Defining parameters
Level: | \( N \) | \(=\) | \( 279 = 3^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 279.v (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 31 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(8\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(279, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 272 | 108 | 164 |
Cusp forms | 240 | 100 | 140 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(279, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
279.3.v.a | $20$ | $7.602$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(3\) | \(0\) | \(14\) | \(-1\) | \(q+\beta _{10}q^{2}+(3\beta _{11}+\beta _{19})q^{4}+(2-\beta _{4}+\cdots)q^{5}+\cdots\) |
279.3.v.b | $40$ | $7.602$ | None | \(0\) | \(0\) | \(0\) | \(-4\) | ||
279.3.v.c | $40$ | $7.602$ | None | \(0\) | \(0\) | \(0\) | \(-4\) |
Decomposition of \(S_{3}^{\mathrm{old}}(279, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(279, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(93, [\chi])\)\(^{\oplus 2}\)