\(126\) 0 0
\(127\) −86.5000 + 119.057i −0.681102 + 0.937457i −0.999946 0.0103505i \(-0.996705\pi\)
0.318844 + 0.947807i \(0.396705\pi\)
\(128\) −5.81691 + 17.9026i −0.0454446 + 0.139864i
\(129\) 0 0
\(130\) 56.0835i 0.431412i
\(131\) −19.6729 + 60.5470i −0.150175 + 0.462191i −0.997640 0.0686600i \(-0.978128\pi\)
0.847465 + 0.530851i \(0.178128\pi\)
\(132\) 0 0
\(133\) −21.8188 67.1515i −0.164051 0.504898i
\(134\) 130.034 94.4754i 0.970405 0.705040i
\(135\) 0 0
\(136\) −7.74650 10.6621i −0.0569596 0.0783981i
\(137\) 56.0236 77.1098i 0.408931 0.562846i −0.554026 0.832499i \(-0.686909\pi\)
0.962957 + 0.269654i \(0.0869092\pi\)
\(138\) 0 0
\(139\) 43.4725 59.8347i 0.312752 0.430466i −0.623485 0.781835i \(-0.714284\pi\)
0.936237 + 0.351369i \(0.114284\pi\)
\(140\) 21.4065 + 15.5527i 0.152903 + 0.111091i
\(141\) 0 0
\(142\) −75.3672 54.7575i −0.530755 0.385616i
\(143\) 106.857 77.6362i 0.747252 0.542911i
\(144\) 0 0
\(145\) 99.2801 + 136.647i 0.684690 + 0.942396i
\(146\) 126.064 40.9607i 0.863452 0.280553i
\(147\) 0 0
\(148\) −73.9732 24.0353i −0.499819 0.162401i
\(149\) 41.6680 0.279651 0.139826 0.990176i \(-0.455346\pi\)
0.139826 + 0.990176i \(0.455346\pi\)
\(150\) 0 0
\(151\) −18.9900 6.17023i −0.125762 0.0408624i 0.245460 0.969407i \(-0.421061\pi\)
−0.371222 + 0.928544i \(0.621061\pi\)
\(152\) −141.931 103.119i −0.933754 0.678412i
\(153\) 0 0
\(154\) 72.5976i 0.471413i
\(155\) 83.7178 + 97.5926i 0.540115 + 0.629630i
\(156\) 0 0
\(157\) 80.3853 58.4034i 0.512009 0.371996i −0.301576 0.953442i \(-0.597513\pi\)
0.813585 + 0.581446i \(0.197513\pi\)
\(158\) −128.992 + 177.543i −0.816406 + 1.12369i
\(159\) 0 0
\(160\) 110.716 0.691974
\(161\) 62.7944i 0.390028i
\(162\) 0 0
\(163\) 51.9446 + 159.869i 0.318679 + 0.980792i 0.974214 + 0.225627i \(0.0724431\pi\)
−0.655535 + 0.755165i \(0.727557\pi\)
\(164\) 43.3249 + 133.340i 0.264176 + 0.813050i
\(165\) 0 0
\(166\) 59.4717 + 19.3235i 0.358263 + 0.116407i
\(167\) 41.7004 + 57.3956i 0.249703 + 0.343686i 0.915407 0.402529i \(-0.131869\pi\)
−0.665704 + 0.746216i \(0.731869\pi\)
\(168\) 0 0
\(169\) 25.9758 + 79.9452i 0.153703 + 0.473049i
\(170\) −5.49469 + 7.56280i −0.0323217 + 0.0444870i
\(171\) 0 0
\(172\) −45.4079 + 14.7539i −0.263999 + 0.0857786i
\(173\) −166.025 120.624i −0.959684 0.697251i −0.00660682 0.999978i \(-0.502103\pi\)
−0.953077 + 0.302727i \(0.902103\pi\)
\(174\) 0 0
\(175\) −8.31818 + 25.6007i −0.0475325 + 0.146290i
\(176\) 43.7711 + 60.2458i 0.248700 + 0.342306i
\(177\) 0 0
\(178\) 67.9790 22.0877i 0.381904 0.124088i
\(179\) 101.179 + 32.8752i 0.565248 + 0.183660i 0.577681 0.816263i \(-0.303958\pi\)
−0.0124333 + 0.999923i \(0.503958\pi\)
\(180\) 0 0
\(181\) 137.906i 0.761913i −0.924593 0.380957i \(-0.875595\pi\)
0.924593 0.380957i \(-0.124405\pi\)
\(182\) 44.4016 + 14.4269i 0.243965 + 0.0792690i
\(183\) 0 0
\(184\) 91.7083 + 126.226i 0.498415 + 0.686009i
\(185\) 174.614i 0.943859i
\(186\) 0 0
\(187\) 22.0158 0.117732
\(188\) −7.38196 + 5.36331i −0.0392657 + 0.0285282i
\(189\) 0 0
\(190\) −38.4537 + 118.348i −0.202388 + 0.622886i
\(191\) 30.5286 0.159836 0.0799178 0.996801i \(-0.474534\pi\)
0.0799178 + 0.996801i \(0.474534\pi\)
\(192\) 0 0
\(193\) −55.8889 + 172.008i −0.289580 + 0.891236i 0.695408 + 0.718615i \(0.255224\pi\)
−0.984988 + 0.172621i \(0.944776\pi\)
\(194\) 22.2346 + 68.4311i 0.114611 + 0.352738i
\(195\) 0 0
\(196\) −55.4216 + 40.2662i −0.282763 + 0.205440i
\(197\) 54.3265 + 17.6518i 0.275769 + 0.0896028i 0.443637 0.896207i \(-0.353688\pi\)
−0.167868 + 0.985810i \(0.553688\pi\)
\(198\) 0 0
\(199\) −138.187 + 190.199i −0.694409 + 0.955773i 0.305584 + 0.952165i \(0.401148\pi\)
−0.999993 + 0.00360755i \(0.998852\pi\)
\(200\) 20.6680 + 63.6094i 0.103340 + 0.318047i
\(201\) 0 0
\(202\) 68.2469 + 49.5843i 0.337856 + 0.245467i
\(203\) 133.723 43.4493i 0.658735 0.214036i
\(204\) 0 0
\(205\) 254.638 185.006i 1.24214 0.902466i
\(206\) −29.1054 + 89.5773i −0.141288 + 0.434841i
\(207\) 0 0
\(208\) 45.5455 14.7986i 0.218969 0.0711472i
\(209\) 278.723 90.5626i 1.33360 0.433314i
\(210\) 0 0
\(211\) −122.713 −0.581578 −0.290789 0.956787i \(-0.593918\pi\)
−0.290789 + 0.956787i \(0.593918\pi\)
\(212\) 74.9099i 0.353349i
\(213\) 0 0
\(214\) −155.303 112.834i −0.725716 0.527263i
\(215\) 63.0021 + 86.7149i 0.293033 + 0.403325i
\(216\) 0 0
\(217\) 98.8001 41.1750i 0.455300 0.189747i
\(218\) 223.914 1.02713
\(219\) 0 0
\(220\) −64.5540 + 88.8510i −0.293427 + 0.403868i
\(221\) 4.37509 13.4652i 0.0197968 0.0609283i
\(222\) 0 0
\(223\) 310.445i 1.39213i −0.717980 0.696064i \(-0.754933\pi\)
0.717980 0.696064i \(-0.245067\pi\)
\(224\) 28.4806 87.6543i 0.127146 0.391314i
\(225\) 0 0
\(226\) 55.4254 + 170.582i 0.245245 + 0.754787i
\(227\) −344.688 + 250.430i −1.51845 + 1.10322i −0.556198 + 0.831050i \(0.687740\pi\)
−0.962250 + 0.272167i \(0.912260\pi\)
\(228\) 0 0
\(229\) 0.576116 + 0.792956i 0.00251579 + 0.00346269i 0.810273 0.586053i \(-0.199319\pi\)
−0.807757 + 0.589515i \(0.799319\pi\)
