Properties

Label 31.3.f.a.15.4
Level $31$
Weight $3$
Character 31.15
Analytic conductor $0.845$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [31,3,Mod(15,31)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("31.15"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 31.f (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.844688819517\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 20 x^{18} - 33 x^{17} + 250 x^{16} - 510 x^{15} + 2908 x^{14} - 6447 x^{13} + \cdots + 731025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 15.4
Root \(-0.453363 - 1.39531i\) of defining polynomial
Character \(\chi\) \(=\) 31.15
Dual form 31.3.f.a.29.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.18692 - 0.862348i) q^{2} +(1.08425 - 1.49234i) q^{3} +(-0.570933 + 1.75715i) q^{4} -4.14776 q^{5} -2.70629i q^{6} +(1.06697 - 3.28380i) q^{7} +(2.65108 + 8.15917i) q^{8} +(1.72966 + 5.32336i) q^{9} +(-4.92306 + 3.57681i) q^{10} +(-13.6300 - 4.42864i) q^{11} +(2.00324 + 2.75722i) q^{12} +(5.41722 - 7.45616i) q^{13} +(-1.56537 - 4.81771i) q^{14} +(-4.49722 + 6.18989i) q^{15} +(4.20377 + 3.05422i) q^{16} +(-1.46101 + 0.474711i) q^{17} +(6.64356 + 4.82683i) q^{18} +(16.5438 - 12.0198i) q^{19} +(2.36809 - 7.28825i) q^{20} +(-3.74370 - 5.15276i) q^{21} +(-19.9967 + 6.49732i) q^{22} +(17.2964 - 5.61995i) q^{23} +(15.0507 + 4.89028i) q^{24} -7.79606 q^{25} -13.5214i q^{26} +(25.6089 + 8.32083i) q^{27} +(5.16097 + 3.74966i) q^{28} +(-23.9358 - 32.9448i) q^{29} +11.2251i q^{30} +(20.1838 + 23.5290i) q^{31} -26.6929 q^{32} +(-21.3873 + 15.5388i) q^{33} +(-1.32474 + 1.82334i) q^{34} +(-4.42555 + 13.6204i) q^{35} -10.3415 q^{36} +42.0983i q^{37} +(9.27096 - 28.5331i) q^{38} +(-5.25353 - 16.1687i) q^{39} +(-10.9960 - 33.8423i) q^{40} +(-61.3917 + 44.6037i) q^{41} +(-8.88693 - 2.88754i) q^{42} +(15.1894 + 20.9064i) q^{43} +(15.5636 - 21.4214i) q^{44} +(-7.17423 - 22.0800i) q^{45} +(15.6831 - 21.5860i) q^{46} +(-3.99548 - 2.90289i) q^{47} +(9.11588 - 2.96193i) q^{48} +(29.9969 + 21.7940i) q^{49} +(-9.25330 + 6.72292i) q^{50} +(-0.875671 + 2.69504i) q^{51} +(10.0087 + 13.7758i) q^{52} +(38.5605 - 12.5291i) q^{53} +(37.5711 - 12.2076i) q^{54} +(56.5338 + 18.3689i) q^{55} +29.6217 q^{56} -37.7216i q^{57} +(-56.8198 - 18.4619i) q^{58} +(36.1430 + 26.2594i) q^{59} +(-8.30896 - 11.4363i) q^{60} -84.8005i q^{61} +(44.2468 + 10.5215i) q^{62} +19.3264 q^{63} +(-48.4974 + 35.2354i) q^{64} +(-22.4693 + 30.9264i) q^{65} +(-11.9852 + 36.8867i) q^{66} -109.556 q^{67} -2.83825i q^{68} +(10.3668 - 31.9057i) q^{69} +(6.49278 + 19.9827i) q^{70} +(-19.6220 - 60.3903i) q^{71} +(-38.8487 + 28.2252i) q^{72} +(-85.9266 - 27.9192i) q^{73} +(36.3034 + 49.9674i) q^{74} +(-8.45289 + 11.6344i) q^{75} +(11.6752 + 35.9325i) q^{76} +(-29.0856 + 40.0328i) q^{77} +(-20.1786 - 14.6606i) q^{78} +(142.262 - 46.2236i) q^{79} +(-17.4362 - 12.6682i) q^{80} +(-0.570882 + 0.414770i) q^{81} +(-34.4032 + 105.882i) q^{82} +(25.0530 + 34.4824i) q^{83} +(11.1916 - 3.63636i) q^{84} +(6.05993 - 1.96899i) q^{85} +(36.0572 + 11.7157i) q^{86} -75.1175 q^{87} -122.950i q^{88} +(46.3352 + 15.0552i) q^{89} +(-27.5559 - 20.0205i) q^{90} +(-18.7045 - 25.7446i) q^{91} +33.6011i q^{92} +(56.9977 - 4.60992i) q^{93} -7.24561 q^{94} +(-68.6199 + 49.8553i) q^{95} +(-28.9418 + 39.8350i) q^{96} +(15.1554 - 46.6434i) q^{97} +54.3979 q^{98} -80.2172i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 3 q^{2} - 5 q^{3} - 11 q^{4} - 14 q^{5} - q^{7} - 19 q^{8} + 2 q^{9} + 12 q^{10} - 10 q^{11} + 90 q^{12} + 10 q^{13} - 85 q^{15} - 103 q^{16} + 35 q^{17} + 6 q^{18} + 47 q^{19} - 125 q^{20} - 125 q^{21}+ \cdots - 1000 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.18692 0.862348i 0.593460 0.431174i −0.250092 0.968222i \(-0.580461\pi\)
0.843551 + 0.537048i \(0.180461\pi\)
\(3\) 1.08425 1.49234i 0.361417 0.497448i −0.589126 0.808041i \(-0.700528\pi\)
0.950543 + 0.310593i \(0.100528\pi\)
\(4\) −0.570933 + 1.75715i −0.142733 + 0.439288i
\(5\) −4.14776 −0.829553 −0.414776 0.909923i \(-0.636140\pi\)
−0.414776 + 0.909923i \(0.636140\pi\)
\(6\) 2.70629i 0.451049i
\(7\) 1.06697 3.28380i 0.152425 0.469115i −0.845466 0.534029i \(-0.820677\pi\)
0.997891 + 0.0649142i \(0.0206774\pi\)
\(8\) 2.65108 + 8.15917i 0.331384 + 1.01990i
\(9\) 1.72966 + 5.32336i 0.192185 + 0.591484i
\(10\) −4.92306 + 3.57681i −0.492306 + 0.357681i
\(11\) −13.6300 4.42864i −1.23909 0.402604i −0.385088 0.922880i \(-0.625829\pi\)
−0.853998 + 0.520276i \(0.825829\pi\)
\(12\) 2.00324 + 2.75722i 0.166937 + 0.229768i
\(13\) 5.41722 7.45616i 0.416709 0.573551i −0.548130 0.836393i \(-0.684660\pi\)
0.964839 + 0.262842i \(0.0846599\pi\)
\(14\) −1.56537 4.81771i −0.111812 0.344122i
\(15\) −4.49722 + 6.18989i −0.299814 + 0.412659i
\(16\) 4.20377 + 3.05422i 0.262735 + 0.190888i
\(17\) −1.46101 + 0.474711i −0.0859418 + 0.0279242i −0.351672 0.936123i \(-0.614387\pi\)
0.265730 + 0.964047i \(0.414387\pi\)
\(18\) 6.64356 + 4.82683i 0.369086 + 0.268157i
\(19\) 16.5438 12.0198i 0.870728 0.632621i −0.0600541 0.998195i \(-0.519127\pi\)
0.930782 + 0.365574i \(0.119127\pi\)
\(20\) 2.36809 7.28825i 0.118405 0.364412i
\(21\) −3.74370 5.15276i −0.178271 0.245369i
\(22\) −19.9967 + 6.49732i −0.908940 + 0.295333i
\(23\) 17.2964 5.61995i 0.752019 0.244346i 0.0921694 0.995743i \(-0.470620\pi\)
0.659850 + 0.751397i \(0.270620\pi\)
\(24\) 15.0507 + 4.89028i 0.627113 + 0.203761i
\(25\) −7.79606 −0.311843
\(26\) 13.5214i 0.520054i
\(27\) 25.6089 + 8.32083i 0.948477 + 0.308179i
\(28\) 5.16097 + 3.74966i 0.184320 + 0.133917i
\(29\) −23.9358 32.9448i −0.825373 1.13603i −0.988767 0.149468i \(-0.952244\pi\)
0.163393 0.986561i \(-0.447756\pi\)
\(30\) 11.2251i 0.374169i
\(31\) 20.1838 + 23.5290i 0.651092 + 0.758999i
\(32\) −26.6929 −0.834154
\(33\) −21.3873 + 15.5388i −0.648101 + 0.470873i
\(34\) −1.32474 + 1.82334i −0.0389629 + 0.0536278i
\(35\) −4.42555 + 13.6204i −0.126444 + 0.389155i
\(36\) −10.3415 −0.287263
\(37\) 42.0983i 1.13779i 0.822409 + 0.568897i \(0.192630\pi\)
−0.822409 + 0.568897i \(0.807370\pi\)
\(38\) 9.27096 28.5331i 0.243973 0.750870i
\(39\) −5.25353 16.1687i −0.134706 0.414582i
\(40\) −10.9960 33.8423i −0.274901 0.846058i
\(41\) −61.3917 + 44.6037i −1.49736 + 1.08790i −0.525941 + 0.850521i \(0.676287\pi\)
−0.971418 + 0.237374i \(0.923713\pi\)
\(42\) −8.88693 2.88754i −0.211594 0.0687510i
\(43\) 15.1894 + 20.9064i 0.353242 + 0.486196i 0.948250 0.317523i \(-0.102851\pi\)
−0.595008 + 0.803720i \(0.702851\pi\)
\(44\) 15.5636 21.4214i 0.353718 0.486851i
\(45\) −7.17423 22.0800i −0.159427 0.490667i
\(46\) 15.6831 21.5860i 0.340938 0.469260i
\(47\) −3.99548 2.90289i −0.0850102 0.0617635i 0.544468 0.838781i \(-0.316731\pi\)
−0.629479 + 0.777018i \(0.716731\pi\)
\(48\) 9.11588 2.96193i 0.189914 0.0617069i
\(49\) 29.9969 + 21.7940i 0.612182 + 0.444776i
\(50\) −9.25330 + 6.72292i −0.185066 + 0.134458i
\(51\) −0.875671 + 2.69504i −0.0171700 + 0.0528439i
\(52\) 10.0087 + 13.7758i 0.192476 + 0.264920i
\(53\) 38.5605 12.5291i 0.727557 0.236398i 0.0782603 0.996933i \(-0.475063\pi\)
0.649296 + 0.760535i \(0.275063\pi\)
\(54\) 37.5711 12.2076i 0.695761 0.226067i
\(55\) 56.5338 + 18.3689i 1.02789 + 0.333981i
\(56\) 29.6217 0.528959
\(57\) 37.7216i 0.661782i
\(58\) −56.8198 18.4619i −0.979652 0.318308i
\(59\) 36.1430 + 26.2594i 0.612592 + 0.445074i 0.850326 0.526256i \(-0.176405\pi\)
−0.237734 + 0.971330i \(0.576405\pi\)
\(60\) −8.30896 11.4363i −0.138483 0.190605i
\(61\) 84.8005i 1.39017i −0.718927 0.695086i \(-0.755366\pi\)
0.718927 0.695086i \(-0.244634\pi\)
