Properties

Label 279.3.v.a.244.5
Level $279$
Weight $3$
Character 279.244
Analytic conductor $7.602$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [279,3,Mod(46,279)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(279, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("279.46"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 279 = 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 279.v (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,3,0,-11,14,0,-1,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60219937565\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 20 x^{18} - 33 x^{17} + 250 x^{16} - 510 x^{15} + 2908 x^{14} - 6447 x^{13} + \cdots + 731025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 244.5
Root \(2.39225 + 1.73807i\) of defining polynomial
Character \(\chi\) \(=\) 279.244
Dual form 279.3.v.a.271.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.913758 + 2.81226i) q^{2} +(-3.83778 + 2.78831i) q^{4} +5.21585 q^{5} +(-5.08304 + 3.69304i) q^{7} +(-1.77924 - 1.29269i) q^{8} +(4.76602 + 14.6683i) q^{10} +(3.31109 + 4.55732i) q^{11} +(6.36975 + 2.06966i) q^{13} +(-15.0305 - 10.9203i) q^{14} +(-3.85401 + 11.8614i) q^{16} +(-13.9543 + 19.2065i) q^{17} +(-1.04359 - 3.21183i) q^{19} +(-20.0173 + 14.5434i) q^{20} +(-9.79083 + 13.4759i) q^{22} +(5.24664 - 7.22139i) q^{23} +2.20508 q^{25} +19.8046i q^{26} +(9.21022 - 28.3461i) q^{28} +(18.6515 - 6.06023i) q^{29} +(16.9290 - 25.9694i) q^{31} -45.6760 q^{32} +(-66.7644 - 21.6931i) q^{34} +(-26.5124 + 19.2624i) q^{35} -7.37919i q^{37} +(8.07892 - 5.86968i) q^{38} +(-9.28025 - 6.74249i) q^{40} +(8.96363 + 27.5872i) q^{41} +(10.2018 - 3.31478i) q^{43} +(-25.4144 - 8.25765i) q^{44} +(25.1026 + 8.15632i) q^{46} +(22.3601 - 68.8174i) q^{47} +(-2.94313 + 9.05803i) q^{49} +(2.01491 + 6.20127i) q^{50} +(-30.2165 + 9.81794i) q^{52} +(-7.30390 + 10.0530i) q^{53} +(17.2701 + 23.7703i) q^{55} +13.8179 q^{56} +(34.0859 + 46.9152i) q^{58} +(24.3552 - 74.9577i) q^{59} -61.8106i q^{61} +(88.5016 + 23.8791i) q^{62} +(-26.3208 - 81.0072i) q^{64} +(33.2237 + 10.7950i) q^{65} +63.5225 q^{67} -112.619i q^{68} +(-78.3966 - 56.9585i) q^{70} +(-20.4625 - 14.8669i) q^{71} +(73.0291 + 100.516i) q^{73} +(20.7522 - 6.74279i) q^{74} +(12.9606 + 9.41645i) q^{76} +(-33.6608 - 10.9370i) q^{77} +(40.3121 - 55.4848i) q^{79} +(-20.1019 + 61.8673i) q^{80} +(-69.3918 + 50.4161i) q^{82} +(14.4260 - 4.68729i) q^{83} +(-72.7836 + 100.178i) q^{85} +(18.6440 + 25.6613i) q^{86} -12.3888i q^{88} +(91.9646 + 126.578i) q^{89} +(-40.0210 + 13.0036i) q^{91} +42.3433i q^{92} +213.964 q^{94} +(-5.44320 - 16.7524i) q^{95} +(-75.4306 + 54.8035i) q^{97} -28.1628 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 3 q^{2} - 11 q^{4} + 14 q^{5} - q^{7} + 19 q^{8} + 12 q^{10} + 10 q^{11} + 10 q^{13} - 103 q^{16} - 35 q^{17} + 47 q^{19} + 125 q^{20} + 150 q^{22} - 75 q^{23} + 82 q^{25} + 88 q^{28} - 5 q^{29}+ \cdots + 1000 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/279\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(218\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.913758 + 2.81226i 0.456879 + 1.40613i 0.868915 + 0.494962i \(0.164818\pi\)
−0.412036 + 0.911168i \(0.635182\pi\)
\(3\) 0 0
\(4\) −3.83778 + 2.78831i −0.959444 + 0.697077i
\(5\) 5.21585 1.04317 0.521585 0.853199i \(-0.325341\pi\)
0.521585 + 0.853199i \(0.325341\pi\)
\(6\) 0 0
\(7\) −5.08304 + 3.69304i −0.726148 + 0.527577i −0.888343 0.459181i \(-0.848143\pi\)
0.162194 + 0.986759i \(0.448143\pi\)
\(8\) −1.77924 1.29269i −0.222405 0.161587i
\(9\) 0 0
\(10\) 4.76602 + 14.6683i 0.476602 + 1.46683i
\(11\) 3.31109 + 4.55732i 0.301008 + 0.414302i 0.932551 0.361039i \(-0.117578\pi\)
−0.631543 + 0.775341i \(0.717578\pi\)
\(12\) 0 0
\(13\) 6.36975 + 2.06966i 0.489981 + 0.159204i 0.543579 0.839358i \(-0.317069\pi\)
−0.0535979 + 0.998563i \(0.517069\pi\)
\(14\) −15.0305 10.9203i −1.07360 0.780019i
\(15\) 0 0
\(16\) −3.85401 + 11.8614i −0.240875 + 0.741338i
\(17\) −13.9543 + 19.2065i −0.820842 + 1.12979i 0.168717 + 0.985664i \(0.446038\pi\)
−0.989559 + 0.144127i \(0.953962\pi\)
\(18\) 0 0
\(19\) −1.04359 3.21183i −0.0549257 0.169044i 0.919830 0.392316i \(-0.128326\pi\)
−0.974756 + 0.223272i \(0.928326\pi\)
\(20\) −20.0173 + 14.5434i −1.00086 + 0.727170i
\(21\) 0 0
\(22\) −9.79083 + 13.4759i −0.445038 + 0.612542i
\(23\) 5.24664 7.22139i 0.228115 0.313973i −0.679582 0.733599i \(-0.737839\pi\)
0.907697 + 0.419626i \(0.137839\pi\)
\(24\) 0 0
\(25\) 2.20508 0.0882034
\(26\) 19.8046i 0.761714i
\(27\) 0 0
\(28\) 9.21022 28.3461i 0.328936 1.01236i
\(29\) 18.6515 6.06023i 0.643154 0.208973i 0.0307608 0.999527i \(-0.490207\pi\)
0.612393 + 0.790553i \(0.290207\pi\)
\(30\) 0 0
\(31\) 16.9290 25.9694i 0.546098 0.837721i
\(32\) −45.6760 −1.42738
\(33\) 0 0
\(34\) −66.7644 21.6931i −1.96366 0.638031i
\(35\) −26.5124 + 19.2624i −0.757496 + 0.550353i
\(36\) 0 0
\(37\) 7.37919i 0.199438i −0.995016 0.0997188i \(-0.968206\pi\)
0.995016 0.0997188i \(-0.0317943\pi\)
\(38\) 8.07892 5.86968i 0.212603 0.154465i
\(39\) 0 0
\(40\) −9.28025 6.74249i −0.232006 0.168562i
\(41\) 8.96363 + 27.5872i 0.218625 + 0.672859i 0.998876 + 0.0473927i \(0.0150912\pi\)
−0.780251 + 0.625466i \(0.784909\pi\)
\(42\) 0 0
\(43\) 10.2018 3.31478i 0.237252 0.0770879i −0.187978 0.982173i \(-0.560193\pi\)
0.425230 + 0.905085i \(0.360193\pi\)