\(230\) 65.0499 89.5335i 0.282826 0.389276i
\(231\) 0 0
\(232\) 205.347 282.636i 0.885116 1.21826i
\(233\) −287.434 208.833i −1.23362 0.896280i −0.236468 0.971639i \(-0.575990\pi\)
−0.997156 + 0.0753591i \(0.975990\pi\)
\(234\) 0 0
\(235\) 16.5723 + 12.0405i 0.0705204 + 0.0512361i
\(236\) 66.7769 48.5163i 0.282953 0.205577i
\(237\) 0 0
\(238\) 4.57404 + 6.29563i 0.0192187 + 0.0264522i
\(239\) −226.754 + 73.6767i −0.948760 + 0.308271i −0.742212 0.670166i \(-0.766223\pi\)
−0.206548 + 0.978436i \(0.566223\pi\)
\(240\) 0 0
\(241\) −309.669 100.617i −1.28493 0.417500i −0.414617 0.909996i \(-0.636085\pi\)
−0.870315 + 0.492496i \(0.836085\pi\)
\(242\) −123.807 −0.511601
\(243\) 0 0
\(244\) 149.007 + 48.4154i 0.610686 + 0.198424i
\(245\) 124.420 + 90.3964i 0.507837 + 0.368965i
\(246\) 0 0
\(247\) 188.467i 0.763026i
\(248\) 138.468 227.061i 0.558339 0.915567i
\(249\) 0 0
\(250\) 161.457 117.305i 0.645828 0.469222i
\(251\) −107.602 + 148.101i −0.428692 + 0.590044i −0.967652 0.252287i \(-0.918817\pi\)
0.538960 + 0.842331i \(0.318817\pi\)
\(252\) 0 0
\(253\) −260.638 −1.03019
\(254\) 215.904i 0.850016i
\(255\) 0 0
\(256\) −82.6315 254.314i −0.322779 0.993413i
\(257\) −58.6764 180.587i −0.228313 0.702675i −0.997938 0.0641793i \(-0.979557\pi\)
0.769625 0.638496i \(-0.220443\pi\)
\(258\) 0 0
\(259\) 138.243 + 44.9178i 0.533755 + 0.173428i
\(260\) 41.5139 + 57.1389i 0.159669 + 0.219765i
\(261\) 0 0
\(262\) −28.8624 88.8294i −0.110162 0.339043i
\(263\) 16.6417 22.9053i 0.0632762 0.0870923i −0.776206 0.630479i \(-0.782858\pi\)
0.839482 + 0.543387i \(0.182858\pi\)
\(264\) 0 0
\(265\) −159.940 + 51.9676i −0.603547 + 0.196104i
\(266\) 83.8051 + 60.8880i 0.315057 + 0.228902i
\(267\) 0 0
\(268\) 62.5492 192.507i 0.233392 0.718308i
\(269\) 166.176 + 228.722i 0.617756 + 0.850268i 0.997187 0.0749520i \(-0.0238804\pi\)
−0.379431 + 0.925220i \(0.623880\pi\)
\(270\) 0 0
\(271\) −70.9562 + 23.0551i −0.261831 + 0.0850740i −0.436991 0.899466i \(-0.643956\pi\)
0.175160 + 0.984540i \(0.443956\pi\)
\(272\) 7.59162 + 2.46667i 0.0279104 + 0.00906863i
\(273\) 0 0
\(274\) 139.835i 0.510347i
\(275\) −106.260 34.5260i −0.386400 0.125549i
\(276\) 0 0
\(277\) 253.022 + 348.255i 0.913437 + 1.25724i 0.965979 + 0.258620i \(0.0832678\pi\)
−0.0525416 + 0.998619i \(0.516732\pi\)
\(278\) 108.507i 0.390314i
\(279\) 0 0
\(280\) −122.864 −0.438800
\(281\) −111.187 + 80.7824i −0.395685 + 0.287482i −0.767781 0.640712i \(-0.778639\pi\)
0.372096 + 0.928194i \(0.378639\pi\)
\(282\) 0 0
\(283\) 15.0593 46.3479i 0.0532132 0.163773i −0.920918 0.389756i \(-0.872559\pi\)
0.974131 + 0.225983i \(0.0725593\pi\)
\(284\) −117.318 −0.413091
\(285\) 0 0
\(286\) −59.8814 + 184.296i −0.209375 + 0.644391i
\(287\) −80.9665 249.189i −0.282113 0.868255i
\(288\) 0 0
\(289\) −231.897 + 168.483i −0.802411 + 0.582986i
\(290\) −235.675 76.5755i −0.812673 0.264053i
\(291\) 0 0
\(292\) 98.1166 135.046i 0.336016 0.462486i
\(293\) −126.593 389.613i −0.432058 1.32974i −0.896072 0.443909i \(-0.853591\pi\)
0.464014 0.885828i \(-0.346409\pi\)
\(294\) 0 0
\(295\) −149.912 108.918i −0.508178 0.369213i
\(296\) 343.488 111.606i 1.16043 0.377047i
\(297\) 0 0
\(298\) −49.4566 + 35.9323i −0.165962 + 0.120578i
\(299\) −51.7953 + 159.410i −0.173229 + 0.533143i
\(300\) 0 0
\(301\) 84.8593 27.5725i 0.281925 0.0916028i
\(302\) 27.8605 9.05242i 0.0922533 0.0299749i
\(303\) 0 0
\(304\) 106.257 0.349531
\(305\) 351.732i 1.15322i
\(306\) 0 0
\(307\) 45.5020 + 33.0591i 0.148215 + 0.107684i 0.659421 0.751773i \(-0.270801\pi\)
−0.511207 + 0.859458i \(0.670801\pi\)
\(308\) 53.7378 + 73.9638i 0.174474 + 0.240142i
\(309\) 0 0
\(310\) −183.525 43.6407i −0.592016 0.140776i
\(311\) 151.616 0.487511 0.243756 0.969837i \(-0.421620\pi\)
0.243756 + 0.969837i \(0.421620\pi\)
\(312\) 0 0
\(313\) 50.3435 69.2919i 0.160842 0.221380i −0.720988 0.692948i \(-0.756312\pi\)
0.881830 + 0.471568i \(0.156312\pi\)
\(314\) −45.0469 + 138.640i −0.143462 + 0.441529i
\(315\) 0 0
\(316\) 276.366i 0.874575i
\(317\) −51.1637 + 157.466i −0.161400 + 0.496737i −0.998753 0.0499250i \(-0.984102\pi\)
0.837353 + 0.546662i \(0.184102\pi\)
\(318\) 0 0
\(319\) 180.343 + 555.040i 0.565340 + 1.73994i
\(320\) −201.156 + 146.148i −0.628612 + 0.456713i
\(321\) 0 0
\(322\) −54.1506 74.5320i −0.168170 0.231466i
\(323\) 18.4648 25.4146i 0.0571665 0.0786830i
\(324\) 0 0
\(325\) −42.2330 + 58.1287i −0.129948 + 0.178858i
\(326\) −199.517 144.957i −0.612015 0.444655i
\(327\) 0 0
\(328\) −526.683 382.658i −1.60574 1.16664i
\(329\) 13.7956 10.0231i 0.0419318 0.0304652i
\(330\) 0 0
\(331\) −200.957 276.593i −0.607120 0.835630i 0.389216 0.921146i \(-0.372746\pi\)
−0.996337 + 0.0855168i \(0.972746\pi\)
\(332\) 74.8944 24.3347i 0.225586 0.0732972i
\(333\) 0 0
\(334\) −98.9900 32.1638i −0.296377 0.0962988i
\(335\) −454.413 −1.35646
\(336\) 0 0
\(337\) 444.678 + 144.485i 1.31952 + 0.428738i 0.882330 0.470632i \(-0.155974\pi\)
0.437189 + 0.899369i \(0.355974\pi\)