\(62\) 44.2468 + 10.5215i 0.713657 + 0.169702i
\(63\) 19.3264 0.306768
\(64\) −48.4974 + 35.2354i −0.757772 + 0.550554i
\(65\) −22.4693 + 30.9264i −0.345682 + 0.475791i
\(66\) −11.9852 + 36.8867i −0.181594 + 0.558889i
\(67\) −109.556 −1.63517 −0.817583 0.575811i \(-0.804686\pi\)
−0.817583 + 0.575811i \(0.804686\pi\)
\(68\) 2.83825i 0.0417389i
\(69\) 10.3668 31.9057i 0.150243 0.462401i
\(70\) 6.49278 + 19.9827i 0.0927540 + 0.285467i
\(71\) −19.6220 60.3903i −0.276366 0.850568i −0.988855 0.148884i \(-0.952432\pi\)
0.712488 0.701684i \(-0.247568\pi\)
\(72\) −38.8487 + 28.2252i −0.539565 + 0.392017i
\(73\) −85.9266 27.9192i −1.17708 0.382455i −0.345796 0.938310i \(-0.612391\pi\)
−0.831280 + 0.555854i \(0.812391\pi\)
\(74\) 36.3034 + 49.9674i 0.490587 + 0.675235i
\(75\) −8.45289 + 11.6344i −0.112705 + 0.155125i
\(76\) 11.6752 + 35.9325i 0.153621 + 0.472796i
\(77\) −29.0856 + 40.0328i −0.377735 + 0.519907i
\(78\) −20.1786 14.6606i −0.258700 0.187956i
\(79\) 142.262 46.2236i 1.80078 0.585108i 0.800873 0.598834i \(-0.204369\pi\)
0.999906 + 0.0137258i \(0.00436918\pi\)
\(80\) −17.4362 12.6682i −0.217953 0.158352i
\(81\) −0.570882 + 0.414770i −0.00704793 + 0.00512062i
\(82\) −34.4032 + 105.882i −0.419551 + 1.29124i
\(83\) 25.0530 + 34.4824i 0.301843 + 0.415451i 0.932816 0.360354i \(-0.117344\pi\)
−0.630973 + 0.775805i \(0.717344\pi\)
\(84\) 11.1916 3.63636i 0.133233 0.0432900i
\(85\) 6.05993 1.96899i 0.0712933 0.0231646i
\(86\) 36.0572 + 11.7157i 0.419270 + 0.136229i
\(87\) −75.1175 −0.863419
\(88\) 122.950i 1.39716i
\(89\) 46.3352 + 15.0552i 0.520620 + 0.169160i 0.557527 0.830159i \(-0.311750\pi\)
−0.0369067 + 0.999319i \(0.511750\pi\)
\(90\) −27.5559 20.0205i −0.306177 0.222450i
\(91\) −18.7045 25.7446i −0.205544 0.282908i
\(92\) 33.6011i 0.365229i
\(93\) 56.9977 4.60992i 0.612878 0.0495690i
\(94\) −7.24561 −0.0770810
\(95\) −68.6199 + 49.8553i −0.722315 + 0.524792i
\(96\) −28.9418 + 39.8350i −0.301477 + 0.414948i
\(97\) 15.1554 46.6434i 0.156241 0.480860i −0.842044 0.539409i \(-0.818648\pi\)
0.998284 + 0.0585497i \(0.0186476\pi\)
\(98\) 54.3979 0.555081
\(99\) 80.2172i 0.810274i
\(100\) 4.45103 13.6989i 0.0445103 0.136989i
\(101\) 17.7682 + 54.6850i 0.175923 + 0.541435i 0.999674 0.0255158i \(-0.00812281\pi\)
−0.823751 + 0.566951i \(0.808123\pi\)
\(102\) 1.28471 + 3.95393i 0.0125952 + 0.0387640i
\(103\) 51.9380 37.7352i 0.504253 0.366361i −0.306386 0.951907i \(-0.599120\pi\)
0.810639 + 0.585546i \(0.199120\pi\)
\(104\) 75.1976 + 24.4332i 0.723054 + 0.234934i
\(105\) 15.5280 + 21.3724i 0.147885 + 0.203547i
\(106\) 34.9638 48.1236i 0.329847 0.453996i
\(107\) −40.4335 124.442i −0.377883 1.16300i −0.941513 0.336977i \(-0.890595\pi\)
0.563630 0.826028i \(-0.309405\pi\)
\(108\) −29.2419 + 40.2480i −0.270758 + 0.372667i
\(109\) −123.474 89.7092i −1.13279 0.823020i −0.146692 0.989182i \(-0.546863\pi\)
−0.986099 + 0.166162i \(0.946863\pi\)
\(110\) 82.9415 26.9493i 0.754014 0.244994i
\(111\) 62.8252 + 45.6452i 0.565993 + 0.411218i
\(112\) 14.5147 10.5456i 0.129596 0.0941570i
\(113\) −37.7786 + 116.270i −0.334324 + 1.02894i 0.632731 + 0.774372i \(0.281934\pi\)
−0.967054 + 0.254570i \(0.918066\pi\)
\(114\) −32.5291 44.7725i −0.285343 0.392741i
\(115\) −71.7415 + 23.3102i −0.623839 + 0.202698i
\(116\) 71.5548 23.2496i 0.616852 0.200427i
\(117\) 49.0618 + 15.9411i 0.419331 + 0.136249i
\(118\) 65.5435 0.555453
\(119\) 5.30418i 0.0445729i
\(120\) −62.4268 20.2837i −0.520224 0.169031i
\(121\) 68.2717 + 49.6023i 0.564229 + 0.409936i
\(122\) −73.1275 100.651i −0.599406 0.825011i
\(123\) 139.979i 1.13804i
\(124\) −52.8676 + 22.0326i −0.426351 + 0.177682i
\(125\) 136.030 1.08824
\(126\) 22.9388 16.6660i 0.182054 0.132270i
\(127\) −86.5000 + 119.057i −0.681102 + 0.937457i −0.999946 0.0103505i \(-0.996705\pi\)
0.318844 + 0.947807i \(0.396705\pi\)
\(128\) 5.81691 17.9026i 0.0454446 0.139864i
\(129\) 47.6687 0.369525
\(130\) 56.0835i 0.431412i
\(131\) 19.6729 60.5470i 0.150175 0.462191i −0.847465 0.530851i \(-0.821872\pi\)
0.997640 + 0.0686600i \(0.0218724\pi\)
\(132\) −15.0933 46.4524i −0.114343 0.351912i
\(133\) −21.8188 67.1515i −0.164051 0.504898i
\(134\) −130.034 + 94.4754i −0.970405 + 0.705040i
\(135\) −106.220 34.5128i −0.786811 0.255650i
\(136\) −7.74650 10.6621i −0.0569596 0.0783981i
\(137\) −56.0236 + 77.1098i −0.408931 + 0.562846i −0.962957 0.269654i \(-0.913091\pi\)
0.554026 + 0.832499i \(0.313091\pi\)
\(138\) −15.2092 46.8093i −0.110212 0.339198i
\(139\) 43.4725 59.8347i 0.312752 0.430466i −0.623485 0.781835i \(-0.714284\pi\)
0.936237 + 0.351369i \(0.114284\pi\)
\(140\) −21.4065 15.5527i −0.152903 0.111091i
\(141\) −8.66421 + 2.81517i −0.0614483 + 0.0199658i
\(142\) −75.3672 54.7575i −0.530755 0.385616i
\(143\) −106.857 + 77.6362i −0.747252 + 0.542911i
\(144\) −8.98758 + 27.6609i −0.0624137 + 0.192090i
\(145\) 99.2801 + 136.647i 0.684690 + 0.942396i
\(146\) −126.064 + 40.9607i −0.863452 + 0.280553i
\(147\) 65.0484 21.1355i 0.442506 0.143779i
\(148\) −73.9732 24.0353i −0.499819 0.162401i
\(149\) −41.6680 −0.279651 −0.139826 0.990176i \(-0.544654\pi\)
−0.139826 + 0.990176i \(0.544654\pi\)
\(150\) 21.0984i 0.140656i
\(151\) −18.9900 6.17023i −0.125762 0.0408624i 0.245460 0.969407i \(-0.421061\pi\)
−0.371222 + 0.928544i \(0.621061\pi\)
\(152\) 141.931 + 103.119i 0.933754 + 0.678412i
\(153\) −5.05412 6.95639i −0.0330334 0.0454666i
\(154\) 72.5976i 0.471413i
\(155\) −83.7178 97.5926i −0.540115 0.629630i
\(156\) 31.4103 0.201348
\(157\) 80.3853 58.4034i 0.512009 0.371996i −0.301576 0.953442i \(-0.597513\pi\)
0.813585 + 0.581446i \(0.197513\pi\)
\(158\) 128.992 177.543i 0.816406 1.12369i
\(159\) 23.1116 71.1302i 0.145356 0.447360i
\(160\) 110.716 0.691974
\(161\) 62.7944i 0.390028i
\(162\) −0.319915 + 0.984597i −0.00197478 + 0.00607776i
\(163\) 51.9446 + 159.869i 0.318679 + 0.980792i 0.974214 + 0.225627i \(0.0724431\pi\)
−0.655535 + 0.755165i \(0.727557\pi\)
\(164\) −43.3249 133.340i −0.264176 0.813050i
\(165\) 88.7096 64.4513i 0.537634 0.390614i
\(166\) 59.4717 + 19.3235i 0.358263 + 0.116407i
\(167\) −41.7004 57.3956i −0.249703 0.343686i 0.665704 0.746216i \(-0.268131\pi\)
−0.915407 + 0.402529i \(0.868131\pi\)
\(168\) 32.1174 44.2058i 0.191175 0.263130i
\(169\) 25.9758 + 79.9452i 0.153703 + 0.473049i
\(170\) 5.49469 7.56280i 0.0323217 0.0444870i
\(171\) 92.6010 + 67.2785i 0.541526 + 0.393442i
\(172\) −45.4079 + 14.7539i −0.263999 + 0.0857786i
\(173\) 166.025 + 120.624i 0.959684 + 0.697251i 0.953077 0.302727i \(-0.0978970\pi\)
0.00660682 + 0.999978i \(0.497897\pi\)
\(174\) −89.1584 + 64.7774i −0.512405 + 0.372284i
\(175\) −8.31818 + 25.6007i −0.0475325 + 0.146290i
\(176\) −43.7711 60.2458i −0.248700 0.342306i
\(177\) 78.3761 25.4659i 0.442803 0.143875i
\(178\) 67.9790 22.0877i 0.381904 0.124088i
\(179\) −101.179 32.8752i −0.565248 0.183660i 0.0124333 0.999923i \(-0.496042\pi\)
−0.577681 + 0.816263i \(0.696042\pi\)
\(180\) 42.8939 0.238300
\(181\) 137.906i 0.761913i −0.924593 0.380957i \(-0.875595\pi\)
0.924593 0.380957i \(-0.124405\pi\)
\(182\) −44.4016 14.4269i −0.243965 0.0792690i
\(183\) −126.552 91.9451i −0.691538 0.502432i
\(184\) 91.7083 + 126.226i 0.498415 + 0.686009i
\(185\) 174.614i 0.943859i
\(186\) 63.6763 54.6234i 0.342346 0.293674i
\(187\) 22.0158 0.117732
\(188\) 7.38196 5.36331i 0.0392657 0.0285282i
\(189\) 54.6479 75.2164i 0.289142 0.397970i
\(190\) −38.4537 + 118.348i −0.202388 + 0.622886i
\(191\) −30.5286 −0.159836 −0.0799178 0.996801i \(-0.525466\pi\)
−0.0799178 + 0.996801i \(0.525466\pi\)