\(44\) −25.4144 8.25765i −0.577601 0.187674i
\(45\) 0 0
\(46\) 25.1026 + 8.15632i 0.545708 + 0.177311i
\(47\) 22.3601 68.8174i 0.475747 1.46420i −0.369200 0.929350i \(-0.620368\pi\)
0.844947 0.534850i \(-0.179632\pi\)
\(48\) 0 0
\(49\) −2.94313 + 9.05803i −0.0600639 + 0.184858i
\(50\) 2.01491 + 6.20127i 0.0402983 + 0.124025i
\(51\) 0 0
\(52\) −30.2165 + 9.81794i −0.581087 + 0.188807i
\(53\) −7.30390 + 10.0530i −0.137809 + 0.189678i −0.872344 0.488893i \(-0.837401\pi\)
0.734534 + 0.678572i \(0.237401\pi\)
\(54\) 0 0
\(55\) 17.2701 + 23.7703i 0.314002 + 0.432187i
\(56\) 13.8179 0.246748
\(57\) 0 0
\(58\) 34.0859 + 46.9152i 0.587687 + 0.808882i
\(59\) 24.3552 74.9577i 0.412801 1.27047i −0.501403 0.865214i \(-0.667183\pi\)
0.914203 0.405255i \(-0.132817\pi\)
\(60\) 0 0
\(61\) 61.8106i 1.01329i −0.862155 0.506644i \(-0.830886\pi\)
0.862155 0.506644i \(-0.169114\pi\)
\(62\) 88.5016 + 23.8791i 1.42745 + 0.385147i
\(63\) 0 0
\(64\) −26.3208 81.0072i −0.411263 1.26574i
\(65\) 33.2237 + 10.7950i 0.511133 + 0.166077i
\(66\) 0 0
\(67\) 63.5225 0.948097 0.474049 0.880499i \(-0.342792\pi\)
0.474049 + 0.880499i \(0.342792\pi\)
\(68\) 112.619i 1.65616i
\(69\) 0 0
\(70\) −78.3966 56.9585i −1.11995 0.813692i
\(71\) −20.4625 14.8669i −0.288204 0.209392i 0.434284 0.900776i \(-0.357001\pi\)
−0.722488 + 0.691384i \(0.757001\pi\)
\(72\) 0 0
\(73\) 73.0291 + 100.516i 1.00040 + 1.37693i 0.925081 + 0.379771i \(0.123997\pi\)
0.0753179 + 0.997160i \(0.476003\pi\)
\(74\) 20.7522 6.74279i 0.280435 0.0911188i
\(75\) 0 0
\(76\) 12.9606 + 9.41645i 0.170535 + 0.123901i
\(77\) −33.6608 10.9370i −0.437153 0.142040i
\(78\) 0 0
\(79\) 40.3121 55.4848i 0.510280 0.702340i −0.473687 0.880693i \(-0.657077\pi\)
0.983966 + 0.178354i \(0.0570771\pi\)
\(80\) −20.1019 + 61.8673i −0.251274 + 0.773342i
\(81\) 0 0
\(82\) −69.3918 + 50.4161i −0.846241 + 0.614830i
\(83\) 14.4260 4.68729i 0.173807 0.0564734i −0.220821 0.975314i \(-0.570874\pi\)
0.394628 + 0.918841i \(0.370874\pi\)
\(84\) 0 0
\(85\) −72.7836 + 100.178i −0.856277 + 1.17856i
\(86\) 18.6440 + 25.6613i 0.216791 + 0.298387i
\(87\) 0 0
\(88\) 12.3888i 0.140782i
\(89\) 91.9646 + 126.578i 1.03331 + 1.42223i 0.902433 + 0.430831i \(0.141779\pi\)
0.130877 + 0.991399i \(0.458221\pi\)
\(90\) 0 0
\(91\) −40.0210 + 13.0036i −0.439791 + 0.142897i
\(92\) 42.3433i 0.460253i
\(93\) 0 0
\(94\) 213.964 2.27621
\(95\) −5.44320 16.7524i −0.0572968 0.176342i
\(96\) 0 0
\(97\) −75.4306 + 54.8035i −0.777635 + 0.564985i −0.904268 0.426965i \(-0.859583\pi\)
0.126633 + 0.991950i \(0.459583\pi\)
\(98\) −28.1628 −0.287376
\(99\) 0 0
\(100\) −8.46262 + 6.14845i −0.0846262 + 0.0614845i
\(101\) 37.2606 + 27.0714i 0.368917 + 0.268034i 0.756762 0.653691i \(-0.226780\pi\)
−0.387845 + 0.921725i \(0.626780\pi\)
\(102\) 0 0
\(103\) 20.3131 + 62.5174i 0.197215 + 0.606965i 0.999944 + 0.0106204i \(0.00338064\pi\)
−0.802729 + 0.596344i \(0.796619\pi\)
\(104\) −8.65788 11.9166i −0.0832489 0.114582i
\(105\) 0 0
\(106\) −34.9455 11.3545i −0.329674 0.107118i
\(107\) −73.7625 53.5916i −0.689370 0.500856i 0.187083 0.982344i \(-0.440097\pi\)
−0.876453 + 0.481488i \(0.840097\pi\)
\(108\) 0 0
\(109\) 15.8725 48.8504i 0.145619 0.448169i −0.851471 0.524402i \(-0.824289\pi\)
0.997090 + 0.0762323i \(0.0242891\pi\)
\(110\) −51.0675 + 70.2884i −0.464250 + 0.638985i
\(111\) 0 0
\(112\) −24.2146 74.5250i −0.216202 0.665402i
\(113\) 70.6470 51.3280i 0.625194 0.454230i −0.229538 0.973300i \(-0.573721\pi\)
0.854732 + 0.519069i \(0.173721\pi\)
\(114\) 0 0
\(115\) 27.3657 37.6657i 0.237963 0.327527i
\(116\) −54.6824 + 75.2638i −0.471400 + 0.648826i
\(117\) 0 0
\(118\) 233.055 1.97504
\(119\) 149.161i 1.25345i
\(120\) 0 0
\(121\) 27.5852 84.8985i 0.227977 0.701640i
\(122\) 173.827 56.4800i 1.42482 0.462951i
\(123\) 0 0
\(124\) 7.44074 + 146.868i 0.0600060 + 1.18442i
\(125\) −118.895 −0.951159
\(126\) 0 0
\(127\) 34.4876 + 11.2057i 0.271556 + 0.0882338i 0.441630 0.897198i \(-0.354401\pi\)
−0.170074 + 0.985431i \(0.554401\pi\)
\(128\) 55.9515 40.6511i 0.437121 0.317587i
\(129\) 0 0
\(130\) 103.298i 0.794597i
\(131\) 147.918 107.469i 1.12915 0.820373i 0.143577 0.989639i \(-0.454140\pi\)
0.985570 + 0.169266i \(0.0541396\pi\)
\(132\) 0 0
\(133\) 17.1660 + 12.4719i 0.129068 + 0.0937733i
\(134\) 58.0442 + 178.642i 0.433166 + 1.33315i
\(135\) 0 0
\(136\) 49.6561 16.1343i 0.365119 0.118634i
\(137\) −119.519 38.8342i −0.872404 0.283461i −0.161604 0.986856i \(-0.551667\pi\)
−0.710800 + 0.703394i \(0.751667\pi\)
\(138\) 0 0
\(139\) −236.072 76.7046i −1.69836 0.551832i −0.710034 0.704167i \(-0.751321\pi\)
−0.988329 + 0.152336i \(0.951321\pi\)
\(140\) 48.0391 147.849i 0.343137 1.05607i
\(141\) 0 0
\(142\) 23.1117 71.1305i 0.162758 0.500919i
\(143\) 11.6587 + 35.8818i 0.0815295 + 0.250922i
\(144\) 0 0
\(145\) 97.2832 31.6092i 0.670919 0.217995i
\(146\) −215.946 + 297.224i −1.47908 + 2.03578i
\(147\) 0 0
\(148\) 20.5754 + 28.3197i 0.139023 + 0.191349i
\(149\) 196.177 1.31662 0.658310 0.752747i \(-0.271271\pi\)
0.658310 + 0.752747i \(0.271271\pi\)
\(150\) 0 0
\(151\) 4.51948 + 6.22054i 0.0299304 + 0.0411956i 0.823720 0.566997i \(-0.191895\pi\)
−0.793790 + 0.608193i \(0.791895\pi\)
\(152\) −2.29512 + 7.06366i −0.0150995 + 0.0464715i
\(153\) 0 0
\(154\) 104.657i 0.679588i
\(155\) 88.2993 135.452i 0.569673 0.873886i
\(156\) 0 0