\(338\) −99.7717 72.4884i −0.295183 0.214463i
\(339\) 0 0
\(340\) 11.7724i 0.0346246i
\(341\) 170.904 + 410.086i 0.501183 + 1.20260i
\(342\) 0 0
\(343\) 240.448 174.696i 0.701015 0.509317i
\(344\) 130.311 179.358i 0.378811 0.521388i
\(345\) 0 0
\(346\) 301.079 0.870171
\(347\) 279.411i 0.805218i 0.915372 + 0.402609i \(0.131897\pi\)
−0.915372 + 0.402609i \(0.868103\pi\)
\(348\) 0 0
\(349\) −95.5019 293.925i −0.273644 0.842191i −0.989575 0.144019i \(-0.953997\pi\)
0.715930 0.698172i \(-0.246003\pi\)
\(350\) −12.2037 37.5592i −0.0348678 0.107312i
\(351\) 0 0
\(352\) 363.823 + 118.213i 1.03359 + 0.335833i
\(353\) −345.083 474.966i −0.977572 1.34551i −0.938127 0.346291i \(-0.887441\pi\)
−0.0394454 0.999222i \(-0.512559\pi\)
\(354\) 0 0
\(355\) 81.3875 + 250.485i 0.229260 + 0.705591i
\(356\) 52.9086 72.8224i 0.148620 0.204557i
\(357\) 0 0
\(358\) −148.442 + 48.2316i −0.414641 + 0.134725i
\(359\) −208.797 151.700i −0.581609 0.422563i 0.257695 0.966226i \(-0.417037\pi\)
−0.839304 + 0.543663i \(0.817037\pi\)
\(360\) 0 0
\(361\) 17.6678 54.3758i 0.0489412 0.150625i
\(362\) 118.923 + 163.684i 0.328517 + 0.452165i
\(363\) 0 0
\(364\) 55.9162 18.1683i 0.153616 0.0499128i
\(365\) −356.403 115.802i −0.976447 0.317267i
\(366\) 0 0
\(367\) 79.9018i 0.217716i 0.994057 + 0.108858i \(0.0347194\pi\)
−0.994057 + 0.108858i \(0.965281\pi\)
\(368\) −89.8748 29.2021i −0.244225 0.0793535i
\(369\) 0 0
\(370\) −150.578 207.253i −0.406967 0.560143i
\(371\) 139.993i 0.377340i
\(372\) 0 0
\(373\) −381.373 −1.02245 −0.511224 0.859447i \(-0.670808\pi\)
−0.511224 + 0.859447i \(0.670808\pi\)
\(374\) −26.1310 + 18.9853i −0.0698691 + 0.0507629i
\(375\) 0 0
\(376\) 13.0928 40.2956i 0.0348213 0.107169i
\(377\) 375.308 0.995511
\(378\) 0 0
\(379\) −111.049 + 341.775i −0.293006 + 0.901781i 0.690877 + 0.722972i \(0.257224\pi\)
−0.983884 + 0.178809i \(0.942776\pi\)
\(380\) 48.4259 + 149.040i 0.127437 + 0.392209i
\(381\) 0 0
\(382\) −36.2350 + 26.3263i −0.0948560 + 0.0689169i
\(383\) −11.2735 3.66299i −0.0294348 0.00956395i 0.294263 0.955725i \(-0.404926\pi\)
−0.323697 + 0.946161i \(0.604926\pi\)
\(384\) 0 0
\(385\) 120.640 166.047i 0.313351 0.431290i
\(386\) −81.9954 252.356i −0.212423 0.653772i
\(387\) 0 0
\(388\) 73.3068 + 53.2605i 0.188935 + 0.137269i
\(389\) 195.309 63.4597i 0.502079 0.163135i −0.0470179 0.998894i \(-0.514972\pi\)
0.549097 + 0.835759i \(0.314972\pi\)
\(390\) 0 0
\(391\) −22.6024 + 16.4216i −0.0578068 + 0.0419991i
\(392\) 98.2971 302.527i 0.250758 0.771754i
\(393\) 0 0
\(394\) −79.7031 + 25.8971i −0.202292 + 0.0657287i
\(395\) 590.067 191.724i 1.49384 0.485378i
\(396\) 0 0
\(397\) −710.602 −1.78993 −0.894964 0.446137i \(-0.852799\pi\)
−0.894964 + 0.446137i \(0.852799\pi\)
\(398\) 344.916i 0.866624i
\(399\) 0 0
\(400\) −32.7728 23.8109i −0.0819321 0.0595272i
\(401\) 46.2384 + 63.6417i 0.115308 + 0.158708i 0.862770 0.505597i \(-0.168728\pi\)
−0.747462 + 0.664305i \(0.768728\pi\)
\(402\) 0 0
\(403\) 284.776 23.0324i 0.706641 0.0571525i
\(404\) 106.234 0.262956
\(405\) 0 0
\(406\) −121.250 + 166.887i −0.298646 + 0.411051i
\(407\) −186.438 + 573.798i −0.458080 + 1.40982i
\(408\) 0 0
\(409\) 480.633i 1.17514i −0.809173 0.587571i \(-0.800084\pi\)
0.809173 0.587571i \(-0.199916\pi\)
\(410\) −142.696 + 439.173i −0.348039 + 1.07115i
\(411\) 0 0
\(412\) 36.6533 + 112.807i 0.0889643 + 0.273804i
\(413\) −124.794 + 90.6683i −0.302165 + 0.219536i
\(414\) 0 0
\(415\) −103.914 143.025i −0.250395 0.344639i
\(416\) 144.601 199.027i 0.347599 0.478430i
\(417\) 0 0
\(418\) −252.725 + 347.847i −0.604606 + 0.832169i
\(419\) 69.0155 + 50.1427i 0.164715 + 0.119672i 0.667089 0.744978i \(-0.267540\pi\)
−0.502374 + 0.864650i \(0.667540\pi\)
\(420\) 0 0
\(421\) 248.970 + 180.888i 0.591379 + 0.429662i 0.842808 0.538214i \(-0.180901\pi\)
−0.251430 + 0.967876i \(0.580901\pi\)
\(422\) 145.651 105.821i 0.345143 0.250761i
\(423\) 0 0
\(424\) 204.454 + 281.406i 0.482202 + 0.663694i
\(425\) −11.3901 + 3.70088i −0.0268003 + 0.00870795i
\(426\) 0 0
\(427\) −278.468 90.4798i −0.652150 0.211896i
\(428\) −241.747 −0.564830
\(429\) 0 0
\(430\) −149.557 48.5940i −0.347807 0.113009i
\(431\) 11.4520 + 8.32036i 0.0265707 + 0.0193048i 0.600991 0.799256i \(-0.294773\pi\)
−0.574421 + 0.818560i \(0.694773\pi\)
\(432\) 0 0
\(433\) 414.463i 0.957190i −0.878036 0.478595i \(-0.841146\pi\)
0.878036 0.478595i \(-0.158854\pi\)
\(434\) −81.7606 + 134.071i −0.188388 + 0.308920i
\(435\) 0 0
\(436\) 228.128 165.745i 0.523230 0.380149i
\(437\) −218.599 + 300.875i −0.500226 + 0.688502i
\(438\) 0 0
\(439\) 354.356 0.807190 0.403595 0.914938i \(-0.367760\pi\)
0.403595 + 0.914938i \(0.367760\pi\)
\(440\) 509.967i 1.15901i
\(441\) 0 0
\(442\) 6.41876 + 19.7549i 0.0145221 + 0.0446944i
\(443\) −22.0099 67.7395i −0.0496837 0.152911i 0.923137 0.384472i \(-0.125617\pi\)
−0.972820 + 0.231561i \(0.925617\pi\)
\(444\) 0 0
\(445\) −192.187 62.4455i −0.431882 0.140327i
\(446\) 267.711 + 368.473i 0.600249 + 0.826172i
\(447\) 0 0