\(192\) 110.579i 0.575932i
\(193\) −55.8889 + 172.008i −0.289580 + 0.891236i 0.695408 + 0.718615i \(0.255224\pi\)
−0.984988 + 0.172621i \(0.944776\pi\)
\(194\) −22.2346 68.4311i −0.114611 0.352738i
\(195\) 21.7904 + 67.0640i 0.111746 + 0.343918i
\(196\) −55.4216 + 40.2662i −0.282763 + 0.205440i
\(197\) −54.3265 17.6518i −0.275769 0.0896028i 0.167868 0.985810i \(-0.446312\pi\)
−0.443637 + 0.896207i \(0.646312\pi\)
\(198\) −69.1751 95.2113i −0.349369 0.480865i
\(199\) −138.187 + 190.199i −0.694409 + 0.955773i 0.305584 + 0.952165i \(0.401148\pi\)
−0.999993 + 0.00360755i \(0.998852\pi\)
\(200\) −20.6680 63.6094i −0.103340 0.318047i
\(201\) −118.786 + 163.495i −0.590977 + 0.813409i
\(202\) 68.2469 + 49.5843i 0.337856 + 0.245467i
\(203\) −133.723 + 43.4493i −0.658735 + 0.214036i
\(204\) −4.23564 3.07737i −0.0207629 0.0150852i
\(205\) 254.638 185.006i 1.24214 0.902466i
\(206\) 29.1054 89.5773i 0.141288 0.434841i
\(207\) 59.8341 + 82.3545i 0.289053 + 0.397848i
\(208\) 45.5455 14.7986i 0.218969 0.0711472i
\(209\) −278.723 + 90.5626i −1.33360 + 0.433314i
\(210\) 36.8609 + 11.9768i 0.175528 + 0.0570325i
\(211\) −122.713 −0.581578 −0.290789 0.956787i \(-0.593918\pi\)
−0.290789 + 0.956787i \(0.593918\pi\)
\(212\) 74.9099i 0.353349i
\(213\) −111.398 36.1955i −0.522997 0.169932i
\(214\) −155.303 112.834i −0.725716 0.527263i
\(215\) −63.0021 86.7149i −0.293033 0.403325i
\(216\) 231.006i 1.06947i
\(217\) 98.8001 41.1750i 0.455300 0.189747i
\(218\) −223.914 −1.02713
\(219\) −134.831 + 97.9605i −0.615667 + 0.447308i
\(220\) −64.5540 + 88.8510i −0.293427 + 0.403868i
\(221\) −4.37509 + 13.4652i −0.0197968 + 0.0609283i
\(222\) 113.930 0.513200
\(223\) 310.445i 1.39213i −0.717980 0.696064i \(-0.754933\pi\)
0.717980 0.696064i \(-0.245067\pi\)
\(224\) −28.4806 + 87.6543i −0.127146 + 0.391314i
\(225\) −13.4846 41.5012i −0.0599314 0.184450i
\(226\) 55.4254 + 170.582i 0.245245 + 0.754787i
\(227\) 344.688 250.430i 1.51845 1.10322i 0.556198 0.831050i \(-0.312260\pi\)
0.962250 0.272167i \(-0.0877404\pi\)
\(228\) 66.2825 + 21.5365i 0.290713 + 0.0944583i
\(229\) 0.576116 + 0.792956i 0.00251579 + 0.00346269i 0.810273 0.586053i \(-0.199319\pi\)
−0.807757 + 0.589515i \(0.799319\pi\)
\(230\) −65.0499 + 89.5335i −0.282826 + 0.389276i
\(231\) 28.2067 + 86.8113i 0.122107 + 0.375807i
\(232\) 205.347 282.636i 0.885116 1.21826i
\(233\) 287.434 + 208.833i 1.23362 + 0.896280i 0.997156 0.0753591i \(-0.0240103\pi\)
0.236468 + 0.971639i \(0.424010\pi\)
\(234\) 71.9792 23.3875i 0.307603 0.0999464i
\(235\) 16.5723 + 12.0405i 0.0705204 + 0.0512361i
\(236\) −66.7769 + 48.5163i −0.282953 + 0.205577i
\(237\) 85.2658 262.421i 0.359771 1.10726i
\(238\) 4.57404 + 6.29563i 0.0192187 + 0.0264522i
\(239\) 226.754 73.6767i 0.948760 0.308271i 0.206548 0.978436i \(-0.433777\pi\)
0.742212 + 0.670166i \(0.233777\pi\)
\(240\) −37.8105 + 12.2854i −0.157544 + 0.0511891i
\(241\) −309.669 100.617i −1.28493 0.417500i −0.414617 0.909996i \(-0.636085\pi\)
−0.870315 + 0.492496i \(0.836085\pi\)
\(242\) 123.807 0.511601
\(243\) 243.642i 1.00264i
\(244\) 149.007 + 48.4154i 0.610686 + 0.198424i
\(245\) −124.420 90.3964i −0.507837 0.368965i
\(246\) 120.711 + 166.144i 0.490694 + 0.675382i
\(247\) 188.467i 0.763026i
\(248\) −138.468 + 227.061i −0.558339 + 0.915567i
\(249\) 78.6234 0.315756
\(250\) 161.457 117.305i 0.645828 0.469222i
\(251\) 107.602 148.101i 0.428692 0.590044i −0.538960 0.842331i \(-0.681183\pi\)
0.967652 + 0.252287i \(0.0811827\pi\)
\(252\) −11.0341 + 33.9593i −0.0437859 + 0.134759i
\(253\) −260.638 −1.03019
\(254\) 215.904i 0.850016i
\(255\) 3.63207 11.1784i 0.0142434 0.0438368i
\(256\) −82.6315 254.314i −0.322779 0.993413i
\(257\) 58.6764 + 180.587i 0.228313 + 0.702675i 0.997938 + 0.0641793i \(0.0204430\pi\)
−0.769625 + 0.638496i \(0.779557\pi\)
\(258\) 56.5790 41.1070i 0.219298 0.159330i
\(259\) 138.243 + 44.9178i 0.533755 + 0.173428i
\(260\) −41.5139 57.1389i −0.159669 0.219765i
\(261\) 133.976 184.402i 0.513319 0.706523i
\(262\) −28.8624 88.8294i −0.110162 0.339043i
\(263\) −16.6417 + 22.9053i −0.0632762 + 0.0870923i −0.839482 0.543387i \(-0.817142\pi\)
0.776206 + 0.630479i \(0.217142\pi\)
\(264\) −183.483 133.308i −0.695013 0.504956i
\(265\) −159.940 + 51.9676i −0.603547 + 0.196104i
\(266\) −83.8051 60.8880i −0.315057 0.228902i
\(267\) 72.7065 52.8244i 0.272309 0.197844i
\(268\) 62.5492 192.507i 0.233392 0.718308i
\(269\) −166.176 228.722i −0.617756 0.850268i 0.379431 0.925220i \(-0.376120\pi\)
−0.997187 + 0.0749520i \(0.976120\pi\)
\(270\) −155.836 + 50.6342i −0.577171 + 0.187534i
\(271\) −70.9562 + 23.0551i −0.261831 + 0.0850740i −0.436991 0.899466i \(-0.643956\pi\)
0.175160 + 0.984540i \(0.443956\pi\)
\(272\) −7.59162 2.46667i −0.0279104 0.00906863i
\(273\) −58.7002 −0.215019
\(274\) 139.835i 0.510347i
\(275\) 106.260 + 34.5260i 0.386400 + 0.125549i
\(276\) 50.1444 + 36.4320i 0.181683 + 0.132000i
\(277\) 253.022 + 348.255i 0.913437 + 1.25724i 0.965979 + 0.258620i \(0.0832678\pi\)
−0.0525416 + 0.998619i \(0.516732\pi\)
\(278\) 108.507i 0.390314i
\(279\) −90.3418 + 148.143i −0.323806 + 0.530979i
\(280\) −122.864 −0.438800
\(281\) 111.187 80.7824i 0.395685 0.287482i −0.372096 0.928194i \(-0.621361\pi\)
0.767781 + 0.640712i \(0.221361\pi\)
\(282\) −7.85606 + 10.8129i −0.0278584 + 0.0383438i
\(283\) 15.0593 46.3479i 0.0532132 0.163773i −0.920918 0.389756i \(-0.872559\pi\)
0.974131 + 0.225983i \(0.0725593\pi\)
\(284\) 117.318 0.413091
\(285\) 156.460i 0.548983i
\(286\) −59.8814 + 184.296i −0.209375 + 0.644391i
\(287\) 80.9665 + 249.189i 0.282113 + 0.868255i
\(288\) −46.1698 142.096i −0.160312 0.493389i
\(289\) −231.897 + 168.483i −0.802411 + 0.582986i
\(290\) 235.675 + 76.5755i 0.812673 + 0.264053i
\(291\) −53.1757 73.1901i −0.182735 0.251512i
\(292\) 98.1166 135.046i 0.336016 0.462486i
\(293\) 126.593 + 389.613i 0.432058 + 1.32974i 0.896072 + 0.443909i \(0.146409\pi\)
−0.464014 + 0.885828i \(0.653591\pi\)
\(294\) 58.9810 81.1804i 0.200616 0.276124i
\(295\) −149.912 108.918i −0.508178 0.369213i
\(296\) −343.488 + 111.606i −1.16043 + 0.377047i
\(297\) −312.198 226.825i −1.05117 0.763720i
\(298\) −49.4566 + 35.9323i −0.165962 + 0.120578i
\(299\) 51.7953 159.410i 0.173229 0.533143i
\(300\) −15.6174 21.4955i −0.0520579 0.0716516i
\(301\) 84.8593 27.5725i 0.281925 0.0916028i
\(302\) −27.8605 + 9.05242i −0.0922533 + 0.0299749i
\(303\) 100.874 + 32.7760i 0.332918 + 0.108171i
\(304\) 106.257 0.349531
\(305\) 351.732i 1.15322i
\(306\) −11.9977 3.89828i −0.0392080 0.0127395i
\(307\) 45.5020 + 33.0591i 0.148215 + 0.107684i 0.659421 0.751773i \(-0.270801\pi\)
−0.511207 + 0.859458i \(0.670801\pi\)
\(308\) −53.7378 73.9638i −0.174474 0.240142i
\(309\) 118.424i 0.383249i
\(310\) −183.525 43.6407i −0.592016 0.140776i
\(311\) −151.616 −0.487511 −0.243756 0.969837i \(-0.578380\pi\)
−0.243756 + 0.969837i \(0.578380\pi\)
\(312\) 117.996 85.7289i 0.378192 0.274772i
\(313\) 50.3435 69.2919i 0.160842 0.221380i −0.720988 0.692948i \(-0.756312\pi\)
0.881830 + 0.471568i \(0.156312\pi\)
\(314\) 45.0469 138.640i 0.143462 0.441529i
\(315\) −80.1611 −0.254480
\(316\) 276.366i 0.874575i
\(317\) 51.1637 157.466i 0.161400 0.496737i −0.837353 0.546662i \(-0.815898\pi\)
0.998753 + 0.0499250i \(0.0158982\pi\)
\(318\) −33.9073 104.356i −0.106627 0.328164i
\(319\) 180.343 + 555.040i 0.565340 + 1.73994i
\(320\) 201.156 146.148i 0.628612 0.456713i
\(321\) −229.550 74.5852i −0.715108 0.232353i
\(322\) −54.1506 74.5320i −0.168170 0.231466i
\(323\) −18.4648 + 25.4146i −0.0571665 + 0.0786830i