\(157\) −85.2127 262.258i −0.542756 1.67043i −0.726266 0.687414i \(-0.758746\pi\)
0.183509 0.983018i \(-0.441254\pi\)
\(158\) 192.873 + 62.6683i 1.22072 + 0.396635i
\(159\) 0 0
\(160\) −238.239 −1.48900
\(161\) 56.0826i 0.348339i
\(162\) 0 0
\(163\) −117.611 85.4491i −0.721538 0.524228i 0.165338 0.986237i \(-0.447129\pi\)
−0.886875 + 0.462009i \(0.847129\pi\)
\(164\) −111.322 80.8802i −0.678793 0.493172i
\(165\) 0 0
\(166\) 26.3638 + 36.2866i 0.158818 + 0.218594i
\(167\) −271.725 + 88.2887i −1.62709 + 0.528675i −0.973601 0.228257i \(-0.926697\pi\)
−0.653494 + 0.756932i \(0.726697\pi\)
\(168\) 0 0
\(169\) −100.434 72.9693i −0.594282 0.431771i
\(170\) −348.233 113.148i −2.04843 0.665575i
\(171\) 0 0
\(172\) −29.9098 + 41.1673i −0.173894 + 0.239345i
\(173\) 44.4941 136.939i 0.257191 0.791553i −0.736199 0.676765i \(-0.763381\pi\)
0.993390 0.114788i \(-0.0366188\pi\)
\(174\) 0 0
\(175\) −11.2085 + 8.14347i −0.0640487 + 0.0465341i
\(176\) −66.8172 + 21.7102i −0.379643 + 0.123354i
\(177\) 0 0
\(178\) −271.938 + 374.290i −1.52774 + 2.10275i
\(179\) −120.316 165.601i −0.672157 0.925144i 0.327650 0.944799i \(-0.393743\pi\)
−0.999807 + 0.0196549i \(0.993743\pi\)
\(180\) 0 0
\(181\) 124.758i 0.689272i −0.938736 0.344636i \(-0.888002\pi\)
0.938736 0.344636i \(-0.111998\pi\)
\(182\) −73.1391 100.667i −0.401863 0.553117i
\(183\) 0 0
\(184\) −18.6701 + 6.06627i −0.101468 + 0.0329689i
\(185\) 38.4887i 0.208047i
\(186\) 0 0
\(187\) −133.734 −0.715155
\(188\) 106.071 + 326.453i 0.564207 + 1.73645i
\(189\) 0 0
\(190\) 42.1384 30.6154i 0.221781 0.161133i
\(191\) −95.7014 −0.501055 −0.250527 0.968110i \(-0.580604\pi\)
−0.250527 + 0.968110i \(0.580604\pi\)
\(192\) 0 0
\(193\) 100.339 72.9004i 0.519890 0.377722i −0.296672 0.954979i \(-0.595877\pi\)
0.816563 + 0.577257i \(0.195877\pi\)
\(194\) −223.047 162.053i −1.14973 0.835326i
\(195\) 0 0
\(196\) −13.9615 42.9690i −0.0712321 0.219230i
\(197\) 90.5460 + 124.626i 0.459624 + 0.632618i 0.974431 0.224688i \(-0.0721363\pi\)
−0.514807 + 0.857306i \(0.672136\pi\)
\(198\) 0 0
\(199\) 262.101 + 85.1617i 1.31709 + 0.427948i 0.881494 0.472194i \(-0.156538\pi\)
0.435595 + 0.900143i \(0.356538\pi\)
\(200\) −3.92337 2.85050i −0.0196169 0.0142525i
\(201\) 0 0
\(202\) −42.0846 + 129.523i −0.208340 + 0.641204i
\(203\) −72.4254 + 99.6850i −0.356775 + 0.491059i
\(204\) 0 0
\(205\) 46.7529 + 143.891i 0.228063 + 0.701906i
\(206\) −157.254 + 114.251i −0.763367 + 0.554619i
\(207\) 0 0
\(208\) −49.0981 + 67.5778i −0.236049 + 0.324893i
\(209\) 11.1819 15.3906i 0.0535021 0.0736394i
\(210\) 0 0
\(211\) 10.5159 0.0498383 0.0249191 0.999689i \(-0.492067\pi\)
0.0249191 + 0.999689i \(0.492067\pi\)
\(212\) 58.9465i 0.278049i
\(213\) 0 0
\(214\) 83.3124 256.409i 0.389310 1.19817i
\(215\) 53.2113 17.2894i 0.247494 0.0804158i
\(216\) 0 0
\(217\) 9.85508 + 194.523i 0.0454151 + 0.896419i
\(218\) 151.884 0.696714
\(219\) 0 0
\(220\) −132.558 43.0706i −0.602536 0.195776i
\(221\) −128.636 + 93.4597i −0.582065 + 0.422895i
\(222\) 0 0
\(223\) 266.065i 1.19312i 0.802570 + 0.596558i \(0.203466\pi\)
−0.802570 + 0.596558i \(0.796534\pi\)
\(224\) 232.173 168.684i 1.03649 0.753051i
\(225\) 0 0
\(226\) 208.902 + 151.776i 0.924345 + 0.671576i
\(227\) 3.84060 + 11.8202i 0.0169189 + 0.0520712i 0.959160 0.282866i \(-0.0912850\pi\)
−0.942241 + 0.334937i \(0.891285\pi\)
\(228\) 0 0
\(229\) −261.591 + 84.9962i −1.14232 + 0.371163i −0.818246 0.574869i \(-0.805053\pi\)
−0.324075 + 0.946031i \(0.605053\pi\)
\(230\) 130.931 + 42.5421i 0.569266 + 0.184966i
\(231\) 0 0
\(232\) −41.0194 13.3280i −0.176808 0.0574484i
\(233\) −61.3553 + 188.832i −0.263327 + 0.810438i 0.728747 + 0.684783i \(0.240103\pi\)
−0.992074 + 0.125655i \(0.959897\pi\)
\(234\) 0 0
\(235\) 116.627 358.941i 0.496285 1.52741i
\(236\) 115.535 + 355.581i 0.489556 + 1.50670i
\(237\) 0 0
\(238\) 419.479 136.297i 1.76252 0.572677i
\(239\) −129.225 + 177.863i −0.540689 + 0.744195i −0.988712 0.149827i \(-0.952128\pi\)
0.448023 + 0.894022i \(0.352128\pi\)
\(240\) 0 0
\(241\) 79.4670 + 109.377i 0.329739 + 0.453846i 0.941409 0.337266i \(-0.109502\pi\)
−0.611671 + 0.791112i \(0.709502\pi\)
\(242\) 263.963 1.09075
\(243\) 0 0
\(244\) 172.347 + 237.215i 0.706340 + 0.972194i
\(245\) −15.3509 + 47.2453i −0.0626569 + 0.192838i
\(246\) 0 0
\(247\) 22.6185i 0.0915727i
\(248\) −63.6912 + 24.3217i −0.256819 + 0.0980713i
\(249\) 0 0
\(250\) −108.641 334.363i −0.434565 1.33745i
\(251\) 78.1627 + 25.3966i 0.311405 + 0.101182i 0.460550 0.887634i \(-0.347652\pi\)
−0.149145 + 0.988815i \(0.547652\pi\)
\(252\) 0 0
\(253\) 50.2823 0.198744
\(254\) 107.227i 0.422155i
\(255\) 0 0
\(256\) −110.188 80.0560i −0.430421 0.312719i
\(257\) 82.5128 + 59.9490i 0.321061 + 0.233265i 0.736628 0.676298i \(-0.236417\pi\)
−0.415567 + 0.909563i \(0.636417\pi\)
\(258\) 0 0
\(259\) 27.2517 + 37.5087i 0.105219 + 0.144821i
\(260\) −157.605 + 51.2089i −0.606172 + 0.196957i
\(261\) 0 0
\(262\) 437.392 + 317.784i 1.66943 + 1.21292i
\(263\) 166.458 + 54.0855i 0.632921 + 0.205648i 0.607868 0.794038i \(-0.292025\pi\)
0.0250522 + 0.999686i \(0.492025\pi\)
\(264\) 0 0
\(265\) −38.0960 + 52.4347i −0.143759 + 0.197867i
\(266\) −19.3885 + 59.6716i −0.0728890 + 0.224329i
\(267\) 0 0
\(268\) −243.785 + 177.120i −0.909646 + 0.660897i
\(269\) −184.972 + 60.1011i −0.687629 + 0.223424i −0.631932 0.775024i \(-0.717738\pi\)
−0.0556964 + 0.998448i \(0.517738\pi\)