\(448\) 63.9608 + 196.851i 0.142770 + 0.439400i
\(449\) −388.723 + 535.031i −0.865752 + 1.19161i 0.114415 + 0.993433i \(0.463500\pi\)
−0.980167 + 0.198172i \(0.936500\pi\)
\(450\) 0 0
\(451\) 1034.30 336.064i 2.29335 0.745154i
\(452\) 182.736 + 132.765i 0.404283 + 0.293729i
\(453\) 0 0
\(454\) 193.159 594.481i 0.425460 1.30943i
\(455\) −77.5820 106.782i −0.170510 0.234687i
\(456\) 0 0
\(457\) 78.2123 25.4127i 0.171143 0.0556077i −0.222192 0.975003i \(-0.571321\pi\)
0.393335 + 0.919395i \(0.371321\pi\)
\(458\) −1.36761 0.444363i −0.00298604 0.000970224i
\(459\) 0 0
\(460\) 139.369i 0.302977i
\(461\) −26.7061 8.67734i −0.0579308 0.0188229i 0.279908 0.960027i \(-0.409696\pi\)
−0.337839 + 0.941204i \(0.609696\pi\)
\(462\) 0 0
\(463\) 213.250 + 293.513i 0.460583 + 0.633938i 0.974630 0.223824i \(-0.0718542\pi\)
−0.514047 + 0.857762i \(0.671854\pi\)
\(464\) 211.598i 0.456029i
\(465\) 0 0
\(466\) 521.248 1.11856
\(467\) 576.186 418.624i 1.23380 0.896411i 0.236634 0.971599i \(-0.423956\pi\)
0.997169 + 0.0751878i \(0.0239556\pi\)
\(468\) 0 0
\(469\) −116.893 + 359.760i −0.249239 + 0.767080i
\(470\) −30.0531 −0.0639427
\(471\) 0 0
\(472\) −118.437 + 364.512i −0.250926 + 0.772272i
\(473\) 114.444 + 352.222i 0.241953 + 0.744656i
\(474\) 0 0
\(475\) −128.977 + 93.7071i −0.271530 + 0.197278i
\(476\) 9.32024 + 3.02833i 0.0195803 + 0.00636204i
\(477\) 0 0
\(478\) 205.603 282.989i 0.430133 0.592027i
\(479\) 200.415 + 616.813i 0.418402 + 1.28771i 0.909172 + 0.416420i \(0.136715\pi\)
−0.490770 + 0.871289i \(0.663285\pi\)
\(480\) 0 0
\(481\) 313.892 + 228.056i 0.652582 + 0.474129i
\(482\) 454.319 147.617i 0.942570 0.306260i
\(483\) 0 0
\(484\) −126.137 + 91.6441i −0.260614 + 0.189347i
\(485\) 62.8608 193.466i 0.129610 0.398898i
\(486\) 0 0
\(487\) −684.840 + 222.518i −1.40624 + 0.456916i −0.911204 0.411955i \(-0.864846\pi\)
−0.495038 + 0.868871i \(0.664846\pi\)
\(488\) −691.902 + 224.813i −1.41783 + 0.460681i
\(489\) 0 0
\(490\) −225.630 −0.460469
\(491\) 201.155i 0.409684i 0.978795 + 0.204842i \(0.0656681\pi\)
−0.978795 + 0.204842i \(0.934332\pi\)
\(492\) 0 0
\(493\) 50.6098 + 36.7702i 0.102657 + 0.0745845i
\(494\) 162.524 + 223.696i 0.328997 + 0.452825i
\(495\) 0 0
\(496\) 12.9856 + 160.556i 0.0261807 + 0.323702i
\(497\) 219.246 0.441139
\(498\) 0 0
\(499\) −43.0223 + 59.2151i −0.0862170 + 0.118668i −0.849947 0.526869i \(-0.823366\pi\)
0.763730 + 0.645536i \(0.223366\pi\)
\(500\) 77.6642 239.026i 0.155328 0.478052i
\(501\) 0 0
\(502\) 268.574i 0.535008i
\(503\) −9.73355 + 29.9568i −0.0193510 + 0.0595562i −0.960266 0.279087i \(-0.909968\pi\)
0.940915 + 0.338644i \(0.109968\pi\)
\(504\) 0 0
\(505\) −73.6984 226.820i −0.145937 0.449149i
\(506\) 309.357 224.761i 0.611377 0.444192i
\(507\) 0 0
\(508\) −159.815 219.967i −0.314597 0.433006i
\(509\) 526.782 725.053i 1.03494 1.42447i 0.133759 0.991014i \(-0.457295\pi\)
0.901177 0.433452i \(-0.142705\pi\)
\(510\) 0 0
\(511\) −183.362 + 252.377i −0.358831 + 0.493888i
\(512\) 256.468 + 186.335i 0.500915 + 0.363936i
\(513\) 0 0
\(514\) 225.373 + 163.743i 0.438470 + 0.318567i
\(515\) 215.427 156.517i 0.418304 0.303916i
\(516\) 0 0
\(517\) 41.6024 + 57.2607i 0.0804688 + 0.110756i
\(518\) −202.818 + 65.8994i −0.391540 + 0.127219i
\(519\) 0 0
\(520\) −311.902 101.343i −0.599811 0.194890i
\(521\) −854.877 −1.64084 −0.820420 0.571762i \(-0.806260\pi\)
−0.820420 + 0.571762i \(0.806260\pi\)
\(522\) 0 0
\(523\) −613.920 199.475i −1.17384 0.381405i −0.343768 0.939055i \(-0.611703\pi\)
−0.830076 + 0.557650i \(0.811703\pi\)
\(524\) −95.1584 69.1366i −0.181600 0.131940i
\(525\) 0 0
\(526\) 41.5376i 0.0789688i
\(527\) 40.6583 + 24.7946i 0.0771505 + 0.0470486i
\(528\) 0 0
\(529\) −160.387 + 116.528i −0.303189 + 0.220280i
\(530\) 145.022 199.605i 0.273626 0.376613i
\(531\) 0 0
\(532\) 130.452 0.245211
\(533\) 699.375i 1.31215i
\(534\) 0 0
\(535\) 167.709 + 516.154i 0.313474 + 0.964774i
\(536\) 290.441 + 893.887i 0.541868 + 1.66770i
\(537\) 0 0
\(538\) −394.476 128.173i −0.733227 0.238240i
\(539\) 312.338 + 429.897i 0.579478 + 0.797583i
\(540\) 0 0
\(541\) −21.6931 66.7644i −0.0400981 0.123409i 0.929004 0.370071i \(-0.120666\pi\)
−0.969102 + 0.246661i \(0.920666\pi\)
\(542\) 64.3378 88.5534i 0.118704 0.163383i
\(543\) 0 0
\(544\) 38.9986 12.6714i 0.0716887 0.0232931i
\(545\) −512.142 372.093i −0.939709 0.682739i
\(546\) 0 0
\(547\) −215.959 + 664.654i −0.394807 + 1.21509i 0.534305 + 0.845292i \(0.320573\pi\)
−0.929112 + 0.369799i \(0.879427\pi\)
\(548\) 103.508 + 142.466i 0.188883 + 0.259975i
\(549\) 0 0
\(550\) 155.895 50.6535i 0.283446 0.0920973i
\(551\) 791.981 + 257.330i 1.43735 + 0.467024i
\(552\) 0 0
\(553\) 516.478i 0.933957i
\(554\) −600.634 195.158i −1.08418 0.352270i
\(555\) 0 0
\(556\) 80.3188 + 110.549i 0.144458 + 0.198830i
\(557\) 744.534i 1.33669i −0.743853 0.668343i \(-0.767004\pi\)
0.743853 0.668343i \(-0.232996\pi\)
\(558\) 0 0
\(559\) 238.166 0.426058
\(560\) 60.2037 43.7406i 0.107507 0.0781081i