\(324\) −0.402878 1.23993i −0.00124345 0.00382695i
\(325\) −42.2330 + 58.1287i −0.129948 + 0.178858i
\(326\) 199.517 + 144.957i 0.612015 + 0.444655i
\(327\) −267.754 + 86.9986i −0.818820 + 0.266051i
\(328\) −526.683 382.658i −1.60574 1.16664i
\(329\) −13.7956 + 10.0231i −0.0419318 + 0.0304652i
\(330\) 49.7118 152.997i 0.150642 0.463628i
\(331\) −200.957 276.593i −0.607120 0.835630i 0.389216 0.921146i \(-0.372746\pi\)
−0.996337 + 0.0855168i \(0.972746\pi\)
\(332\) −74.8944 + 24.3347i −0.225586 + 0.0732972i
\(333\) −224.105 + 72.8160i −0.672987 + 0.218667i
\(334\) −98.9900 32.1638i −0.296377 0.0962988i
\(335\) 454.413 1.35646
\(336\) 33.0950i 0.0984972i
\(337\) 444.678 + 144.485i 1.31952 + 0.428738i 0.882330 0.470632i \(-0.155974\pi\)
0.437189 + 0.899369i \(0.355974\pi\)
\(338\) 99.7717 + 72.4884i 0.295183 + 0.214463i
\(339\) 132.554 + 182.445i 0.391015 + 0.538186i
\(340\) 11.7724i 0.0346246i
\(341\) −170.904 410.086i −0.501183 1.20260i
\(342\) 167.927 0.491016
\(343\) 240.448 174.696i 0.701015 0.509317i
\(344\) −130.311 + 179.358i −0.378811 + 0.521388i
\(345\) −42.9990 + 132.337i −0.124635 + 0.383586i
\(346\) 301.079 0.870171
\(347\) 279.411i 0.805218i −0.915372 0.402609i \(-0.868103\pi\)
0.915372 0.402609i \(-0.131897\pi\)
\(348\) 42.8870 131.993i 0.123239 0.379290i
\(349\) −95.5019 293.925i −0.273644 0.842191i −0.989575 0.144019i \(-0.953997\pi\)
0.715930 0.698172i \(-0.246003\pi\)
\(350\) 12.2037 + 37.5592i 0.0348678 + 0.107312i
\(351\) 200.770 145.868i 0.571995 0.415579i
\(352\) 363.823 + 118.213i 1.03359 + 0.335833i
\(353\) 345.083 + 474.966i 0.977572 + 1.34551i 0.938127 + 0.346291i \(0.112559\pi\)
0.0394454 + 0.999222i \(0.487441\pi\)
\(354\) 71.0656 97.8134i 0.200750 0.276309i
\(355\) 81.3875 + 250.485i 0.229260 + 0.705591i
\(356\) −52.9086 + 72.8224i −0.148620 + 0.204557i
\(357\) 7.91566 + 5.75106i 0.0221727 + 0.0161094i
\(358\) −148.442 + 48.2316i −0.414641 + 0.134725i
\(359\) 208.797 + 151.700i 0.581609 + 0.422563i 0.839304 0.543663i \(-0.182963\pi\)
−0.257695 + 0.966226i \(0.582963\pi\)
\(360\) 161.135 117.072i 0.447598 0.325199i
\(361\) 17.6678 54.3758i 0.0489412 0.150625i
\(362\) −118.923 163.684i −0.328517 0.452165i
\(363\) 148.047 48.1035i 0.407844 0.132517i
\(364\) 55.9162 18.1683i 0.153616 0.0499128i
\(365\) 356.403 + 115.802i 0.976447 + 0.317267i
\(366\) −229.495 −0.627036
\(367\) 79.9018i 0.217716i 0.994057 + 0.108858i \(0.0347194\pi\)
−0.994057 + 0.108858i \(0.965281\pi\)
\(368\) 89.8748 + 29.2021i 0.244225 + 0.0793535i
\(369\) −343.628 249.661i −0.931242 0.676587i
\(370\) −150.578 207.253i −0.406967 0.560143i
\(371\) 139.993i 0.377340i
\(372\) −24.4415 + 102.785i −0.0657030 + 0.276305i
\(373\) −381.373 −1.02245 −0.511224 0.859447i \(-0.670808\pi\)
−0.511224 + 0.859447i \(0.670808\pi\)
\(374\) 26.1310 18.9853i 0.0698691 0.0507629i
\(375\) 147.491 203.004i 0.393309 0.541344i
\(376\) 13.0928 40.2956i 0.0348213 0.107169i
\(377\) −375.308 −0.995511
\(378\) 136.401i 0.360850i
\(379\) −111.049 + 341.775i −0.293006 + 0.901781i 0.690877 + 0.722972i \(0.257224\pi\)
−0.983884 + 0.178809i \(0.942776\pi\)
\(380\) −48.4259 149.040i −0.127437 0.392209i
\(381\) 83.8863 + 258.175i 0.220174 + 0.677626i
\(382\) −36.2350 + 26.3263i −0.0948560 + 0.0689169i
\(383\) 11.2735 + 3.66299i 0.0294348 + 0.00956395i 0.323697 0.946161i \(-0.395074\pi\)
−0.294263 + 0.955725i \(0.595074\pi\)
\(384\) −20.4099 28.0918i −0.0531507 0.0731556i
\(385\) 120.640 166.047i 0.313351 0.431290i
\(386\) 81.9954 + 252.356i 0.212423 + 0.653772i
\(387\) −85.0199 + 117.020i −0.219690 + 0.302377i
\(388\) 73.3068 + 53.2605i 0.188935 + 0.137269i
\(389\) −195.309 + 63.4597i −0.502079 + 0.163135i −0.549097 0.835759i \(-0.685028\pi\)
0.0470179 + 0.998894i \(0.485028\pi\)
\(390\) 83.6959 + 60.8086i 0.214605 + 0.155920i
\(391\) −22.6024 + 16.4216i −0.0578068 + 0.0419991i
\(392\) −98.2971 + 302.527i −0.250758 + 0.771754i
\(393\) −69.0266 95.0070i −0.175640 0.241748i
\(394\) −79.7031 + 25.8971i −0.202292 + 0.0657287i
\(395\) −590.067 + 191.724i −1.49384 + 0.485378i
\(396\) 140.954 + 45.7986i 0.355944 + 0.115653i
\(397\) −710.602 −1.78993 −0.894964 0.446137i \(-0.852799\pi\)
−0.894964 + 0.446137i \(0.852799\pi\)
\(398\) 344.916i 0.866624i
\(399\) −123.870 40.2479i −0.310452 0.100872i
\(400\) −32.7728 23.8109i −0.0819321 0.0595272i
\(401\) −46.2384 63.6417i −0.115308 0.158708i 0.747462 0.664305i \(-0.231272\pi\)
−0.862770 + 0.505597i \(0.831272\pi\)
\(402\) 296.491i 0.737540i
\(403\) 284.776 23.0324i 0.706641 0.0571525i
\(404\) −106.234 −0.262956
\(405\) 2.36788 1.72037i 0.00584662 0.00424782i
\(406\) −121.250 + 166.887i −0.298646 + 0.411051i
\(407\) 186.438 573.798i 0.458080 1.40982i
\(408\) −24.3107 −0.0595852
\(409\) 480.633i 1.17514i −0.809173 0.587571i \(-0.800084\pi\)
0.809173 0.587571i \(-0.199916\pi\)
\(410\) 142.696 439.173i 0.348039 1.07115i
\(411\) 54.3308 + 167.213i 0.132192 + 0.406844i
\(412\) 36.6533 + 112.807i 0.0889643 + 0.273804i
\(413\) 124.794 90.6683i 0.302165 0.219536i
\(414\) 142.036 + 46.1504i 0.343083 + 0.111474i
\(415\) −103.914 143.025i −0.250395 0.344639i
\(416\) −144.601 + 199.027i −0.347599 + 0.478430i
\(417\) −42.1589 129.752i −0.101100 0.311155i
\(418\) −252.725 + 347.847i −0.604606 + 0.832169i
\(419\) −69.0155 50.1427i −0.164715 0.119672i 0.502374 0.864650i \(-0.332460\pi\)
−0.667089 + 0.744978i \(0.732460\pi\)
\(420\) −46.4200 + 15.0828i −0.110524 + 0.0359114i
\(421\) 248.970 + 180.888i 0.591379 + 0.429662i 0.842808 0.538214i \(-0.180901\pi\)
−0.251430 + 0.967876i \(0.580901\pi\)
\(422\) −145.651 + 105.821i −0.345143 + 0.250761i
\(423\) 8.54226 26.2904i 0.0201945 0.0621522i
\(424\) 204.454 + 281.406i 0.482202 + 0.663694i
\(425\) 11.3901 3.70088i 0.0268003 0.00870795i
\(426\) −163.434 + 53.1029i −0.383648 + 0.124655i
\(427\) −278.468 90.4798i −0.652150 0.211896i
\(428\) 241.747 0.564830
\(429\) 243.645i 0.567936i
\(430\) −149.557 48.5940i −0.347807 0.113009i
\(431\) −11.4520 8.32036i −0.0265707 0.0193048i 0.574421 0.818560i \(-0.305227\pi\)
−0.600991 + 0.799256i \(0.705227\pi\)
\(432\) 82.2401 + 113.194i 0.190371 + 0.262023i
\(433\) 414.463i 0.957190i −0.878036 0.478595i \(-0.841146\pi\)
0.878036 0.478595i \(-0.158854\pi\)
\(434\) 81.7606 134.071i 0.188388 0.308920i
\(435\) 311.569 0.716252
\(436\) 228.128 165.745i 0.523230 0.380149i
\(437\) 218.599 300.875i 0.500226 0.688502i
\(438\) −75.5576 + 232.543i −0.172506 + 0.530919i
\(439\) 354.356 0.807190 0.403595 0.914938i \(-0.367760\pi\)
0.403595 + 0.914938i \(0.367760\pi\)
\(440\) 509.967i 1.15901i
\(441\) −64.1328 + 197.381i −0.145426 + 0.447575i
\(442\) 6.41876 + 19.7549i 0.0145221 + 0.0446944i
\(443\) 22.0099 + 67.7395i 0.0496837 + 0.152911i 0.972820 0.231561i \(-0.0743834\pi\)
−0.923137 + 0.384472i \(0.874383\pi\)
\(444\) −116.074 + 84.3330i −0.261429 + 0.189939i
\(445\) −192.187 62.4455i −0.431882 0.140327i
\(446\) −267.711 368.473i −0.600249 0.826172i
\(447\) −45.1786 + 62.1830i −0.101071 + 0.139112i
\(448\) 63.9608 + 196.851i 0.142770 + 0.439400i
\(449\) 388.723 535.031i 0.865752 1.19161i −0.114415 0.993433i \(-0.536500\pi\)
0.980167 0.198172i \(-0.0635005\pi\)
\(450\) −51.7936 37.6302i −0.115097 0.0836228i
\(451\) 1034.30 336.064i 2.29335 0.745154i
\(452\) −182.736 132.765i −0.404283 0.293729i
\(453\) −29.7980 + 21.6495i −0.0657793 + 0.0477915i
\(454\) 193.159 594.481i 0.425460 1.30943i
\(455\) 77.5820 + 106.782i 0.170510 + 0.234687i
\(456\) 307.777 100.003i 0.674949 0.219304i
\(457\) 78.2123 25.4127i 0.171143 0.0556077i −0.222192 0.975003i \(-0.571321\pi\)
0.393335 + 0.919395i \(0.371321\pi\)
