Properties

Label 279.3.v
Level $279$
Weight $3$
Character orbit 279.v
Rep. character $\chi_{279}(46,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $100$
Newform subspaces $3$
Sturm bound $96$
Trace bound $8$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 279 = 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 279.v (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 3 \)
Sturm bound: \(96\)
Trace bound: \(8\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(279, [\chi])\).

Total New Old
Modular forms 272 108 164
Cusp forms 240 100 140
Eisenstein series 32 8 24

Trace form

\( 100 q + 3 q^{2} - 51 q^{4} + 14 q^{5} - 9 q^{7} + 25 q^{8} - 60 q^{10} + 10 q^{13} - 10 q^{14} - 31 q^{16} + 45 q^{17} - 25 q^{19} + 57 q^{20} - 10 q^{22} - 5 q^{23} + 306 q^{25} + 88 q^{28} + 15 q^{29}+ \cdots + 340 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(279, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
279.3.v.a 279.v 31.f $20$ $7.602$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 31.3.f.a \(3\) \(0\) \(14\) \(-1\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{10}q^{2}+(3\beta _{11}+\beta _{19})q^{4}+(2-\beta _{4}+\cdots)q^{5}+\cdots\)
279.3.v.b 279.v 31.f $40$ $7.602$ None 279.3.v.b \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{10}]$
279.3.v.c 279.v 31.f $40$ $7.602$ None 93.3.j.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{3}^{\mathrm{old}}(279, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(279, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(93, [\chi])\)\(^{\oplus 2}\)