\(270\) 0 0
\(271\) −54.2554 + 74.6762i −0.200204 + 0.275558i −0.897301 0.441420i \(-0.854475\pi\)
0.697096 + 0.716978i \(0.254475\pi\)
\(272\) −174.036 239.540i −0.639837 0.880661i
\(273\) 0 0
\(274\) 371.605i 1.35622i
\(275\) 7.30123 + 10.0493i 0.0265499 + 0.0365428i
\(276\) 0 0
\(277\) −14.0177 + 4.55461i −0.0506053 + 0.0164426i −0.334210 0.942499i \(-0.608470\pi\)
0.283605 + 0.958941i \(0.408470\pi\)
\(278\) 733.986i 2.64024i
\(279\) 0 0
\(280\) 72.0722 0.257401
\(281\) −31.0701 95.6241i −0.110570 0.340299i 0.880427 0.474181i \(-0.157256\pi\)
−0.990997 + 0.133882i \(0.957256\pi\)
\(282\) 0 0
\(283\) −150.671 + 109.469i −0.532408 + 0.386817i −0.821258 0.570558i \(-0.806727\pi\)
0.288850 + 0.957374i \(0.406727\pi\)
\(284\) 119.984 0.422478
\(285\) 0 0
\(286\) −90.2557 + 65.5746i −0.315579 + 0.229282i
\(287\) −147.443 107.124i −0.513739 0.373254i
\(288\) 0 0
\(289\) −84.8595 261.171i −0.293631 0.903704i
\(290\) 177.787 + 244.702i 0.613058 + 0.843801i
\(291\) 0 0
\(292\) −560.539 182.130i −1.91965 0.623733i
\(293\) 259.380 + 188.451i 0.885257 + 0.643177i 0.934637 0.355603i \(-0.115725\pi\)
−0.0493799 + 0.998780i \(0.515725\pi\)
\(294\) 0 0
\(295\) 127.033 390.968i 0.430621 1.32532i
\(296\) −9.53903 + 13.1293i −0.0322265 + 0.0443559i
\(297\) 0 0
\(298\) 179.258 + 551.699i 0.601537 + 1.85134i
\(299\) 48.3656 35.1397i 0.161758 0.117524i
\(300\) 0 0
\(301\) −39.6147 + 54.5250i −0.131610 + 0.181146i
\(302\) −13.3640 + 18.3940i −0.0442518 + 0.0609074i
\(303\) 0 0
\(304\) 42.1189 0.138549
\(305\) 322.395i 1.05703i
\(306\) 0 0
\(307\) −153.090 + 471.163i −0.498665 + 1.53473i 0.312502 + 0.949917i \(0.398833\pi\)
−0.811167 + 0.584815i \(0.801167\pi\)
\(308\) 159.678 51.8826i 0.518436 0.168450i
\(309\) 0 0
\(310\) 461.611 + 124.550i 1.48907 + 0.401773i
\(311\) −321.930 −1.03514 −0.517572 0.855640i \(-0.673164\pi\)
−0.517572 + 0.855640i \(0.673164\pi\)
\(312\) 0 0
\(313\) −78.3120 25.4451i −0.250198 0.0812943i 0.181233 0.983440i \(-0.441991\pi\)
−0.431431 + 0.902146i \(0.641991\pi\)
\(314\) 659.673 479.280i 2.10087 1.52637i
\(315\) 0 0
\(316\) 325.341i 1.02956i
\(317\) −433.663 + 315.075i −1.36802 + 0.993927i −0.370135 + 0.928978i \(0.620688\pi\)
−0.997889 + 0.0649488i \(0.979312\pi\)
\(318\) 0 0
\(319\) 89.3751 + 64.9348i 0.280173 + 0.203557i
\(320\) −137.285 422.521i −0.429017 1.32038i
\(321\) 0 0
\(322\) −157.719 + 51.2460i −0.489810 + 0.159149i
\(323\) 76.2505 + 24.7753i 0.236070 + 0.0767037i
\(324\) 0 0
\(325\) 14.0458 + 4.56377i 0.0432180 + 0.0140424i
\(326\) 132.837 408.831i 0.407476 1.25408i
\(327\) 0 0
\(328\) 19.7134 60.6715i 0.0601017 0.184974i
\(329\) 140.488 + 432.378i 0.427016 + 1.31422i
\(330\) 0 0
\(331\) 13.6662 4.44042i 0.0412876 0.0134152i −0.288300 0.957540i \(-0.593090\pi\)
0.329588 + 0.944125i \(0.393090\pi\)
\(332\) −42.2942 + 58.2129i −0.127392 + 0.175340i
\(333\) 0 0
\(334\) −496.582 683.486i −1.48677 2.04636i
\(335\) 331.324 0.989027
\(336\) 0 0
\(337\) 377.588 + 519.705i 1.12044 + 1.54215i 0.805067 + 0.593184i \(0.202129\pi\)
0.315372 + 0.948968i \(0.397871\pi\)
\(338\) 113.436 349.122i 0.335611 1.03290i
\(339\) 0 0
\(340\) 587.404i 1.72766i
\(341\) 174.404 8.83581i 0.511449 0.0259115i
\(342\) 0 0
\(343\) −113.627 349.709i −0.331275 1.01956i
\(344\) −22.4365 7.29007i −0.0652224 0.0211921i
\(345\) 0 0
\(346\) 425.764 1.23053
\(347\) 145.682i 0.419832i 0.977719 + 0.209916i \(0.0673191\pi\)
−0.977719 + 0.209916i \(0.932681\pi\)
\(348\) 0 0
\(349\) −376.007 273.185i −1.07738 0.782765i −0.100158 0.994972i \(-0.531935\pi\)
−0.977225 + 0.212207i \(0.931935\pi\)
\(350\) −33.1434 24.0801i −0.0946955 0.0688003i
\(351\) 0 0
\(352\) −151.237 208.160i −0.429652 0.591365i
\(353\) −265.392 + 86.2310i −0.751818 + 0.244281i −0.659763 0.751473i \(-0.729344\pi\)
−0.0920548 + 0.995754i \(0.529344\pi\)
\(354\) 0 0
\(355\) −106.729 77.5433i −0.300646 0.218432i
\(356\) −705.879 229.354i −1.98281 0.644253i
\(357\) 0 0
\(358\) 355.773 489.679i 0.993778 1.36782i
\(359\) 161.666 497.557i 0.450323 1.38595i −0.426216 0.904621i \(-0.640154\pi\)
0.876539 0.481330i \(-0.159846\pi\)
\(360\) 0 0
\(361\) 282.828 205.487i 0.783458 0.569216i
\(362\) 350.852 113.999i 0.969205 0.314914i
\(363\) 0 0
\(364\) 117.334 161.496i 0.322345 0.443670i
\(365\) 380.909 + 524.276i 1.04359 + 1.43637i
\(366\) 0 0
\(367\) 330.694i 0.901074i 0.892758 + 0.450537i \(0.148767\pi\)
−0.892758 + 0.450537i \(0.851233\pi\)
\(368\) 65.4352 + 90.0639i 0.177813 + 0.244739i
\(369\) 0 0
\(370\) 108.240 35.1694i 0.292541 0.0950524i
\(371\) 78.0731i 0.210440i
\(372\) 0 0
\(373\) −65.8984 −0.176671 −0.0883356 0.996091i \(-0.528155\pi\)
−0.0883356 + 0.996091i \(0.528155\pi\)
\(374\) −122.201 376.095i −0.326739 1.00560i
\(375\) 0 0
\(376\) −128.744 + 93.5378i −0.342404 + 0.248771i
\(377\) 131.348 0.348403
\(378\) 0 0
\(379\) 402.911 292.732i 1.06309 0.772381i 0.0884330 0.996082i \(-0.471814\pi\)
0.974658 + 0.223702i \(0.0718141\pi\)
\(380\) 67.6007 + 49.1148i 0.177897 + 0.129249i
\(381\) 0 0
\(382\) −87.4480 269.137i −0.228921 0.704548i
\(383\) 154.922 + 213.231i 0.404495 + 0.556739i 0.961865 0.273525i \(-0.0881895\pi\)
−0.557370 + 0.830264i \(0.688190\pi\)
\(384\) 0 0
\(385\) −175.569 57.0460i −0.456025 0.148171i
\(386\) 296.700 + 215.565i 0.768654 + 0.558460i
\(387\) 0 0
\(388\) 136.677 420.647i 0.352259 1.08414i