\(458\) 1.36761 + 0.444363i 0.00298604 + 0.000970224i
\(459\) −41.3648 −0.0901195
\(460\) 139.369i 0.302977i
\(461\) 26.7061 + 8.67734i 0.0579308 + 0.0188229i 0.337839 0.941204i \(-0.390304\pi\)
−0.279908 + 0.960027i \(0.590304\pi\)
\(462\) 108.341 + 78.7141i 0.234504 + 0.170377i
\(463\) 213.250 + 293.513i 0.460583 + 0.633938i 0.974630 0.223824i \(-0.0718542\pi\)
−0.514047 + 0.857762i \(0.671854\pi\)
\(464\) 211.598i 0.456029i
\(465\) −236.413 + 19.1209i −0.508415 + 0.0411201i
\(466\) 521.248 1.11856
\(467\) −576.186 + 418.624i −1.23380 + 0.896411i −0.997169 0.0751878i \(-0.976044\pi\)
−0.236634 + 0.971599i \(0.576044\pi\)
\(468\) −56.0220 + 77.1077i −0.119705 + 0.164760i
\(469\) −116.893 + 359.760i −0.249239 + 0.767080i
\(470\) 30.0531 0.0639427
\(471\) 183.286i 0.389143i
\(472\) −118.437 + 364.512i −0.250926 + 0.772272i
\(473\) −114.444 352.222i −0.241953 0.744656i
\(474\) −125.095 385.001i −0.263913 0.812239i
\(475\) −128.977 + 93.7071i −0.271530 + 0.197278i
\(476\) −9.32024 3.02833i −0.0195803 0.00636204i
\(477\) 133.393 + 183.600i 0.279651 + 0.384906i
\(478\) 205.603 282.989i 0.430133 0.592027i
\(479\) −200.415 616.813i −0.418402 1.28771i −0.909172 0.416420i \(-0.863285\pi\)
0.490770 0.871289i \(-0.336715\pi\)
\(480\) 120.044 165.226i 0.250091 0.344221i
\(481\) 313.892 + 228.056i 0.652582 + 0.474129i
\(482\) −454.319 + 147.617i −0.942570 + 0.306260i
\(483\) −93.7109 68.0849i −0.194018 0.140963i
\(484\) −126.137 + 91.6441i −0.260614 + 0.189347i
\(485\) −62.8608 + 193.466i −0.129610 + 0.398898i
\(486\) 210.105 + 289.184i 0.432314 + 0.595029i
\(487\) −684.840 + 222.518i −1.40624 + 0.456916i −0.911204 0.411955i \(-0.864846\pi\)
−0.495038 + 0.868871i \(0.664846\pi\)
\(488\) 691.902 224.813i 1.41783 0.460681i
\(489\) 294.901 + 95.8190i 0.603069 + 0.195949i
\(490\) −225.630 −0.460469
\(491\) 201.155i 0.409684i −0.978795 0.204842i \(-0.934332\pi\)
0.978795 0.204842i \(-0.0656681\pi\)
\(492\) −245.965 79.9187i −0.499928 0.162436i
\(493\) 50.6098 + 36.7702i 0.102657 + 0.0745845i
\(494\) −162.524 223.696i −0.328997 0.452825i
\(495\) 332.722i 0.672165i
\(496\) 12.9856 + 160.556i 0.0261807 + 0.323702i
\(497\) −219.246 −0.441139
\(498\) 93.3196 67.8007i 0.187389 0.136146i
\(499\) −43.0223 + 59.2151i −0.0862170 + 0.118668i −0.849947 0.526869i \(-0.823366\pi\)
0.763730 + 0.645536i \(0.223366\pi\)
\(500\) −77.6642 + 239.026i −0.155328 + 0.478052i
\(501\) −130.868 −0.261213
\(502\) 268.574i 0.535008i
\(503\) 9.73355 29.9568i 0.0193510 0.0595562i −0.940915 0.338644i \(-0.890032\pi\)
0.960266 + 0.279087i \(0.0900319\pi\)
\(504\) 51.2356 + 157.687i 0.101658 + 0.312871i
\(505\) −73.6984 226.820i −0.145937 0.449149i
\(506\) −309.357 + 224.761i −0.611377 + 0.444192i
\(507\) 147.470 + 47.9159i 0.290868 + 0.0945087i
\(508\) −159.815 219.967i −0.314597 0.433006i
\(509\) −526.782 + 725.053i −1.03494 + 1.42447i −0.133759 + 0.991014i \(0.542705\pi\)
−0.901177 + 0.433452i \(0.857295\pi\)
\(510\) −5.32867 16.3999i −0.0104484 0.0321568i
\(511\) −183.362 + 252.377i −0.358831 + 0.493888i
\(512\) −256.468 186.335i −0.500915 0.363936i
\(513\) 523.684 170.155i 1.02083 0.331686i
\(514\) 225.373 + 163.743i 0.438470 + 0.318567i
\(515\) −215.427 + 156.517i −0.418304 + 0.303916i
\(516\) −27.2157 + 83.7612i −0.0527435 + 0.162328i
\(517\) 41.6024 + 57.2607i 0.0804688 + 0.110756i
\(518\) 202.818 65.8994i 0.391540 0.127219i
\(519\) 360.026 116.980i 0.693693 0.225394i
\(520\) −311.902 101.343i −0.599811 0.194890i
\(521\) 854.877 1.64084 0.820420 0.571762i \(-0.193740\pi\)
0.820420 + 0.571762i \(0.193740\pi\)
\(522\) 334.405i 0.640622i
\(523\) −613.920 199.475i −1.17384 0.381405i −0.343768 0.939055i \(-0.611703\pi\)
−0.830076 + 0.557650i \(0.811703\pi\)
\(524\) 95.1584 + 69.1366i 0.181600 + 0.131940i
\(525\) 29.1861 + 40.1712i 0.0555926 + 0.0765166i
\(526\) 41.5376i 0.0789688i
\(527\) −40.6583 24.7946i −0.0771505 0.0470486i
\(528\) −137.366 −0.260164
\(529\) −160.387 + 116.528i −0.303189 + 0.220280i
\(530\) −145.022 + 199.605i −0.273626 + 0.376613i
\(531\) −77.2730 + 237.822i −0.145523 + 0.447875i
\(532\) 130.452 0.245211
\(533\) 699.375i 1.31215i
\(534\) 40.7438 125.397i 0.0762993 0.234825i
\(535\) 167.709 + 516.154i 0.313474 + 0.964774i
\(536\) −290.441 893.887i −0.541868 1.66770i
\(537\) −158.765 + 115.349i −0.295652 + 0.214803i
\(538\) −394.476 128.173i −0.733227 0.238240i
\(539\) −312.338 429.897i −0.579478 0.797583i
\(540\) 121.288 166.939i 0.224608 0.309147i
\(541\) −21.6931 66.7644i −0.0400981 0.123409i 0.929004 0.370071i \(-0.120666\pi\)
−0.969102 + 0.246661i \(0.920666\pi\)
\(542\) −64.3378 + 88.5534i −0.118704 + 0.163383i
\(543\) −205.804 149.525i −0.379012 0.275368i
\(544\) 38.9986 12.6714i 0.0716887 0.0232931i
\(545\) 512.142 + 372.093i 0.939709 + 0.682739i
\(546\) −69.6724 + 50.6200i −0.127605 + 0.0927106i
\(547\) −215.959 + 664.654i −0.394807 + 1.21509i 0.534305 + 0.845292i \(0.320573\pi\)
−0.929112 + 0.369799i \(0.879427\pi\)
\(548\) −103.508 142.466i −0.188883 0.259975i
\(549\) 451.423 146.676i 0.822265 0.267170i
\(550\) 155.895 50.6535i 0.283446 0.0920973i
\(551\) −791.981 257.330i −1.43735 0.467024i
\(552\) 287.807 0.521390
\(553\) 516.478i 0.933957i
\(554\) 600.634 + 195.158i 1.08418 + 0.352270i
\(555\) −260.584 189.325i −0.469521 0.341127i
\(556\) 80.3188 + 110.549i 0.144458 + 0.198830i
\(557\) 744.534i 1.33669i 0.743853 + 0.668343i \(0.232996\pi\)
−0.743853 + 0.668343i \(0.767004\pi\)
\(558\) 20.5223 + 253.740i 0.0367783 + 0.454731i
\(559\) 238.166 0.426058
\(560\) −60.2037 + 43.7406i −0.107507 + 0.0781081i
\(561\) 23.8707 32.8552i 0.0425503 0.0585654i
\(562\) 62.3081 191.764i 0.110868 0.341218i
\(563\) 672.379 1.19428 0.597140 0.802137i \(-0.296304\pi\)
0.597140 + 0.802137i \(0.296304\pi\)
\(564\) 16.8316i 0.0298433i
\(565\) 156.697 482.262i 0.277339 0.853562i
\(566\) −22.0938 67.9976i −0.0390349 0.120137i
\(567\) 0.752908 + 2.31721i 0.00132788 + 0.00408679i
\(568\) 440.716 320.199i 0.775908 0.563730i
\(569\) 81.1903 + 26.3803i 0.142689 + 0.0463626i 0.379491 0.925195i \(-0.376099\pi\)
−0.236802 + 0.971558i \(0.576099\pi\)
\(570\) 134.923 + 185.706i 0.236707 + 0.325799i
\(571\) −16.3121 + 22.4517i −0.0285676 + 0.0393199i −0.823062 0.567952i \(-0.807736\pi\)
0.794494 + 0.607272i \(0.207736\pi\)
\(572\) −75.4104 232.089i −0.131836 0.405750i
\(573\) −33.1007 + 45.5592i −0.0577673 + 0.0795099i
\(574\) 310.988 + 225.946i 0.541792 + 0.393635i
\(575\) −134.844 + 43.8135i −0.234512 + 0.0761974i
\(576\) −271.455 197.224i −0.471276 0.342402i
\(577\) 632.893 459.823i 1.09687 0.796921i 0.116322 0.993212i \(-0.462890\pi\)
0.980546 + 0.196291i \(0.0628896\pi\)
\(578\) −129.952 + 399.951i −0.224830 + 0.691957i
\(579\) 196.098 + 269.906i 0.338684 + 0.466159i
\(580\) −296.792 + 96.4337i −0.511711 + 0.166265i
\(581\) 139.964 45.4772i 0.240902 0.0782740i
\(582\) −126.231 41.0148i −0.216891 0.0704722i
\(583\) −581.065 −0.996680
\(584\) 775.106i 1.32724i
\(585\) −203.497 66.1201i −0.347858 0.113026i
\(586\) 486.237 + 353.272i 0.829756 + 0.602853i
\(587\) −642.042 883.695i −1.09377 1.50544i −0.843395 0.537294i \(-0.819447\pi\)
−0.250373 0.968149i \(-0.580553\pi\)
\(588\) 126.367i 0.214909i
\(589\) 616.732 + 146.654i 1.04708 + 0.248987i
\(590\) −271.859 −0.460778
\(591\) −85.2461 + 61.9349i −0.144240 + 0.104797i
\(592\) −128.577 + 176.972i −0.217192 + 0.298939i
\(593\) 129.086 397.287i 0.217684 0.669962i −0.781268 0.624195i \(-0.785427\pi\)
0.998952 0.0457665i \(-0.0145730\pi\)
\(594\) −566.156 −0.953124
\(595\) 22.0005i 0.0369756i