\(561\) 0 0
\(562\) 62.3081 191.764i 0.110868 0.341218i
\(563\) −672.379 −1.19428 −0.597140 0.802137i \(-0.703696\pi\)
−0.597140 + 0.802137i \(0.703696\pi\)
\(564\) 0 0
\(565\) 156.697 482.262i 0.277339 0.853562i
\(566\) 22.0938 + 67.9976i 0.0390349 + 0.120137i
\(567\) 0 0
\(568\) 440.716 320.199i 0.775908 0.563730i
\(569\) −81.1903 26.3803i −0.142689 0.0463626i 0.236802 0.971558i \(-0.423901\pi\)
−0.379491 + 0.925195i \(0.623901\pi\)
\(570\) 0 0
\(571\) −16.3121 + 22.4517i −0.0285676 + 0.0393199i −0.823062 0.567952i \(-0.807736\pi\)
0.794494 + 0.607272i \(0.207736\pi\)
\(572\) 75.4104 + 232.089i 0.131836 + 0.405750i
\(573\) 0 0
\(574\) 310.988 + 225.946i 0.541792 + 0.393635i
\(575\) 134.844 43.8135i 0.234512 0.0761974i
\(576\) 0 0
\(577\) 632.893 459.823i 1.09687 0.796921i 0.116322 0.993212i \(-0.462890\pi\)
0.980546 + 0.196291i \(0.0628896\pi\)
\(578\) 129.952 399.951i 0.224830 0.691957i
\(579\) 0 0
\(580\) −296.792 + 96.4337i −0.511711 + 0.166265i
\(581\) −139.964 + 45.4772i −0.240902 + 0.0782740i
\(582\) 0 0
\(583\) −581.065 −0.996680
\(584\) 775.106i 1.32724i
\(585\) 0 0
\(586\) 486.237 + 353.272i 0.829756 + 0.602853i
\(587\) 642.042 + 883.695i 1.09377 + 1.50544i 0.843395 + 0.537294i \(0.180553\pi\)
0.250373 + 0.968149i \(0.419447\pi\)
\(588\) 0 0
\(589\) 616.732 + 146.654i 1.04708 + 0.248987i
\(590\) 271.859 0.460778
\(591\) 0 0
\(592\) −128.577 + 176.972i −0.217192 + 0.298939i
\(593\) −129.086 + 397.287i −0.217684 + 0.669962i 0.781268 + 0.624195i \(0.214573\pi\)
−0.998952 + 0.0457665i \(0.985427\pi\)
\(594\) 0 0
\(595\) 22.0005i 0.0369756i
\(596\) −23.7897 + 73.2170i −0.0399155 + 0.122847i
\(597\) 0 0
\(598\) −75.9896 233.872i −0.127073 0.391090i
\(599\) −478.000 + 347.288i −0.797997 + 0.579779i −0.910326 0.413892i \(-0.864169\pi\)
0.112329 + 0.993671i \(0.464169\pi\)
\(600\) 0 0
\(601\) 194.037 + 267.069i 0.322857 + 0.444375i 0.939337 0.342996i \(-0.111442\pi\)
−0.616480 + 0.787371i \(0.711442\pi\)
\(602\) −76.9441 + 105.905i −0.127814 + 0.175921i
\(603\) 0 0
\(604\) 21.6840 29.8455i 0.0359007 0.0494131i
\(605\) 283.175 + 205.739i 0.468058 + 0.340064i
\(606\) 0 0
\(607\) 439.177 + 319.081i 0.723520 + 0.525668i 0.887507 0.460794i \(-0.152435\pi\)
−0.163987 + 0.986463i \(0.552435\pi\)
\(608\) 441.603 320.843i 0.726321 0.527703i
\(609\) 0 0
\(610\) 303.316 + 417.478i 0.497239 + 0.684390i
\(611\) 43.2888 14.0654i 0.0708491 0.0230203i
\(612\) 0 0
\(613\) 523.889 + 170.222i 0.854631 + 0.277686i 0.703384 0.710810i \(-0.251671\pi\)
0.151247 + 0.988496i \(0.451671\pi\)
\(614\) −82.5156 −0.134390
\(615\) 0 0
\(616\) −403.743 131.184i −0.655427 0.212961i
\(617\) −432.605 314.306i −0.701143 0.509410i 0.179161 0.983820i \(-0.442662\pi\)
−0.880304 + 0.474409i \(0.842662\pi\)
\(618\) 0 0
\(619\) 410.084i 0.662495i 0.943544 + 0.331247i \(0.107469\pi\)
−0.943544 + 0.331247i \(0.892531\pi\)
\(620\) −219.282 + 91.3860i −0.353681 + 0.147397i
\(621\) 0 0
\(622\) −179.956 + 130.746i −0.289318 + 0.210202i
\(623\) −98.8767 + 136.092i −0.158711 + 0.218446i
\(624\) 0 0
\(625\) −369.320 −0.590912
\(626\) 125.657i 0.200731i
\(627\) 0 0
\(628\) 56.7289 + 174.594i 0.0903326 + 0.278015i
\(629\) 19.9846 + 61.5062i 0.0317720 + 0.0977840i
\(630\) 0 0
\(631\) −769.194 249.926i −1.21901 0.396080i −0.372288 0.928117i \(-0.621427\pi\)
−0.846721 + 0.532037i \(0.821427\pi\)
\(632\) −754.292 1038.19i −1.19350 1.64271i
\(633\) 0 0
\(634\) −75.0629 231.020i −0.118396 0.364385i
\(635\) −358.781 + 493.820i −0.565010 + 0.777669i
\(636\) 0 0
\(637\) 325.000 105.599i 0.510203 0.165775i
\(638\) −692.690 503.269i −1.08572 0.788823i
\(639\) 0 0
\(640\) −24.1272 + 74.2558i −0.0376987 + 0.116025i
\(641\) 455.154 + 626.465i 0.710068 + 0.977325i 0.999796 + 0.0202159i \(0.00643537\pi\)
−0.289727 + 0.957109i \(0.593565\pi\)
\(642\) 0 0
\(643\) 264.903 86.0723i 0.411980 0.133861i −0.0956915 0.995411i \(-0.530506\pi\)
0.507672 + 0.861550i \(0.330506\pi\)
\(644\) −110.339 35.8514i −0.171334 0.0556699i
\(645\) 0 0
\(646\) 46.0882i 0.0713439i
\(647\) 244.776 + 79.5325i 0.378324 + 0.122925i 0.492005 0.870592i \(-0.336264\pi\)
−0.113681 + 0.993517i \(0.536264\pi\)
\(648\) 0 0
\(649\) −376.333 517.978i −0.579866 0.798118i
\(650\) 105.414i 0.162175i
\(651\) 0 0
\(652\) −310.571 −0.476336
\(653\) 462.588 336.090i 0.708405 0.514686i −0.174254 0.984701i \(-0.555751\pi\)
0.882659 + 0.470015i \(0.155751\pi\)
\(654\) 0 0
\(655\) −81.5986 + 251.135i −0.124578 + 0.383412i
\(656\) 394.306 0.601076
\(657\) 0 0
\(658\) −7.73086 + 23.7932i −0.0117490 + 0.0361598i
\(659\) −234.466 721.613i −0.355791 1.09501i −0.955549 0.294831i \(-0.904737\pi\)
0.599759 0.800181i \(-0.295263\pi\)
\(660\) 0 0
\(661\) −815.622 + 592.584i −1.23392 + 0.896497i −0.997178 0.0750752i \(-0.976080\pi\)
−0.236744 + 0.971572i \(0.576080\pi\)
\(662\) 477.039 + 154.999i 0.720603 + 0.234138i
\(663\) 0 0
\(664\) −214.931 + 295.827i −0.323691 + 0.445522i
\(665\) −90.4994 278.528i −0.136089 0.418840i
\(666\) 0 0