\(389\) 416.464 573.214i 1.07060 1.47356i 0.201137 0.979563i \(-0.435536\pi\)
0.869465 0.493995i \(-0.164464\pi\)
\(390\) 0 0
\(391\) 65.4840 + 201.539i 0.167478 + 0.515445i
\(392\) 16.9458 12.3118i 0.0432291 0.0314078i
\(393\) 0 0
\(394\) −267.743 + 368.516i −0.679550 + 0.935321i
\(395\) 210.262 289.401i 0.532308 0.732660i
\(396\) 0 0
\(397\) 439.070 1.10597 0.552985 0.833191i \(-0.313489\pi\)
0.552985 + 0.833191i \(0.313489\pi\)
\(398\) 814.912i 2.04752i
\(399\) 0 0
\(400\) −8.49841 + 26.1554i −0.0212460 + 0.0653885i
\(401\) −380.052 + 123.486i −0.947762 + 0.307946i −0.741806 0.670615i \(-0.766030\pi\)
−0.205956 + 0.978561i \(0.566030\pi\)
\(402\) 0 0
\(403\) 161.581 130.381i 0.400946 0.323526i
\(404\) −218.481 −0.540795
\(405\) 0 0
\(406\) −346.519 112.591i −0.853496 0.277318i
\(407\) 33.6293 24.4331i 0.0826274 0.0600323i
\(408\) 0 0
\(409\) 225.799i 0.552075i 0.961147 + 0.276037i \(0.0890214\pi\)
−0.961147 + 0.276037i \(0.910979\pi\)
\(410\) −361.937 + 262.963i −0.882773 + 0.641372i
\(411\) 0 0
\(412\) −252.275 183.288i −0.612317 0.444875i
\(413\) 153.023 + 470.958i 0.370517 + 1.14033i
\(414\) 0 0
\(415\) 75.2439 24.4482i 0.181311 0.0589114i
\(416\) −290.945 94.5338i −0.699387 0.227245i
\(417\) 0 0
\(418\) 53.5000 + 17.3832i 0.127991 + 0.0415866i
\(419\) −136.617 + 420.465i −0.326056 + 1.00350i 0.644906 + 0.764262i \(0.276896\pi\)
−0.970962 + 0.239234i \(0.923104\pi\)
\(420\) 0 0
\(421\) −134.613 + 414.296i −0.319745 + 0.984075i 0.654012 + 0.756485i \(0.273085\pi\)
−0.973757 + 0.227590i \(0.926915\pi\)
\(422\) 9.60896 + 29.5733i 0.0227701 + 0.0700790i
\(423\) 0 0
\(424\) 25.9908 8.44491i 0.0612990 0.0199172i
\(425\) −30.7704 + 42.3519i −0.0724010 + 0.0996514i
\(426\) 0 0
\(427\) 228.269 + 314.186i 0.534588 + 0.735798i
\(428\) 432.514 1.01055
\(429\) 0 0
\(430\) 97.2445 + 133.846i 0.226150 + 0.311269i
\(431\) 79.0915 243.419i 0.183507 0.564776i −0.816413 0.577469i \(-0.804040\pi\)
0.999919 + 0.0126929i \(0.00404037\pi\)
\(432\) 0 0
\(433\) 135.443i 0.312801i 0.987694 + 0.156400i \(0.0499890\pi\)
−0.987694 + 0.156400i \(0.950011\pi\)
\(434\) −538.043 + 205.462i −1.23973 + 0.473414i
\(435\) 0 0
\(436\) 75.2951 + 231.734i 0.172695 + 0.531501i
\(437\) −28.6692 9.31520i −0.0656046 0.0213162i
\(438\) 0 0
\(439\) −285.701 −0.650800 −0.325400 0.945576i \(-0.605499\pi\)
−0.325400 + 0.945576i \(0.605499\pi\)
\(440\) 64.6181i 0.146859i
\(441\) 0 0
\(442\) −380.375 276.359i −0.860578 0.625246i
\(443\) −389.073 282.678i −0.878269 0.638100i 0.0545242 0.998512i \(-0.482636\pi\)
−0.932793 + 0.360413i \(0.882636\pi\)
\(444\) 0 0
\(445\) 479.674 + 660.214i 1.07792 + 1.48363i
\(446\) −748.244 + 243.119i −1.67768 + 0.545110i
\(447\) 0 0
\(448\) 432.953 + 314.558i 0.966412 + 0.702139i
\(449\) −141.577 46.0012i −0.315316 0.102452i 0.147083 0.989124i \(-0.453011\pi\)
−0.462400 + 0.886672i \(0.653011\pi\)
\(450\) 0 0
\(451\) −96.0444 + 132.194i −0.212959 + 0.293113i
\(452\) −128.009 + 393.971i −0.283206 + 0.871617i
\(453\) 0 0
\(454\) −29.7320 + 21.6015i −0.0654889 + 0.0475805i
\(455\) −208.744 + 67.8249i −0.458777 + 0.149066i
\(456\) 0 0
\(457\) 59.9116 82.4613i 0.131098 0.180440i −0.738422 0.674339i \(-0.764429\pi\)
0.869519 + 0.493899i \(0.164429\pi\)
\(458\) −478.063 657.997i −1.04380 1.43667i
\(459\) 0 0
\(460\) 220.856i 0.480122i
\(461\) −141.932 195.352i −0.307878 0.423757i 0.626840 0.779148i \(-0.284348\pi\)
−0.934718 + 0.355391i \(0.884348\pi\)
\(462\) 0 0
\(463\) 408.512 132.734i 0.882315 0.286681i 0.167397 0.985890i \(-0.446464\pi\)
0.714918 + 0.699208i \(0.246464\pi\)
\(464\) 244.589i 0.527131i
\(465\) 0 0
\(466\) −587.109 −1.25989
\(467\) −175.611 540.474i −0.376040 1.15733i −0.942775 0.333431i \(-0.891794\pi\)
0.566735 0.823900i \(-0.308206\pi\)
\(468\) 0 0
\(469\) −322.887 + 234.591i −0.688459 + 0.500195i
\(470\) 1116.00 2.37448
\(471\) 0 0
\(472\) −140.231 + 101.884i −0.297100 + 0.215856i
\(473\) 48.8857 + 35.5176i 0.103352 + 0.0750900i
\(474\) 0 0
\(475\) −2.30120 7.08236i −0.00484463 0.0149102i
\(476\) 415.907 + 572.447i 0.873754 + 1.20262i
\(477\) 0 0
\(478\) −618.276 200.890i −1.29346 0.420272i
\(479\) −401.431 291.657i −0.838061 0.608887i 0.0837673 0.996485i \(-0.473305\pi\)
−0.921828 + 0.387598i \(0.873305\pi\)
\(480\) 0 0
\(481\) 15.2724 47.0036i 0.0317513 0.0977206i
\(482\) −234.983 + 323.426i −0.487516 + 0.671008i
\(483\) 0 0
\(484\) 130.857 + 402.737i 0.270366 + 0.832102i
\(485\) −393.435 + 285.847i −0.811206 + 0.589375i
\(486\) 0 0
\(487\) −155.153 + 213.550i −0.318590 + 0.438501i −0.938036 0.346538i \(-0.887357\pi\)
0.619446 + 0.785039i \(0.287357\pi\)
\(488\) −79.9022 + 109.976i −0.163734 + 0.225361i
\(489\) 0 0
\(490\) −146.893 −0.299782
\(491\) 482.796i 0.983290i 0.870796 + 0.491645i \(0.163604\pi\)
−0.870796 + 0.491645i \(0.836396\pi\)
\(492\) 0 0
\(493\) −143.873 + 442.795i −0.291831 + 0.898164i
\(494\) 63.6089 20.6678i 0.128763 0.0418376i
\(495\) 0 0
\(496\) 242.789 + 300.888i 0.489493 + 0.606630i
\(497\) 158.915 0.319749
\(498\) 0 0
\(499\) −319.557 103.830i −0.640394 0.208077i −0.0292203 0.999573i \(-0.509302\pi\)
−0.611174 + 0.791496i \(0.709302\pi\)
\(500\) 456.292 331.515i 0.912584 0.663031i
\(501\) 0 0
\(502\) 243.020i 0.484104i
\(503\) −10.4474 + 7.59051i −0.0207703 + 0.0150905i −0.598122 0.801405i \(-0.704086\pi\)
0.577352 + 0.816496i \(0.304086\pi\)
\(504\) 0 0
\(505\) 194.346 + 141.200i 0.384843 + 0.279605i