\(596\) 23.7897 73.2170i 0.0399155 0.122847i
\(597\) 134.012 + 412.447i 0.224476 + 0.690865i
\(598\) −75.9896 233.872i −0.127073 0.391090i
\(599\) 478.000 347.288i 0.797997 0.579779i −0.112329 0.993671i \(-0.535831\pi\)
0.910326 + 0.413892i \(0.135831\pi\)
\(600\) −117.336 38.1249i −0.195561 0.0635415i
\(601\) 194.037 + 267.069i 0.322857 + 0.444375i 0.939337 0.342996i \(-0.111442\pi\)
−0.616480 + 0.787371i \(0.711442\pi\)
\(602\) 76.9441 105.905i 0.127814 0.175921i
\(603\) −189.495 583.206i −0.314254 0.967174i
\(604\) 21.6840 29.8455i 0.0359007 0.0494131i
\(605\) −283.175 205.739i −0.468058 0.340064i
\(606\) 147.994 48.0860i 0.244214 0.0793499i
\(607\) 439.177 + 319.081i 0.723520 + 0.525668i 0.887507 0.460794i \(-0.152435\pi\)
−0.163987 + 0.986463i \(0.552435\pi\)
\(608\) −441.603 + 320.843i −0.726321 + 0.527703i
\(609\) −80.1482 + 246.671i −0.131606 + 0.405043i
\(610\) 303.316 + 417.478i 0.497239 + 0.684390i
\(611\) −43.2888 + 14.0654i −0.0708491 + 0.0230203i
\(612\) 15.1090 4.90921i 0.0246879 0.00802159i
\(613\) 523.889 + 170.222i 0.854631 + 0.277686i 0.703384 0.710810i \(-0.251671\pi\)
0.151247 + 0.988496i \(0.451671\pi\)
\(614\) 82.5156 0.134390
\(615\) 580.600i 0.944066i
\(616\) −403.743 131.184i −0.655427 0.212961i
\(617\) 432.605 + 314.306i 0.701143 + 0.509410i 0.880304 0.474409i \(-0.157338\pi\)
−0.179161 + 0.983820i \(0.557338\pi\)
\(618\) −102.123 140.560i −0.165247 0.227443i
\(619\) 410.084i 0.662495i 0.943544 + 0.331247i \(0.107469\pi\)
−0.943544 + 0.331247i \(0.892531\pi\)
\(620\) 219.282 91.3860i 0.353681 0.147397i
\(621\) 489.705 0.788575
\(622\) −179.956 + 130.746i −0.289318 + 0.210202i
\(623\) 98.8767 136.092i 0.158711 0.218446i
\(624\) 27.2981 84.0149i 0.0437470 0.134639i
\(625\) −369.320 −0.590912
\(626\) 125.657i 0.200731i
\(627\) −167.055 + 514.143i −0.266436 + 0.820005i
\(628\) 56.7289 + 174.594i 0.0903326 + 0.278015i
\(629\) −19.9846 61.5062i −0.0317720 0.0977840i
\(630\) −95.1448 + 69.1268i −0.151024 + 0.109725i
\(631\) −769.194 249.926i −1.21901 0.396080i −0.372288 0.928117i \(-0.621427\pi\)
−0.846721 + 0.532037i \(0.821427\pi\)
\(632\) 754.292 + 1038.19i 1.19350 + 1.64271i
\(633\) −133.052 + 183.130i −0.210192 + 0.289305i
\(634\) −75.0629 231.020i −0.118396 0.364385i
\(635\) 358.781 493.820i 0.565010 0.777669i
\(636\) 111.791 + 81.2212i 0.175773 + 0.127706i
\(637\) 325.000 105.599i 0.510203 0.165775i
\(638\) 692.690 + 503.269i 1.08572 + 0.788823i
\(639\) 287.540 208.910i 0.449984 0.326933i
\(640\) −24.1272 + 74.2558i −0.0376987 + 0.116025i
\(641\) −455.154 626.465i −0.710068 0.977325i −0.999796 0.0202159i \(-0.993565\pi\)
0.289727 0.957109i \(-0.406435\pi\)
\(642\) −336.775 + 109.425i −0.524572 + 0.170444i
\(643\) 264.903 86.0723i 0.411980 0.133861i −0.0956915 0.995411i \(-0.530506\pi\)
0.507672 + 0.861550i \(0.330506\pi\)
\(644\) 110.339 + 35.8514i 0.171334 + 0.0556699i
\(645\) −197.719 −0.306540
\(646\) 46.0882i 0.0713439i
\(647\) −244.776 79.5325i −0.378324 0.122925i 0.113681 0.993517i \(-0.463736\pi\)
−0.492005 + 0.870592i \(0.663736\pi\)
\(648\) −4.89763 3.55834i −0.00755807 0.00549126i
\(649\) −376.333 517.978i −0.579866 0.798118i
\(650\) 105.414i 0.162175i
\(651\) 45.6769 192.088i 0.0701641 0.295066i
\(652\) −310.571 −0.476336
\(653\) −462.588 + 336.090i −0.708405 + 0.514686i −0.882659 0.470015i \(-0.844249\pi\)
0.174254 + 0.984701i \(0.444249\pi\)
\(654\) −242.780 + 334.157i −0.371223 + 0.510944i
\(655\) −81.5986 + 251.135i −0.124578 + 0.383412i
\(656\) −394.306 −0.601076
\(657\) 505.709i 0.769724i
\(658\) −7.73086 + 23.7932i −0.0117490 + 0.0361598i
\(659\) 234.466 + 721.613i 0.355791 + 1.09501i 0.955549 + 0.294831i \(0.0952633\pi\)
−0.599759 + 0.800181i \(0.704737\pi\)
\(660\) 62.6035 + 192.674i 0.0948537 + 0.291930i
\(661\) −815.622 + 592.584i −1.23392 + 0.896497i −0.997178 0.0750752i \(-0.976080\pi\)
−0.236744 + 0.971572i \(0.576080\pi\)
\(662\) −477.039 154.999i −0.720603 0.234138i
\(663\) 15.3509 + 21.1288i 0.0231538 + 0.0318684i
\(664\) −214.931 + 295.827i −0.323691 + 0.445522i
\(665\) 90.4994 + 278.528i 0.136089 + 0.418840i
\(666\) −203.201 + 279.683i −0.305107 + 0.419944i
\(667\) −599.153 435.310i −0.898280 0.652639i
\(668\) 124.661 40.5048i 0.186618 0.0606359i
\(669\) −463.290 336.600i −0.692511 0.503139i
\(670\) 539.351 391.862i 0.805002 0.584868i
\(671\) −375.551 + 1155.83i −0.559688 + 1.72254i
\(672\) 99.9302 + 137.542i 0.148706 + 0.204676i
\(673\) −649.297 + 210.969i −0.964780 + 0.313476i −0.748707 0.662901i \(-0.769325\pi\)
−0.216073 + 0.976377i \(0.569325\pi\)
\(674\) 652.393 211.975i 0.967942 0.314503i
\(675\) −199.648 64.8697i −0.295775 0.0961032i
\(676\) −155.306 −0.229743
\(677\) 149.853i 0.221349i 0.993857 + 0.110675i \(0.0353011\pi\)
−0.993857 + 0.110675i \(0.964699\pi\)
\(678\) 314.662 + 102.240i 0.464103 + 0.150796i
\(679\) −136.997 99.5344i −0.201763 0.146590i
\(680\) 32.1307 + 44.2241i 0.0472510 + 0.0650354i
\(681\) 785.922i 1.15407i
\(682\) −556.485 339.361i −0.815961 0.497596i
\(683\) 619.114 0.906462 0.453231 0.891393i \(-0.350271\pi\)
0.453231 + 0.891393i \(0.350271\pi\)
\(684\) −171.088 + 124.302i −0.250128 + 0.181729i
\(685\) 232.373 319.833i 0.339230 0.466910i
\(686\) 134.744 414.700i 0.196420 0.604519i
\(687\) 1.80802 0.00263176
\(688\) 134.278i 0.195171i
\(689\) 115.472 355.386i 0.167594 0.515800i
\(690\) 63.0844 + 194.154i 0.0914266 + 0.281382i
\(691\) −154.326 474.965i −0.223337 0.687359i −0.998456 0.0555447i \(-0.982310\pi\)
0.775120 0.631814i \(-0.217690\pi\)
\(692\) −306.745 + 222.863i −0.443273 + 0.322057i
\(693\) −263.417 85.5895i −0.380112 0.123506i
\(694\) −240.949 331.638i −0.347189 0.477865i
\(695\) −180.313 + 248.180i −0.259444 + 0.357094i
\(696\) −199.142 612.896i −0.286124 0.880598i
\(697\) 68.5201 94.3099i 0.0983072 0.135308i
\(698\) −366.818 266.509i −0.525528 0.381818i
\(699\) 623.302 202.523i 0.891706 0.289733i
\(700\) −40.2352 29.2326i −0.0574789 0.0417609i
\(701\) −327.624 + 238.033i −0.467367 + 0.339562i −0.796414 0.604751i \(-0.793272\pi\)
0.329047 + 0.944313i \(0.393272\pi\)
\(702\) 112.509 346.268i 0.160269 0.493259i
\(703\) 506.014 + 696.468i 0.719792 + 0.990708i
\(704\) 817.062 265.480i 1.16060 0.377102i
\(705\) 35.9371 11.6767i 0.0509746 0.0165626i
\(706\) 819.172 + 266.165i 1.16030 + 0.377004i
\(707\) 198.533 0.280810
\(708\) 152.258i 0.215054i
\(709\) −132.389 43.0157i −0.186726 0.0606709i 0.214161 0.976798i \(-0.431298\pi\)
−0.400887 + 0.916127i \(0.631298\pi\)
\(710\) 312.605 + 227.121i 0.440289 + 0.319889i
\(711\) 492.129 + 677.358i 0.692165 + 0.952683i
\(712\) 417.969i 0.587035i
\(713\) 481.340 + 293.535i 0.675092 + 0.411690i
\(714\) 14.3547 0.0201046
\(715\) 443.218 322.017i 0.619885 0.450373i
\(716\) 115.533 159.018i 0.161359 0.222092i
\(717\) 135.907 418.279i 0.189549 0.583373i
\(718\) 378.644 0.527360
\(719\) 372.976i 0.518742i 0.965778 + 0.259371i \(0.0835153\pi\)
−0.965778 + 0.259371i \(0.916485\pi\)
\(720\) 37.2783 114.731i 0.0517755 0.159349i
\(721\) −68.4985 210.817i −0.0950048 0.292395i
\(722\) −25.9206 79.7754i −0.0359011 0.110492i
\(723\) −485.914 + 353.037i −0.672081 + 0.488295i
\(724\) 242.322 + 78.7353i 0.334699 + 0.108750i
\(725\) 186.605 + 256.840i 0.257386 + 0.354262i
\(726\) 134.238 184.763i 0.184901 0.254495i
\(727\) −94.1007 289.612i −0.129437 0.398366i 0.865246 0.501347i \(-0.167162\pi\)
−0.994683 + 0.102981i \(0.967162\pi\)
\(728\) 160.467 220.864i 0.220422 0.303385i
\(729\) 358.460 + 260.437i 0.491715 + 0.357252i
\(730\) 522.884 169.895i 0.716279 0.232733i