\(667\) −599.153 435.310i −0.898280 0.652639i
\(668\) −124.661 + 40.5048i −0.186618 + 0.0606359i
\(669\) 0 0
\(670\) 539.351 391.862i 0.805002 0.584868i
\(671\) 375.551 1155.83i 0.559688 1.72254i
\(672\) 0 0
\(673\) −649.297 + 210.969i −0.964780 + 0.313476i −0.748707 0.662901i \(-0.769325\pi\)
−0.216073 + 0.976377i \(0.569325\pi\)
\(674\) −652.393 + 211.975i −0.967942 + 0.314503i
\(675\) 0 0
\(676\) −155.306 −0.229743
\(677\) 149.853i 0.221349i −0.993857 0.110675i \(-0.964699\pi\)
0.993857 0.110675i \(-0.0353011\pi\)
\(678\) 0 0
\(679\) −136.997 99.5344i −0.201763 0.146590i
\(680\) −32.1307 44.2241i −0.0472510 0.0650354i
\(681\) 0 0
\(682\) −556.485 339.361i −0.815961 0.497596i
\(683\) −619.114 −0.906462 −0.453231 0.891393i \(-0.649729\pi\)
−0.453231 + 0.891393i \(0.649729\pi\)
\(684\) 0 0
\(685\) 232.373 319.833i 0.339230 0.466910i
\(686\) −134.744 + 414.700i −0.196420 + 0.604519i
\(687\) 0 0
\(688\) 134.278i 0.195171i
\(689\) −115.472 + 355.386i −0.167594 + 0.515800i
\(690\) 0 0
\(691\) −154.326 474.965i −0.223337 0.687359i −0.998456 0.0555447i \(-0.982310\pi\)
0.775120 0.631814i \(-0.217690\pi\)
\(692\) 306.745 222.863i 0.443273 0.322057i
\(693\) 0 0
\(694\) −240.949 331.638i −0.347189 0.477865i
\(695\) 180.313 248.180i 0.259444 0.357094i
\(696\) 0 0
\(697\) 68.5201 94.3099i 0.0983072 0.135308i
\(698\) 366.818 + 266.509i 0.525528 + 0.381818i
\(699\) 0 0
\(700\) −40.2352 29.2326i −0.0574789 0.0417609i
\(701\) 327.624 238.033i 0.467367 0.339562i −0.329047 0.944313i \(-0.606728\pi\)
0.796414 + 0.604751i \(0.206728\pi\)
\(702\) 0 0
\(703\) 506.014 + 696.468i 0.719792 + 0.990708i
\(704\) −817.062 + 265.480i −1.16060 + 0.377102i
\(705\) 0 0
\(706\) 819.172 + 266.165i 1.16030 + 0.377004i
\(707\) −198.533 −0.280810
\(708\) 0 0
\(709\) −132.389 43.0157i −0.186726 0.0606709i 0.214161 0.976798i \(-0.431298\pi\)
−0.400887 + 0.916127i \(0.631298\pi\)
\(710\) −312.605 227.121i −0.440289 0.319889i
\(711\) 0 0
\(712\) 417.969i 0.587035i
\(713\) −481.340 293.535i −0.675092 0.411690i
\(714\) 0 0
\(715\) 443.218 322.017i 0.619885 0.450373i
\(716\) −115.533 + 159.018i −0.161359 + 0.222092i
\(717\) 0 0
\(718\) 378.644 0.527360
\(719\) 372.976i 0.518742i −0.965778 0.259371i \(-0.916485\pi\)
0.965778 0.259371i \(-0.0835153\pi\)
\(720\) 0 0
\(721\) −68.4985 210.817i −0.0950048 0.292395i
\(722\) 25.9206 + 79.7754i 0.0359011 + 0.110492i
\(723\) 0 0
\(724\) 242.322 + 78.7353i 0.334699 + 0.108750i
\(725\) −186.605 256.840i −0.257386 0.354262i
\(726\) 0 0
\(727\) −94.1007 289.612i −0.129437 0.398366i 0.865246 0.501347i \(-0.167162\pi\)
−0.994683 + 0.102981i \(0.967162\pi\)
\(728\) −160.467 + 220.864i −0.220422 + 0.303385i
\(729\) 0 0
\(730\) 522.884 169.895i 0.716279 0.232733i
\(731\) 32.1164 + 23.3340i 0.0439349 + 0.0319206i
\(732\) 0 0
\(733\) 53.3882 164.312i 0.0728352 0.224164i −0.908011 0.418945i \(-0.862400\pi\)
0.980847 + 0.194782i \(0.0623998\pi\)
\(734\) −68.9032 94.8371i −0.0938735 0.129206i
\(735\) 0 0
\(736\) −461.692 + 150.013i −0.627299 + 0.203822i
\(737\) −1493.24 485.184i −2.02611 0.658323i
\(738\) 0 0
\(739\) 709.952i 0.960693i −0.877079 0.480346i \(-0.840511\pi\)
0.877079 0.480346i \(-0.159489\pi\)
\(740\) −306.823 99.6929i −0.414626 0.134720i
\(741\) 0 0
\(742\) −120.723 166.161i −0.162699 0.223936i
\(743\) 782.674i 1.05340i 0.850052 + 0.526698i \(0.176570\pi\)
−0.850052 + 0.526698i \(0.823430\pi\)
\(744\) 0 0
\(745\) 172.829 0.231985
\(746\) 452.659 328.876i 0.606782 0.440853i
\(747\) 0 0
\(748\) −12.5696 + 38.6852i −0.0168042 + 0.0517181i
\(749\) 451.783 0.603181
\(750\) 0 0
\(751\) 281.220 865.505i 0.374460 1.15247i −0.569382 0.822073i \(-0.692817\pi\)
0.943842 0.330397i \(-0.107183\pi\)
\(752\) 7.93003 + 24.4061i 0.0105452 + 0.0324549i
\(753\) 0 0
\(754\) −445.460 + 323.646i −0.590796 + 0.429238i
\(755\) −78.7660 25.5926i −0.104326 0.0338975i
\(756\) 0 0
\(757\) 843.357 1160.78i 1.11408 1.53340i 0.298809 0.954313i \(-0.403411\pi\)
0.815268 0.579083i \(-0.196589\pi\)
\(758\) −162.922 501.423i −0.214937 0.661508i
\(759\) 0 0
\(760\) −588.694 427.711i −0.774598 0.562778i
\(761\) 805.298 261.657i 1.05821 0.343834i 0.272325 0.962205i \(-0.412207\pi\)
0.785886 + 0.618372i \(0.212207\pi\)
\(762\) 0 0
\(763\) −426.331 + 309.748i −0.558756 + 0.405960i
\(764\) −17.4298 + 53.6434i −0.0228139 + 0.0702138i
\(765\) 0 0
\(766\) 16.5396 5.37403i 0.0215921 0.00701570i
\(767\) −391.589 + 127.235i −0.510546 + 0.165886i
\(768\) 0 0
\(769\) −214.787 −0.279307 −0.139654 0.990200i \(-0.544599\pi\)
−0.139654 + 0.990200i \(0.544599\pi\)
\(770\) 301.118i 0.391062i
\(771\) 0 0
\(772\) −270.336 196.411i −0.350176 0.254418i
\(773\) 432.607 + 595.433i 0.559647 + 0.770289i 0.991282 0.131760i \(-0.0420629\pi\)
−0.431634 + 0.902049i \(0.642063\pi\)
\(774\) 0 0
\(775\) −157.355 183.433i −0.203038 0.236688i
\(776\) −420.749 −0.542203
\(777\) 0 0
\(778\) −177.092 + 243.746i −0.227624 + 0.313298i
\(779\) 479.527 1475.83i 0.615567 1.89452i
\(780\) 0 0
\(781\) 910.016i 1.16519i