\(506\) 45.9458 + 141.407i 0.0908020 + 0.279460i
\(507\) 0 0
\(508\) −163.601 + 53.1570i −0.322048 + 0.104640i
\(509\) −387.512 125.910i −0.761320 0.247368i −0.0974751 0.995238i \(-0.531077\pi\)
−0.663845 + 0.747870i \(0.731077\pi\)
\(510\) 0 0
\(511\) −742.419 241.227i −1.45288 0.472068i
\(512\) 209.940 646.128i 0.410038 1.26197i
\(513\) 0 0
\(514\) −93.1955 + 286.826i −0.181314 + 0.558028i
\(515\) 105.950 + 326.081i 0.205728 + 0.633167i
\(516\) 0 0
\(517\) 387.659 125.958i 0.749824 0.243633i
\(518\) −80.5827 + 110.913i −0.155565 + 0.214117i
\(519\) 0 0
\(520\) −45.1582 62.1549i −0.0868427 0.119529i
\(521\) −248.737 −0.477423 −0.238711 0.971091i \(-0.576725\pi\)
−0.238711 + 0.971091i \(0.576725\pi\)
\(522\) 0 0
\(523\) −480.687 661.609i −0.919095 1.26503i −0.963964 0.266033i \(-0.914287\pi\)
0.0448683 0.998993i \(-0.485713\pi\)
\(524\) −268.021 + 824.883i −0.511490 + 1.57420i
\(525\) 0 0
\(526\) 517.544i 0.983925i
\(527\) 262.547 + 687.531i 0.498191 + 1.30461i
\(528\) 0 0
\(529\) 138.849 + 427.333i 0.262474 + 0.807813i
\(530\) −182.270 59.2232i −0.343906 0.111742i
\(531\) 0 0
\(532\) −100.655 −0.189201
\(533\) 194.275i 0.364494i
\(534\) 0 0
\(535\) −384.734 279.526i −0.719130 0.522478i
\(536\) −113.022 82.1151i −0.210862 0.153200i
\(537\) 0 0
\(538\) −338.040 465.271i −0.628326 0.864817i
\(539\) −51.0253 + 16.5791i −0.0946666 + 0.0307591i
\(540\) 0 0
\(541\) 513.683 + 373.212i 0.949506 + 0.689856i 0.950690 0.310143i \(-0.100377\pi\)
−0.00118419 + 0.999999i \(0.500377\pi\)
\(542\) −259.585 84.3443i −0.478939 0.155617i
\(543\) 0 0
\(544\) 637.378 877.275i 1.17165 1.61264i
\(545\) 82.7884 254.797i 0.151905 0.467517i
\(546\) 0 0
\(547\) 511.421 371.569i 0.934957 0.679286i −0.0122447 0.999925i \(-0.503898\pi\)
0.947201 + 0.320639i \(0.103898\pi\)
\(548\) 566.970 184.220i 1.03462 0.336168i
\(549\) 0 0
\(550\) −21.5896 + 29.7155i −0.0392538 + 0.0540283i
\(551\) −38.9289 53.5810i −0.0706514 0.0972432i
\(552\) 0 0
\(553\) 430.906i 0.779215i
\(554\) −25.6175 35.2595i −0.0462410 0.0636452i
\(555\) 0 0
\(556\) 1119.87 363.868i 2.01415 0.654438i
\(557\) 46.8846i 0.0841734i −0.999114 0.0420867i \(-0.986599\pi\)
0.999114 0.0420867i \(-0.0134006\pi\)
\(558\) 0 0
\(559\) 71.8437 0.128522
\(560\) −126.300 388.711i −0.225536 0.694127i
\(561\) 0 0
\(562\) 240.529 174.755i 0.427987 0.310951i
\(563\) 807.800 1.43481 0.717407 0.696655i \(-0.245329\pi\)
0.717407 + 0.696655i \(0.245329\pi\)
\(564\) 0 0
\(565\) 368.484 267.719i 0.652184 0.473839i
\(566\) −445.533 323.699i −0.787160 0.571905i
\(567\) 0 0
\(568\) 17.1894 + 52.9034i 0.0302630 + 0.0931398i
\(569\) 145.543 + 200.323i 0.255788 + 0.352061i 0.917528 0.397672i \(-0.130182\pi\)
−0.661740 + 0.749733i \(0.730182\pi\)
\(570\) 0 0
\(571\) −903.094 293.433i −1.58160 0.513893i −0.619132 0.785287i \(-0.712515\pi\)
−0.962468 + 0.271394i \(0.912515\pi\)
\(572\) −144.793 105.198i −0.253135 0.183913i
\(573\) 0 0
\(574\) 166.532 512.534i 0.290126 0.892916i
\(575\) 11.5693 15.9238i 0.0201205 0.0276935i
\(576\) 0 0
\(577\) 10.8420 + 33.3682i 0.0187903 + 0.0578306i 0.960012 0.279959i \(-0.0903208\pi\)
−0.941222 + 0.337789i \(0.890321\pi\)
\(578\) 656.938 477.294i 1.13657 0.825767i
\(579\) 0 0
\(580\) −285.215 + 392.565i −0.491750 + 0.676836i
\(581\) −56.0176 + 77.1016i −0.0964158 + 0.132705i
\(582\) 0 0
\(583\) −69.9984 −0.120066
\(584\) 273.246i 0.467887i
\(585\) 0 0
\(586\) −292.962 + 901.643i −0.499934 + 1.53864i
\(587\) 220.922 71.7818i 0.376357 0.122286i −0.114729 0.993397i \(-0.536600\pi\)
0.491086 + 0.871111i \(0.336600\pi\)
\(588\) 0 0
\(589\) −101.076 27.2719i −0.171606 0.0463021i
\(590\) 1215.58 2.06031
\(591\) 0 0
\(592\) 87.5276 + 28.4394i 0.147851 + 0.0480396i
\(593\) −143.431 + 104.208i −0.241873 + 0.175731i −0.702117 0.712061i \(-0.747762\pi\)
0.460244 + 0.887792i \(0.347762\pi\)
\(594\) 0 0
\(595\) 778.001i 1.30757i
\(596\) −752.881 + 547.000i −1.26322 + 0.917786i
\(597\) 0 0
\(598\) 143.016 + 103.907i 0.239158 + 0.173758i
\(599\) −173.180 532.995i −0.289116 0.889807i −0.985135 0.171784i \(-0.945047\pi\)
0.696019 0.718024i \(-0.254953\pi\)
\(600\) 0 0
\(601\) −966.674 + 314.091i −1.60844 + 0.522614i −0.969176 0.246371i \(-0.920762\pi\)
−0.639266 + 0.768985i \(0.720762\pi\)
\(602\) −189.537 61.5842i −0.314845 0.102299i
\(603\) 0 0
\(604\) −34.6895 11.2713i −0.0574330 0.0186611i
\(605\) 143.880 442.818i 0.237818 0.731930i
\(606\) 0 0
\(607\) 96.6970 297.603i 0.159303 0.490285i −0.839268 0.543717i \(-0.817016\pi\)
0.998571 + 0.0534329i \(0.0170163\pi\)
\(608\) 47.6670 + 146.704i 0.0783996 + 0.241289i
\(609\) 0 0
\(610\) 906.658 294.591i 1.48632 0.482936i
\(611\) 284.857 392.072i 0.466214 0.641689i
\(612\) 0 0
\(613\) 32.4139 + 44.6139i 0.0528775 + 0.0727797i 0.834637 0.550801i \(-0.185677\pi\)
−0.781759 + 0.623580i \(0.785677\pi\)
\(614\) −1464.92 −2.38586
\(615\) 0 0
\(616\) 45.7523 + 62.9727i 0.0742733 + 0.102228i
\(617\) 34.9324 107.511i 0.0566165 0.174248i −0.918749 0.394841i \(-0.870800\pi\)
0.975366 + 0.220594i \(0.0707995\pi\)
\(618\) 0 0
\(619\) 451.076i 0.728717i −0.931259 0.364359i \(-0.881288\pi\)
0.931259 0.364359i \(-0.118712\pi\)
\(620\) 38.8098 + 766.041i 0.0625964 + 1.23555i
\(621\) 0 0
\(622\) −294.166 905.349i −0.472935 1.45555i
\(623\) −934.919 303.774i −1.50067 0.487598i
\(624\) 0 0
\(625\) −675.265 −1.08042