\(731\) −32.1164 23.3340i −0.0439349 0.0319206i
\(732\) 233.814 169.876i 0.319418 0.232071i
\(733\) 53.3882 164.312i 0.0728352 0.224164i −0.908011 0.418945i \(-0.862400\pi\)
0.980847 + 0.194782i \(0.0623998\pi\)
\(734\) 68.9032 + 94.8371i 0.0938735 + 0.129206i
\(735\) −269.805 + 87.6650i −0.367082 + 0.119272i
\(736\) −461.692 + 150.013i −0.627299 + 0.203822i
\(737\) 1493.24 + 485.184i 2.02611 + 0.658323i
\(738\) −623.154 −0.844382
\(739\) 709.952i 0.960693i −0.877079 0.480346i \(-0.840511\pi\)
0.877079 0.480346i \(-0.159489\pi\)
\(740\) 306.823 + 99.6929i 0.414626 + 0.134720i
\(741\) −281.258 204.346i −0.379566 0.275771i
\(742\) −120.723 166.161i −0.162699 0.223936i
\(743\) 782.674i 1.05340i −0.850052 0.526698i \(-0.823430\pi\)
0.850052 0.526698i \(-0.176570\pi\)
\(744\) 188.718 + 452.833i 0.253654 + 0.608646i
\(745\) 172.829 0.231985
\(746\) −452.659 + 328.876i −0.606782 + 0.440853i
\(747\) −140.229 + 193.009i −0.187723 + 0.258379i
\(748\) −12.5696 + 38.6852i −0.0168042 + 0.0517181i
\(749\) −451.783 −0.603181
\(750\) 368.138i 0.490851i
\(751\) 281.220 865.505i 0.374460 1.15247i −0.569382 0.822073i \(-0.692817\pi\)
0.943842 0.330397i \(-0.107183\pi\)
\(752\) −7.93003 24.4061i −0.0105452 0.0324549i
\(753\) −104.350 321.157i −0.138580 0.426504i
\(754\) −445.460 + 323.646i −0.590796 + 0.429238i
\(755\) 78.7660 + 25.5926i 0.104326 + 0.0338975i
\(756\) 100.966 + 138.968i 0.133553 + 0.183820i
\(757\) 843.357 1160.78i 1.11408 1.53340i 0.298809 0.954313i \(-0.403411\pi\)
0.815268 0.579083i \(-0.196589\pi\)
\(758\) 162.922 + 501.423i 0.214937 + 0.661508i
\(759\) −282.598 + 388.962i −0.372329 + 0.512467i
\(760\) −588.694 427.711i −0.774598 0.562778i
\(761\) −805.298 + 261.657i −1.05821 + 0.343834i −0.785886 0.618372i \(-0.787793\pi\)
−0.272325 + 0.962205i \(0.587793\pi\)
\(762\) 322.203 + 234.094i 0.422839 + 0.307210i
\(763\) −426.331 + 309.748i −0.558756 + 0.405960i
\(764\) 17.4298 53.6434i 0.0228139 0.0702138i
\(765\) 20.9633 + 28.8535i 0.0274030 + 0.0377170i
\(766\) 16.5396 5.37403i 0.0215921 0.00701570i
\(767\) 391.589 127.235i 0.510546 0.165886i
\(768\) −469.117 152.425i −0.610829 0.198470i
\(769\) −214.787 −0.279307 −0.139654 0.990200i \(-0.544599\pi\)
−0.139654 + 0.990200i \(0.544599\pi\)
\(770\) 301.118i 0.391062i
\(771\) 333.119 + 108.237i 0.432060 + 0.140385i
\(772\) −270.336 196.411i −0.350176 0.254418i
\(773\) −432.607 595.433i −0.559647 0.770289i 0.431634 0.902049i \(-0.357937\pi\)
−0.991282 + 0.131760i \(0.957937\pi\)
\(774\) 212.210i 0.274173i
\(775\) −157.355 183.433i −0.203038 0.236688i
\(776\) 420.749 0.542203
\(777\) 216.923 157.603i 0.279180 0.202836i
\(778\) −177.092 + 243.746i −0.227624 + 0.313298i
\(779\) −479.527 + 1475.83i −0.615567 + 1.89452i
\(780\) −130.282 −0.167029
\(781\) 910.016i 1.16519i
\(782\) −12.6661 + 38.9823i −0.0161971 + 0.0498495i
\(783\) −338.841 1042.85i −0.432747 1.33186i
\(784\) 59.5363 + 183.234i 0.0759392 + 0.233717i
\(785\) −333.419 + 242.243i −0.424738 + 0.308590i
\(786\) −163.858 53.2407i −0.208471 0.0677363i
\(787\) 124.783 + 171.749i 0.158555 + 0.218232i 0.880902 0.473298i \(-0.156937\pi\)
−0.722347 + 0.691530i \(0.756937\pi\)
\(788\) 62.0336 85.3819i 0.0787228 0.108353i
\(789\) 16.1388 + 49.6701i 0.0204548 + 0.0629533i
\(790\) −535.029 + 736.404i −0.677252 + 0.932157i
\(791\) 341.501 + 248.115i 0.431733 + 0.313672i
\(792\) 654.506 212.662i 0.826396 0.268512i
\(793\) −632.286 459.383i −0.797335 0.579298i
\(794\) −843.427 + 612.786i −1.06225 + 0.771770i
\(795\) −95.8614 + 295.031i −0.120580 + 0.371108i
\(796\) −255.312 351.407i −0.320744 0.441466i
\(797\) −80.3901 + 26.1203i −0.100866 + 0.0327733i −0.359015 0.933332i \(-0.616887\pi\)
0.258149 + 0.966105i \(0.416887\pi\)
\(798\) −181.732 + 59.0482i −0.227734 + 0.0739952i
\(799\) 7.21547 + 2.34445i 0.00903063 + 0.00293423i
\(800\) 208.100 0.260125
\(801\) 272.699i 0.340448i
\(802\) −109.763 35.6640i −0.136861 0.0444689i
\(803\) 1047.53 + 761.076i 1.30452 + 0.947790i
\(804\) −219.467 302.070i −0.272969 0.375709i
\(805\) 260.456i 0.323548i
\(806\) 318.144 272.914i 0.394720 0.338603i
\(807\) −521.509 −0.646232
\(808\) −399.079 + 289.948i −0.493910 + 0.358847i
\(809\) −531.248 + 731.201i −0.656673 + 0.903833i −0.999366 0.0356150i \(-0.988661\pi\)
0.342693 + 0.939448i \(0.388661\pi\)
\(810\) 1.32693 4.08388i 0.00163819 0.00504182i
\(811\) −13.2753 −0.0163690 −0.00818450 0.999967i \(-0.502605\pi\)
−0.00818450 + 0.999967i \(0.502605\pi\)
\(812\) 259.778i 0.319924i
\(813\) −42.5282 + 130.888i −0.0523103 + 0.160994i
\(814\) −273.526 841.827i −0.336027 1.03419i
\(815\) −215.454 663.099i −0.264361 0.813618i
\(816\) −11.9123 + 8.65482i −0.0145985 + 0.0106064i
\(817\) 502.582 + 163.299i 0.615156 + 0.199876i
\(818\) −414.472 570.472i −0.506690 0.697399i
\(819\) 104.695 144.100i 0.127833 0.175947i
\(820\) 179.701 + 553.064i 0.219148 + 0.674468i
\(821\) −290.078 + 399.258i −0.353323 + 0.486307i −0.948273 0.317455i \(-0.897172\pi\)
0.594950 + 0.803762i \(0.297172\pi\)
\(822\) 208.682 + 151.616i 0.253871 + 0.184448i
\(823\) 920.846 299.201i 1.11889 0.363549i 0.309546 0.950885i \(-0.399823\pi\)
0.809344 + 0.587335i \(0.199823\pi\)
\(824\) 445.580 + 323.732i 0.540752 + 0.392879i
\(825\) 166.737 121.142i 0.202106 0.146838i
\(826\) 69.9331 215.232i 0.0846648 0.260571i
\(827\) −606.565 834.865i −0.733452 1.00951i −0.998969 0.0454043i \(-0.985542\pi\)
0.265516 0.964106i \(-0.414458\pi\)
\(828\) −178.871 + 58.1186i −0.216027 + 0.0701915i
\(829\) −184.738 + 60.0251i −0.222845 + 0.0724067i −0.418311 0.908304i \(-0.637378\pi\)
0.195467 + 0.980710i \(0.437378\pi\)
\(830\) −246.675 80.1494i −0.297198 0.0965656i
\(831\) 794.056 0.955543
\(832\) 552.483i 0.664042i
\(833\) −54.1717 17.6014i −0.0650320 0.0211302i
\(834\) −161.930 117.649i −0.194161 0.141066i
\(835\) 172.963 + 238.063i 0.207142 + 0.285106i
\(836\) 541.464i 0.647684i
\(837\) 321.105 + 770.497i 0.383638 + 0.920545i
\(838\) −125.156 −0.149351
\(839\) −126.468 + 91.8842i −0.150736 + 0.109516i −0.660597 0.750740i \(-0.729697\pi\)
0.509861 + 0.860257i \(0.329697\pi\)
\(840\) −133.215 + 183.355i −0.158590 + 0.218280i
\(841\) −252.555 + 777.285i −0.300303 + 0.924239i
\(842\) 451.496 0.536218
\(843\) 253.518i 0.300734i
\(844\) 70.0609 215.625i 0.0830106 0.255480i
\(845\) −107.741 331.594i −0.127505 0.392419i
\(846\) −12.5325 38.5710i −0.0148138 0.0455922i
\(847\) 235.728 171.267i 0.278310 0.202204i
\(848\) 200.366 + 65.1028i 0.236281 + 0.0767722i
\(849\) −52.8389 72.7265i −0.0622366 0.0856614i
\(850\) 10.3277 14.2149i 0.0121503 0.0167234i
\(851\) 236.591 + 728.152i 0.278015 + 0.855642i
\(852\) 127.202 175.079i 0.149298 0.205491i
\(853\) 262.545 + 190.750i 0.307790 + 0.223623i 0.730948 0.682433i \(-0.239078\pi\)
−0.423158 + 0.906056i \(0.639078\pi\)
\(854\) −408.544 + 132.744i −0.478389 + 0.155438i
\(855\) −384.087 279.055i −0.449224 0.326381i
\(856\) 908.147 659.808i 1.06092 0.770803i
\(857\) 292.610 900.560i 0.341435 1.05083i −0.622030 0.782993i \(-0.713692\pi\)
0.963465 0.267835i \(-0.0863081\pi\)
\(858\) 210.106 + 289.187i 0.244879 + 0.337047i
\(859\) 934.896 303.766i 1.08835 0.353628i 0.290744 0.956801i \(-0.406097\pi\)
0.797610 + 0.603173i \(0.206097\pi\)
\(860\) 188.341 61.1958i 0.219001 0.0711579i
\(861\) 459.664 + 149.354i 0.533872 + 0.173466i
\(862\) −20.7676 −0.0240924
\(863\) 581.969i 0.674355i 0.941441 + 0.337178i \(0.109472\pi\)
−0.941441 + 0.337178i \(0.890528\pi\)
\(864\) −683.575 222.107i −0.791175 0.257068i
\(865\) −688.634 500.322i −0.796108 0.578407i
\(866\) −357.411 491.935i −0.412715 0.568054i