\(782\) 12.6661 38.9823i 0.0161971 0.0498495i
\(783\) 0 0
\(784\) 59.5363 + 183.234i 0.0759392 + 0.233717i
\(785\) 333.419 242.243i 0.424738 0.308590i
\(786\) 0 0
\(787\) 124.783 + 171.749i 0.158555 + 0.218232i 0.880902 0.473298i \(-0.156937\pi\)
−0.722347 + 0.691530i \(0.756937\pi\)
\(788\) −62.0336 + 85.3819i −0.0787228 + 0.108353i
\(789\) 0 0
\(790\) −535.029 + 736.404i −0.677252 + 0.932157i
\(791\) −341.501 248.115i −0.431733 0.313672i
\(792\) 0 0
\(793\) −632.286 459.383i −0.797335 0.579298i
\(794\) 843.427 612.786i 1.06225 0.771770i
\(795\) 0 0
\(796\) −255.312 351.407i −0.320744 0.441466i
\(797\) 80.3901 26.1203i 0.100866 0.0327733i −0.258149 0.966105i \(-0.583113\pi\)
0.359015 + 0.933332i \(0.383113\pi\)
\(798\) 0 0
\(799\) 7.21547 + 2.34445i 0.00903063 + 0.00293423i
\(800\) −208.100 −0.260125
\(801\) 0 0
\(802\) −109.763 35.6640i −0.136861 0.0444689i
\(803\) −1047.53 761.076i −1.30452 0.947790i
\(804\) 0 0
\(805\) 260.456i 0.323548i
\(806\) −318.144 + 272.914i −0.394720 + 0.338603i
\(807\) 0 0
\(808\) −399.079 + 289.948i −0.493910 + 0.358847i
\(809\) 531.248 731.201i 0.656673 0.903833i −0.342693 0.939448i \(-0.611339\pi\)
0.999366 + 0.0356150i \(0.0113390\pi\)
\(810\) 0 0
\(811\) −13.2753 −0.0163690 −0.00818450 0.999967i \(-0.502605\pi\)
−0.00818450 + 0.999967i \(0.502605\pi\)
\(812\) 259.778i 0.319924i
\(813\) 0 0
\(814\) −273.526 841.827i −0.336027 1.03419i
\(815\) 215.454 + 663.099i 0.264361 + 0.813618i
\(816\) 0 0
\(817\) 502.582 + 163.299i 0.615156 + 0.199876i
\(818\) 414.472 + 570.472i 0.506690 + 0.697399i
\(819\) 0 0
\(820\) 179.701 + 553.064i 0.219148 + 0.674468i
\(821\) 290.078 399.258i 0.353323 0.486307i −0.594950 0.803762i \(-0.702828\pi\)
0.948273 + 0.317455i \(0.102828\pi\)
\(822\) 0 0
\(823\) 920.846 299.201i 1.11889 0.363549i 0.309546 0.950885i \(-0.399823\pi\)
0.809344 + 0.587335i \(0.199823\pi\)
\(824\) −445.580 323.732i −0.540752 0.392879i
\(825\) 0 0
\(826\) 69.9331 215.232i 0.0846648 0.260571i
\(827\) 606.565 + 834.865i 0.733452 + 1.00951i 0.998969 + 0.0454043i \(0.0144576\pi\)
−0.265516 + 0.964106i \(0.585542\pi\)
\(828\) 0 0
\(829\) −184.738 + 60.0251i −0.222845 + 0.0724067i −0.418311 0.908304i \(-0.637378\pi\)
0.195467 + 0.980710i \(0.437378\pi\)
\(830\) 246.675 + 80.1494i 0.297198 + 0.0965656i
\(831\) 0 0
\(832\) 552.483i 0.664042i
\(833\) 54.1717 + 17.6014i 0.0650320 + 0.0211302i
\(834\) 0 0
\(835\) 172.963 + 238.063i 0.207142 + 0.285106i
\(836\) 541.464i 0.647684i
\(837\) 0 0
\(838\) −125.156 −0.149351
\(839\) 126.468 91.8842i 0.150736 0.109516i −0.509861 0.860257i \(-0.670303\pi\)
0.660597 + 0.750740i \(0.270303\pi\)
\(840\) 0 0
\(841\) −252.555 + 777.285i −0.300303 + 0.924239i
\(842\) −451.496 −0.536218
\(843\) 0 0
\(844\) 70.0609 215.625i 0.0830106 0.255480i
\(845\) 107.741 + 331.594i 0.127505 + 0.392419i
\(846\) 0 0
\(847\) 235.728 171.267i 0.278310 0.202204i
\(848\) −200.366 65.1028i −0.236281 0.0767722i
\(849\) 0 0
\(850\) 10.3277 14.2149i 0.0121503 0.0167234i
\(851\) −236.591 728.152i −0.278015 0.855642i
\(852\) 0 0
\(853\) 262.545 + 190.750i 0.307790 + 0.223623i 0.730948 0.682433i \(-0.239078\pi\)
−0.423158 + 0.906056i \(0.639078\pi\)
\(854\) 408.544 132.744i 0.478389 0.155438i
\(855\) 0 0
\(856\) 908.147 659.808i 1.06092 0.770803i
\(857\) −292.610 + 900.560i −0.341435 + 1.05083i 0.622030 + 0.782993i \(0.286308\pi\)
−0.963465 + 0.267835i \(0.913692\pi\)
\(858\) 0 0
\(859\) 934.896 303.766i 1.08835 0.353628i 0.290744 0.956801i \(-0.406097\pi\)
0.797610 + 0.603173i \(0.206097\pi\)
\(860\) −188.341 + 61.1958i −0.219001 + 0.0711579i
\(861\) 0 0
\(862\) −20.7676 −0.0240924
\(863\) 581.969i 0.674355i −0.941441 0.337178i \(-0.890528\pi\)
0.941441 0.337178i \(-0.109472\pi\)
\(864\) 0 0
\(865\) −688.634 500.322i −0.796108 0.578407i
\(866\) 357.411 + 491.935i 0.412715 + 0.568054i
\(867\) 0 0
\(868\) 15.9425 + 197.115i 0.0183669 + 0.227091i
\(869\) 2143.73 2.46689
\(870\) 0 0
\(871\) −593.489 + 816.868i −0.681388 + 0.937851i
\(872\) −404.614 + 1245.27i −0.464007 + 1.42807i
\(873\) 0 0
\(874\) 545.623i 0.624283i
\(875\) −145.141 + 446.697i −0.165875 + 0.510510i
\(876\) 0 0
\(877\) 443.166 + 1363.93i 0.505321 + 1.55522i 0.800230 + 0.599693i \(0.204711\pi\)
−0.294909 + 0.955525i \(0.595289\pi\)
\(878\) −420.593 + 305.578i −0.479035 + 0.348039i
\(879\) 0 0
\(880\) 181.552 + 249.885i 0.206309 + 0.283960i
\(881\) −594.355 + 818.060i −0.674637 + 0.928559i −0.999854 0.0170809i \(-0.994563\pi\)
0.325217 + 0.945639i \(0.394563\pi\)
\(882\) 0 0
\(883\) 253.066 348.316i 0.286598 0.394468i −0.641307 0.767284i \(-0.721608\pi\)
0.927905 + 0.372816i \(0.121608\pi\)
\(884\) 21.1624 + 15.3754i 0.0239394 + 0.0173930i
\(885\) 0 0
\(886\) 84.5389 + 61.4211i 0.0954164 + 0.0693241i
\(887\) 637.301 463.026i 0.718490 0.522014i −0.167411 0.985887i \(-0.553541\pi\)
0.885901 + 0.463874i \(0.153541\pi\)
\(888\) 0 0
\(889\) 298.667 + 411.079i 0.335958 + 0.462406i
\(890\) 281.961 91.6146i 0.316810 0.102938i