\(626\) 243.484i 0.388952i
\(627\) 0 0
\(628\) 1058.28 + 768.887i 1.68516 + 1.22434i
\(629\) 141.728 + 102.972i 0.225323 + 0.163707i
\(630\) 0 0
\(631\) 183.378 + 252.399i 0.290616 + 0.399998i 0.929214 0.369542i \(-0.120485\pi\)
−0.638598 + 0.769540i \(0.720485\pi\)
\(632\) −143.450 + 46.6097i −0.226978 + 0.0737495i
\(633\) 0 0
\(634\) −1282.34 931.671i −2.02261 1.46951i
\(635\) 179.882 + 58.4472i 0.283279 + 0.0920429i
\(636\) 0 0
\(637\) −37.4940 + 51.6061i −0.0588603 + 0.0810143i
\(638\) −100.946 + 310.680i −0.158223 + 0.486960i
\(639\) 0 0
\(640\) 291.834 212.030i 0.455991 0.331297i
\(641\) −34.3584 + 11.1637i −0.0536012 + 0.0174161i −0.335695 0.941971i \(-0.608971\pi\)
0.282094 + 0.959387i \(0.408971\pi\)
\(642\) 0 0
\(643\) −148.338 + 204.170i −0.230697 + 0.317527i −0.908634 0.417592i \(-0.862874\pi\)
0.677938 + 0.735120i \(0.262874\pi\)
\(644\) −156.376 215.233i −0.242819 0.334212i
\(645\) 0 0
\(646\) 237.075i 0.366989i
\(647\) 114.418 + 157.483i 0.176844 + 0.243405i 0.888233 0.459394i \(-0.151933\pi\)
−0.711389 + 0.702799i \(0.751933\pi\)
\(648\) 0 0
\(649\) 422.249 137.197i 0.650614 0.211397i
\(650\) 43.6707i 0.0671857i
\(651\) 0 0
\(652\) 689.622 1.05770
\(653\) −3.50040 10.7731i −0.00536049 0.0164979i 0.948340 0.317254i \(-0.102761\pi\)
−0.953701 + 0.300756i \(0.902761\pi\)
\(654\) 0 0
\(655\) 771.519 560.542i 1.17789 0.855789i
\(656\) −361.769 −0.551477
\(657\) 0 0
\(658\) −1087.59 + 790.178i −1.65287 + 1.20088i
\(659\) 97.3577 + 70.7345i 0.147736 + 0.107336i 0.659198 0.751970i \(-0.270896\pi\)
−0.511462 + 0.859306i \(0.670896\pi\)
\(660\) 0 0
\(661\) −371.810 1144.31i −0.562496 1.73119i −0.675275 0.737566i \(-0.735975\pi\)
0.112779 0.993620i \(-0.464025\pi\)
\(662\) 24.9752 + 34.3754i 0.0377269 + 0.0519266i
\(663\) 0 0
\(664\) −31.7266 10.3086i −0.0477810 0.0155250i
\(665\) 89.5355 + 65.0513i 0.134640 + 0.0978215i
\(666\) 0 0
\(667\) 54.0943 166.485i 0.0811010 0.249603i
\(668\) 796.643 1096.48i 1.19258 1.64144i
\(669\) 0 0
\(670\) 302.750 + 931.768i 0.451866 + 1.39070i
\(671\) 281.691 204.660i 0.419808 0.305008i
\(672\) 0 0
\(673\) 632.418 870.448i 0.939699 1.29339i −0.0162545 0.999868i \(-0.505174\pi\)
0.955954 0.293517i \(-0.0948258\pi\)
\(674\) −1116.52 + 1536.76i −1.65656 + 2.28006i
\(675\) 0 0
\(676\) 588.903 0.871158
\(677\) 294.316i 0.434736i 0.976090 + 0.217368i \(0.0697471\pi\)
−0.976090 + 0.217368i \(0.930253\pi\)
\(678\) 0 0
\(679\) 181.025 557.137i 0.266605 0.820526i
\(680\) 258.999 84.1539i 0.380881 0.123756i
\(681\) 0 0
\(682\) 184.212 + 482.396i 0.270105 + 0.707326i
\(683\) 1037.16 1.51853 0.759264 0.650782i \(-0.225559\pi\)
0.759264 + 0.650782i \(0.225559\pi\)
\(684\) 0 0
\(685\) −623.395 202.553i −0.910066 0.295698i
\(686\) 879.645 639.100i 1.28228 0.931632i
\(687\) 0 0
\(688\) 133.783i 0.194453i
\(689\) −67.3302 + 48.9182i −0.0977216 + 0.0709989i
\(690\) 0 0
\(691\) −634.771 461.188i −0.918627 0.667422i 0.0245548 0.999698i \(-0.492183\pi\)
−0.943182 + 0.332277i \(0.892183\pi\)
\(692\) 211.069 + 649.603i 0.305013 + 0.938733i
\(693\) 0 0
\(694\) −409.695 + 133.118i −0.590338 + 0.191813i
\(695\) −1231.32 400.080i −1.77168 0.575654i
\(696\) 0 0
\(697\) −654.934 212.801i −0.939647 0.305310i
\(698\) 424.687 1307.05i 0.608434 1.87257i
\(699\) 0 0
\(700\) 20.3093 62.5056i 0.0290133 0.0892937i
\(701\) 210.137 + 646.736i 0.299768 + 0.922591i 0.981578 + 0.191062i \(0.0611930\pi\)
−0.681810 + 0.731529i \(0.738807\pi\)
\(702\) 0 0
\(703\) −23.7007 + 7.70083i −0.0337137 + 0.0109542i
\(704\) 282.025 388.174i 0.400604 0.551384i
\(705\) 0 0
\(706\) −485.008 667.556i −0.686980 0.945547i
\(707\) −289.373 −0.409297
\(708\) 0 0
\(709\) 429.911 + 591.722i 0.606363 + 0.834587i 0.996272 0.0862665i \(-0.0274937\pi\)
−0.389909 + 0.920853i \(0.627494\pi\)
\(710\) 120.547 371.006i 0.169785 0.522543i
\(711\) 0 0
\(712\) 344.095i 0.483280i
\(713\) −98.7142 258.503i −0.138449 0.362557i
\(714\) 0 0
\(715\) 60.8101 + 187.154i 0.0850491 + 0.261754i
\(716\) 923.492 + 300.061i 1.28979 + 0.419079i
\(717\) 0 0
\(718\) 1546.98 2.15457
\(719\) 919.406i 1.27873i −0.768904 0.639364i \(-0.779198\pi\)
0.768904 0.639364i \(-0.220802\pi\)
\(720\) 0 0
\(721\) −334.132 242.761i −0.463428 0.336700i
\(722\) 836.319 + 607.621i 1.15834 + 0.841581i
\(723\) 0 0
\(724\) 347.864 + 478.794i 0.480475 + 0.661318i
\(725\) 41.1280 13.3633i 0.0567283 0.0184322i
\(726\) 0 0
\(727\) 184.984 + 134.399i 0.254449 + 0.184868i 0.707696 0.706517i \(-0.249735\pi\)
−0.453247 + 0.891385i \(0.649735\pi\)
\(728\) 88.0167 + 28.5984i 0.120902 + 0.0392834i
\(729\) 0 0
\(730\) −1126.34 + 1550.28i −1.54293 + 2.12366i
\(731\) −78.6945 + 242.197i −0.107653 + 0.331323i
\(732\) 0 0
\(733\) −94.7309 + 68.8261i −0.129237 + 0.0938964i −0.650526 0.759484i \(-0.725451\pi\)
0.521289 + 0.853380i \(0.325451\pi\)
\(734\) −929.997 + 302.174i −1.26703 + 0.411682i
\(735\) 0 0
\(736\) −239.646 + 329.844i −0.325606 + 0.448158i
\(737\) 210.329 + 289.493i 0.285385 + 0.392799i
\(738\) 0 0
\(739\) 942.715i 1.27566i 0.770176 + 0.637832i \(0.220168\pi\)
−0.770176 + 0.637832i \(0.779832\pi\)
\(740\) 107.318 + 147.711i 0.145025 + 0.199610i
\(741\) 0 0
\(742\) 219.562 71.3399i 0.295905 0.0961455i
\(743\) 759.232i 1.02185i −0.859626 0.510923i \(-0.829304\pi\)
0.859626 0.510923i \(-0.170696\pi\)
\(744\) 0 0
\(745\) 1023.23 1.37346
\(746\) −60.2152 185.323i −0.0807174 0.248423i