\(867\) 528.747i 0.609859i
\(868\) 15.9425 + 197.115i 0.0183669 + 0.227091i
\(869\) −2143.73 −2.46689
\(870\) 369.808 268.681i 0.425067 0.308829i
\(871\) −593.489 + 816.868i −0.681388 + 0.937851i
\(872\) 404.614 1245.27i 0.464007 1.42807i
\(873\) 274.513 0.314448
\(874\) 545.623i 0.624283i
\(875\) 145.141 446.697i 0.165875 0.510510i
\(876\) −95.1519 292.847i −0.108621 0.334301i
\(877\) 443.166 + 1363.93i 0.505321 + 1.55522i 0.800230 + 0.599693i \(0.204711\pi\)
−0.294909 + 0.955525i \(0.595289\pi\)
\(878\) 420.593 305.578i 0.479035 0.348039i
\(879\) 718.695 + 233.518i 0.817628 + 0.265663i
\(880\) 181.552 + 249.885i 0.206309 + 0.283960i
\(881\) 594.355 818.060i 0.674637 0.928559i −0.325217 0.945639i \(-0.605437\pi\)
0.999854 + 0.0170809i \(0.00543729\pi\)
\(882\) 94.0901 + 289.580i 0.106678 + 0.328322i
\(883\) 253.066 348.316i 0.286598 0.394468i −0.641307 0.767284i \(-0.721608\pi\)
0.927905 + 0.372816i \(0.121608\pi\)
\(884\) −21.1624 15.3754i −0.0239394 0.0173930i
\(885\) −325.085 + 105.627i −0.367328 + 0.119352i
\(886\) 84.5389 + 61.4211i 0.0954164 + 0.0693241i
\(887\) −637.301 + 463.026i −0.718490 + 0.522014i −0.885901 0.463874i \(-0.846459\pi\)
0.167411 + 0.985887i \(0.446459\pi\)
\(888\) −205.873 + 633.610i −0.231838 + 0.713525i
\(889\) 298.667 + 411.079i 0.335958 + 0.462406i
\(890\) −281.961 + 91.6146i −0.316810 + 0.102938i
\(891\) 9.61796 3.12506i 0.0107946 0.00350737i
\(892\) 545.498 + 177.243i 0.611545 + 0.198703i
\(893\) −100.993 −0.113094
\(894\) 112.766i 0.126136i
\(895\) 419.668 + 136.358i 0.468903 + 0.152356i
\(896\) −52.5822 38.2032i −0.0586855 0.0426375i
\(897\) −181.735 250.137i −0.202603 0.278859i
\(898\) 970.252i 1.08046i
\(899\) 292.041 1228.14i 0.324851 1.36612i
\(900\) 80.6227 0.0895808
\(901\) −50.3897 + 36.6102i −0.0559264 + 0.0406329i
\(902\) 937.827 1290.81i 1.03972 1.43105i
\(903\) 50.8612 156.535i 0.0563247 0.173350i
\(904\) −1048.82 −1.16020
\(905\) 572.003i 0.632047i
\(906\) −16.6984 + 51.3925i −0.0184310 + 0.0567247i
\(907\) 300.044 + 923.442i 0.330810 + 1.01813i 0.968749 + 0.248042i \(0.0797869\pi\)
−0.637940 + 0.770086i \(0.720213\pi\)
\(908\) 243.250 + 748.647i 0.267897 + 0.824501i
\(909\) −260.375 + 189.173i −0.286441 + 0.208111i
\(910\) 184.167 + 59.8396i 0.202382 + 0.0657578i
\(911\) 78.3571 + 107.849i 0.0860122 + 0.118386i 0.849855 0.527017i \(-0.176690\pi\)
−0.763843 + 0.645403i \(0.776690\pi\)
\(912\) 115.210 158.573i 0.126327 0.173874i
\(913\) −188.760 580.945i −0.206747 0.636303i
\(914\) 70.9171 97.6091i 0.0775899 0.106793i
\(915\) 524.906 + 381.366i 0.573667 + 0.416794i
\(916\) −1.72227 + 0.559599i −0.00188020 + 0.000610916i
\(917\) −177.834 129.204i −0.193930 0.140899i
\(918\) −49.0967 + 35.6709i −0.0534823 + 0.0388572i
\(919\) 354.402 1090.74i 0.385638 1.18687i −0.550378 0.834916i \(-0.685516\pi\)
0.936016 0.351957i \(-0.114484\pi\)
\(920\) −380.384 523.554i −0.413461 0.569081i
\(921\) 98.6711 32.0602i 0.107135 0.0348102i
\(922\) 39.1809 12.7306i 0.0424956 0.0138076i
\(923\) −556.577 180.843i −0.603009 0.195929i
\(924\) −168.645 −0.182516
\(925\) 328.201i 0.354812i
\(926\) 506.221 + 164.481i 0.546675 + 0.177625i
\(927\) 290.713 + 211.216i 0.313606 + 0.227848i
\(928\) 638.917 + 879.394i 0.688488 + 0.947622i
\(929\) 1665.59i 1.79288i −0.443162 0.896441i \(-0.646143\pi\)
0.443162 0.896441i \(-0.353857\pi\)
\(930\) −264.114 + 226.565i −0.283994 + 0.243618i
\(931\) 758.224 0.814419
\(932\) −531.058 + 385.836i −0.569804 + 0.413987i
\(933\) −164.390 + 226.263i −0.176195 + 0.242512i
\(934\) −322.888 + 993.746i −0.345704 + 1.06397i
\(935\) −91.3165 −0.0976647
\(936\) 442.565i 0.472826i
\(937\) 173.875 535.132i 0.185566 0.571112i −0.814392 0.580315i \(-0.802929\pi\)
0.999958 + 0.00920275i \(0.00292937\pi\)
\(938\) 171.496 + 527.809i 0.182831 + 0.562697i
\(939\) −48.8223 150.260i −0.0519939 0.160021i
\(940\) −30.6186 + 22.2457i −0.0325730 + 0.0236657i
\(941\) −567.485 184.387i −0.603066 0.195948i −0.00845860 0.999964i \(-0.502692\pi\)
−0.594607 + 0.804016i \(0.702692\pi\)
\(942\) −158.057 217.546i −0.167788 0.230941i
\(943\) −811.188 + 1116.50i −0.860220 + 1.18399i
\(944\) 71.7347 + 220.777i 0.0759902 + 0.233874i
\(945\) −226.667 + 311.980i −0.239859 + 0.330137i
\(946\) −439.574 319.369i −0.464666 0.337599i
\(947\) −1296.15 + 421.143i −1.36869 + 0.444713i −0.898933 0.438086i \(-0.855657\pi\)
−0.469752 + 0.882798i \(0.655657\pi\)
\(948\) 412.432 + 299.650i 0.435055 + 0.316086i
\(949\) −673.653 + 489.438i −0.709856 + 0.515741i
\(950\) −72.2770 + 222.446i −0.0760810 + 0.234153i
\(951\) −179.519 247.086i −0.188768 0.259817i
\(952\) −43.2777 + 14.0618i −0.0454598 + 0.0147708i
\(953\) −603.483 + 196.083i −0.633245 + 0.205754i −0.608012 0.793928i \(-0.708033\pi\)
−0.0252332 + 0.999682i \(0.508033\pi\)
\(954\) 316.655 + 102.887i 0.331923 + 0.107848i
\(955\) 126.625 0.132592
\(956\) 440.505i 0.460779i
\(957\) 1023.85 + 332.668i 1.06985 + 0.347616i
\(958\) −769.783 559.280i −0.803531 0.583800i
\(959\) 193.438 + 266.244i 0.201708 + 0.277627i
\(960\) 458.655i 0.477766i
\(961\) −146.225 + 949.810i −0.152159 + 0.988356i
\(962\) 569.228 0.591713
\(963\) 592.510 430.484i 0.615276 0.447024i
\(964\) 353.600 486.689i 0.366805 0.504864i
\(965\) 231.814 713.450i 0.240222 0.739327i
\(966\) −169.940 −0.175922
\(967\) 535.924i 0.554213i −0.960839 0.277107i \(-0.910624\pi\)
0.960839 0.277107i \(-0.0893755\pi\)
\(968\) −223.720 + 688.540i −0.231116 + 0.711302i
\(969\) 17.9069 + 55.1116i 0.0184797 + 0.0568748i
\(970\) 92.2239 + 283.836i 0.0950762 + 0.292614i
\(971\) 842.284 611.955i 0.867439 0.630232i −0.0624592 0.998048i \(-0.519894\pi\)
0.929899 + 0.367816i \(0.119894\pi\)
\(972\) −428.117 139.104i −0.440449 0.143111i
\(973\) −150.101 206.597i −0.154267 0.212330i
\(974\) −620.962 + 854.681i −0.637538 + 0.877496i
\(975\) 40.9569 + 126.052i 0.0420070 + 0.129284i
\(976\) 258.999 356.482i 0.265368 0.365248i
\(977\) −504.334 366.420i −0.516207 0.375046i 0.298966 0.954264i \(-0.403358\pi\)
−0.815173 + 0.579218i \(0.803358\pi\)
\(978\) 432.653 140.577i 0.442385 0.143740i
\(979\) −564.872 410.404i −0.576989 0.419207i
\(980\) 229.876 167.015i 0.234567 0.170423i
\(981\) 263.986 812.464i 0.269098 0.828200i
\(982\) −173.465 238.755i −0.176645 0.243131i
\(983\) −478.127 + 155.353i −0.486395 + 0.158039i −0.541941 0.840417i \(-0.682310\pi\)
0.0555453 + 0.998456i \(0.482310\pi\)
\(984\) −1142.11 + 371.095i −1.16069 + 0.377129i
\(985\) 225.333 + 73.2153i 0.228765 + 0.0743302i
\(986\) 91.7784 0.0930816
\(987\) 31.4553i 0.0318696i
\(988\) 331.166 + 107.602i 0.335188 + 0.108909i
\(989\) 380.216 + 276.243i 0.384445 + 0.279316i
\(990\) 286.922 + 394.914i 0.289820 + 0.398903i
\(991\) 1685.38i 1.70068i 0.526232 + 0.850341i \(0.323604\pi\)
−0.526232 + 0.850341i \(0.676396\pi\)
\(992\) −538.766 628.057i −0.543110 0.633122i
\(993\) −630.660 −0.635106
\(994\) −260.228 + 189.066i −0.261798 + 0.190208i
\(995\) 573.169 788.899i 0.576049 0.792864i
\(996\) −44.8887 + 138.153i −0.0450690 + 0.138708i
\(997\) −368.804 −0.369913 −0.184957 0.982747i \(-0.559214\pi\)
−0.184957 + 0.982747i \(0.559214\pi\)
\(998\) 107.384i 0.107599i
\(999\) −350.293 + 1078.09i −0.350644 + 1.07917i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 31.3.f.a.15.4 20
3.2 odd 2 279.3.v.a.46.2 20
31.29 odd 10 inner 31.3.f.a.29.4 yes 20
93.29 even 10 279.3.v.a.91.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.3.f.a.15.4 20 1.1 even 1 trivial
31.3.f.a.29.4 yes 20 31.29 odd 10 inner
279.3.v.a.46.2 20 3.2 odd 2
279.3.v.a.91.2 20 93.29 even 10