\(891\) 0 0
\(892\) 545.498 + 177.243i 0.611545 + 0.198703i
\(893\) 100.993 0.113094
\(894\) 0 0
\(895\) 419.668 + 136.358i 0.468903 + 0.152356i
\(896\) 52.5822 + 38.2032i 0.0586855 + 0.0426375i
\(897\) 0 0
\(898\) 970.252i 1.08046i
\(899\) −292.041 + 1228.14i −0.324851 + 1.36612i
\(900\) 0 0
\(901\) −50.3897 + 36.6102i −0.0559264 + 0.0406329i
\(902\) −937.827 + 1290.81i −1.03972 + 1.43105i
\(903\) 0 0
\(904\) −1048.82 −1.16020
\(905\) 572.003i 0.632047i
\(906\) 0 0
\(907\) 300.044 + 923.442i 0.330810 + 1.01813i 0.968749 + 0.248042i \(0.0797869\pi\)
−0.637940 + 0.770086i \(0.720213\pi\)
\(908\) −243.250 748.647i −0.267897 0.824501i
\(909\) 0 0
\(910\) 184.167 + 59.8396i 0.202382 + 0.0657578i
\(911\) −78.3571 107.849i −0.0860122 0.118386i 0.763843 0.645403i \(-0.223310\pi\)
−0.849855 + 0.527017i \(0.823310\pi\)
\(912\) 0 0
\(913\) −188.760 580.945i −0.206747 0.636303i
\(914\) −70.9171 + 97.6091i −0.0775899 + 0.106793i
\(915\) 0 0
\(916\) −1.72227 + 0.559599i −0.00188020 + 0.000610916i
\(917\) 177.834 + 129.204i 0.193930 + 0.140899i
\(918\) 0 0
\(919\) 354.402 1090.74i 0.385638 1.18687i −0.550378 0.834916i \(-0.685516\pi\)
0.936016 0.351957i \(-0.114484\pi\)
\(920\) 380.384 + 523.554i 0.413461 + 0.569081i
\(921\) 0 0
\(922\) 39.1809 12.7306i 0.0424956 0.0138076i
\(923\) 556.577 + 180.843i 0.603009 + 0.195929i
\(924\) 0 0
\(925\) 328.201i 0.354812i
\(926\) −506.221 164.481i −0.546675 0.177625i
\(927\) 0 0
\(928\) 638.917 + 879.394i 0.688488 + 0.947622i
\(929\) 1665.59i 1.79288i 0.443162 + 0.896441i \(0.353857\pi\)
−0.443162 + 0.896441i \(0.646143\pi\)
\(930\) 0 0
\(931\) 758.224 0.814419
\(932\) 531.058 385.836i 0.569804 0.413987i
\(933\) 0 0
\(934\) −322.888 + 993.746i −0.345704 + 1.06397i
\(935\) 91.3165 0.0976647
\(936\) 0 0
\(937\) 173.875 535.132i 0.185566 0.571112i −0.814392 0.580315i \(-0.802929\pi\)
0.999958 + 0.00920275i \(0.00292937\pi\)
\(938\) −171.496 527.809i −0.182831 0.562697i
\(939\) 0 0
\(940\) −30.6186 + 22.2457i −0.0325730 + 0.0236657i
\(941\) 567.485 + 184.387i 0.603066 + 0.195948i 0.594607 0.804016i \(-0.297308\pi\)
0.00845860 + 0.999964i \(0.497308\pi\)
\(942\) 0 0
\(943\) −811.188 + 1116.50i −0.860220 + 1.18399i
\(944\) −71.7347 220.777i −0.0759902 0.233874i
\(945\) 0 0
\(946\) −439.574 319.369i −0.464666 0.337599i
\(947\) 1296.15 421.143i 1.36869 0.444713i 0.469752 0.882798i \(-0.344343\pi\)
0.898933 + 0.438086i \(0.144343\pi\)
\(948\) 0 0
\(949\) −673.653 + 489.438i −0.709856 + 0.515741i
\(950\) 72.2770 222.446i 0.0760810 0.234153i
\(951\) 0 0
\(952\) −43.2777 + 14.0618i −0.0454598 + 0.0147708i
\(953\) 603.483 196.083i 0.633245 0.205754i 0.0252332 0.999682i \(-0.491967\pi\)
0.608012 + 0.793928i \(0.291967\pi\)
\(954\) 0 0
\(955\) 126.625 0.132592
\(956\) 440.505i 0.460779i
\(957\) 0 0
\(958\) −769.783 559.280i −0.803531 0.583800i
\(959\) −193.438 266.244i −0.201708 0.277627i
\(960\) 0 0
\(961\) −146.225 + 949.810i −0.152159 + 0.988356i
\(962\) −569.228 −0.591713
\(963\) 0 0
\(964\) 353.600 486.689i 0.366805 0.504864i
\(965\) −231.814 + 713.450i −0.240222 + 0.739327i
\(966\) 0 0
\(967\) 535.924i 0.554213i −0.960839 0.277107i \(-0.910624\pi\)
0.960839 0.277107i \(-0.0893755\pi\)
\(968\) 223.720 688.540i 0.231116 0.711302i
\(969\) 0 0
\(970\) 92.2239 + 283.836i 0.0950762 + 0.292614i
\(971\) −842.284 + 611.955i −0.867439 + 0.630232i −0.929899 0.367816i \(-0.880106\pi\)
0.0624592 + 0.998048i \(0.480106\pi\)
\(972\) 0 0
\(973\) −150.101 206.597i −0.154267 0.212330i
\(974\) 620.962 854.681i 0.637538 0.877496i
\(975\) 0 0
\(976\) 258.999 356.482i 0.265368 0.365248i
\(977\) 504.334 + 366.420i 0.516207 + 0.375046i 0.815173 0.579218i \(-0.196642\pi\)
−0.298966 + 0.954264i \(0.596642\pi\)
\(978\) 0 0
\(979\) −564.872 410.404i −0.576989 0.419207i
\(980\) −229.876 + 167.015i −0.234567 + 0.170423i
\(981\) 0 0
\(982\) −173.465 238.755i −0.176645 0.243131i
\(983\) 478.127 155.353i 0.486395 0.158039i −0.0555453 0.998456i \(-0.517690\pi\)
0.541941 + 0.840417i \(0.317690\pi\)
\(984\) 0 0
\(985\) 225.333 + 73.2153i 0.228765 + 0.0743302i
\(986\) −91.7784 −0.0930816
\(987\) 0 0
\(988\) 331.166 + 107.602i 0.335188 + 0.108909i
\(989\) −380.216 276.243i −0.384445 0.279316i
\(990\) 0 0
\(991\) 1685.38i 1.70068i 0.526232 + 0.850341i \(0.323604\pi\)
−0.526232 + 0.850341i \(0.676396\pi\)
\(992\) 538.766 + 628.057i 0.543110 + 0.633122i
\(993\) 0 0
\(994\) −260.228 + 189.066i −0.261798 + 0.190208i
\(995\) −573.169 + 788.899i −0.576049 + 0.792864i
\(996\) 0 0
\(997\) −368.804 −0.369913 −0.184957 0.982747i \(-0.559214\pi\)
−0.184957 + 0.982747i \(0.559214\pi\)
\(998\) 107.384i 0.107599i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 279.3.v.a.46.2 20
3.2 odd 2 31.3.f.a.15.4 20
31.29 odd 10 inner 279.3.v.a.91.2 20
93.29 even 10 31.3.f.a.29.4 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.3.f.a.15.4 20 3.2 odd 2
31.3.f.a.29.4 yes 20 93.29 even 10
279.3.v.a.46.2 20 1.1 even 1 trivial
279.3.v.a.91.2 20 31.29 odd 10 inner