\(747\) 0 0
\(748\) 513.241 372.891i 0.686151 0.498518i
\(749\) 572.854 0.764825
\(750\) 0 0
\(751\) 326.330 237.093i 0.434527 0.315703i −0.348929 0.937149i \(-0.613455\pi\)
0.783457 + 0.621446i \(0.213455\pi\)
\(752\) 730.095 + 530.445i 0.970871 + 0.705379i
\(753\) 0 0
\(754\) 120.020 + 369.384i 0.159178 + 0.489899i
\(755\) 23.5729 + 32.4454i 0.0312224 + 0.0429740i
\(756\) 0 0
\(757\) 766.011 + 248.892i 1.01190 + 0.328787i 0.767612 0.640915i \(-0.221445\pi\)
0.244291 + 0.969702i \(0.421445\pi\)
\(758\) 1191.40 + 865.604i 1.57177 + 1.14196i
\(759\) 0 0
\(760\) −11.9710 + 36.8430i −0.0157513 + 0.0484776i
\(761\) 182.899 251.739i 0.240340 0.330800i −0.671759 0.740770i \(-0.734461\pi\)
0.912099 + 0.409970i \(0.134461\pi\)
\(762\) 0 0
\(763\) 99.7264 + 306.926i 0.130703 + 0.402263i
\(764\) 367.281 266.845i 0.480734 0.349274i
\(765\) 0 0
\(766\) −458.100 + 630.521i −0.598042 + 0.823135i
\(767\) 310.274 427.055i 0.404529 0.556786i
\(768\) 0 0
\(769\) −1316.21 −1.71159 −0.855794 0.517316i \(-0.826931\pi\)
−0.855794 + 0.517316i \(0.826931\pi\)
\(770\) 545.873i 0.708926i
\(771\) 0 0
\(772\) −181.809 + 559.551i −0.235504 + 0.724807i
\(773\) 621.647 201.985i 0.804200 0.261300i 0.122061 0.992523i \(-0.461050\pi\)
0.682139 + 0.731222i \(0.261050\pi\)
\(774\) 0 0
\(775\) 37.3299 57.2646i 0.0481677 0.0738898i
\(776\) 205.053 0.264244
\(777\) 0 0
\(778\) 1992.57 + 647.426i 2.56115 + 0.832167i
\(779\) 79.2512 57.5794i 0.101735 0.0739145i
\(780\) 0 0
\(781\) 142.480i 0.182432i
\(782\) −506.943 + 368.316i −0.648265 + 0.470992i
\(783\) 0 0
\(784\) −96.0982 69.8194i −0.122574 0.0890554i
\(785\) −444.457 1367.90i −0.566187 1.74254i
\(786\) 0 0
\(787\) −519.575 + 168.820i −0.660197 + 0.214511i −0.619905 0.784677i \(-0.712829\pi\)
−0.0402920 + 0.999188i \(0.512829\pi\)
\(788\) −694.990 225.816i −0.881967 0.286568i
\(789\) 0 0
\(790\) 1006.00 + 326.868i 1.27341 + 0.413758i
\(791\) −169.545 + 521.805i −0.214342 + 0.659677i
\(792\) 0 0
\(793\) 127.927 393.718i 0.161320 0.496492i
\(794\) 401.204 + 1234.78i 0.505295 + 1.55514i
\(795\) 0 0
\(796\) −1243.34 + 403.986i −1.56199 + 0.507520i
\(797\) 272.719 375.365i 0.342182 0.470973i −0.602895 0.797820i \(-0.705986\pi\)
0.945077 + 0.326848i \(0.105986\pi\)
\(798\) 0 0
\(799\) 1009.72 + 1389.76i 1.26373 + 1.73937i
\(800\) −100.719 −0.125899
\(801\) 0 0
\(802\) −694.552 955.969i −0.866025 1.19198i
\(803\) −216.278 + 665.634i −0.269337 + 0.828934i
\(804\) 0 0
\(805\) 292.519i 0.363377i
\(806\) 514.312 + 335.272i 0.638104 + 0.415970i
\(807\) 0 0
\(808\) −31.3005 96.3330i −0.0387382 0.119224i
\(809\) −244.661 79.4951i −0.302424 0.0982634i 0.153874 0.988090i \(-0.450825\pi\)
−0.456298 + 0.889827i \(0.650825\pi\)
\(810\) 0 0
\(811\) 1305.17 1.60933 0.804666 0.593728i \(-0.202345\pi\)
0.804666 + 0.593728i \(0.202345\pi\)
\(812\) 584.513i 0.719844i
\(813\) 0 0
\(814\) 99.4414 + 72.2484i 0.122164 + 0.0887573i
\(815\) −613.439 445.690i −0.752686 0.546859i
\(816\) 0 0
\(817\) −21.2930 29.3074i −0.0260625 0.0358719i
\(818\) −635.004 + 206.325i −0.776289 + 0.252232i
\(819\) 0 0
\(820\) −580.639 421.859i −0.708096 0.514462i
\(821\) 1015.78 + 330.047i 1.23725 + 0.402007i 0.853335 0.521362i \(-0.174576\pi\)
0.383914 + 0.923369i \(0.374576\pi\)
\(822\) 0 0
\(823\) 230.119 316.732i 0.279610 0.384850i −0.645995 0.763342i \(-0.723557\pi\)
0.925605 + 0.378492i \(0.123557\pi\)
\(824\) 44.6739 137.492i 0.0542158 0.166859i
\(825\) 0 0
\(826\) −1184.63 + 860.683i −1.43417 + 1.04199i
\(827\) −431.848 + 140.316i −0.522186 + 0.169669i −0.558237 0.829681i \(-0.688522\pi\)
0.0360511 + 0.999350i \(0.488522\pi\)
\(828\) 0 0
\(829\) 629.022 865.774i 0.758772 1.04436i −0.238543 0.971132i \(-0.576670\pi\)
0.997315 0.0732281i \(-0.0233301\pi\)
\(830\) 137.509 + 189.265i 0.165674 + 0.228031i
\(831\) 0 0
\(832\) 570.471i 0.685662i
\(833\) −132.903 182.926i −0.159548 0.219599i
\(834\) 0 0
\(835\) −1417.28 + 460.501i −1.69734 + 0.551498i
\(836\) 90.2445i 0.107948i
\(837\) 0 0
\(838\) −1307.29 −1.56001
\(839\) 286.883 + 882.936i 0.341935 + 1.05237i 0.963204 + 0.268770i \(0.0866172\pi\)
−0.621270 + 0.783597i \(0.713383\pi\)
\(840\) 0 0
\(841\) −369.232 + 268.263i −0.439040 + 0.318981i
\(842\) −1288.11 −1.52982
\(843\) 0 0
\(844\) −40.3576 + 29.3215i −0.0478170 + 0.0347411i
\(845\) −523.847 380.597i −0.619937 0.450410i
\(846\) 0 0
\(847\) 173.317 + 533.415i 0.204625 + 0.629770i
\(848\) −91.0929 125.379i −0.107421 0.147852i
\(849\) 0 0
\(850\) −147.221 47.8350i −0.173201 0.0562765i
\(851\) −53.2880 38.7160i −0.0626181 0.0454947i
\(852\) 0 0
\(853\) 90.7019 279.152i 0.106333 0.327259i −0.883708 0.468038i \(-0.844961\pi\)
0.990041 + 0.140780i \(0.0449609\pi\)
\(854\) −674.988 + 929.042i −0.790385 + 1.08787i
\(855\) 0 0
\(856\) 61.9637 + 190.705i 0.0723875 + 0.222786i
\(857\) −633.842 + 460.513i −0.739605 + 0.537355i −0.892587 0.450874i \(-0.851112\pi\)
0.152982 + 0.988229i \(0.451112\pi\)
\(858\) 0 0
\(859\) 50.7728 69.8827i 0.0591069 0.0813536i −0.778440 0.627719i \(-0.783989\pi\)
0.837547 + 0.546365i \(0.183989\pi\)
\(860\) −156.005 + 214.722i −0.181401 + 0.249677i
\(861\) 0 0
\(862\) 756.826 0.877989
\(863\) 104.362i 0.120930i 0.998170 + 0.0604648i \(0.0192583\pi\)
−0.998170 + 0.0604648i \(0.980742\pi\)
\(864\) 0 0
\(865\) 232.074 714.252i 0.268294 0.825724i
\(866\) −380.900 + 123.762i −0.439839 + 0.142912i
\(867\) 0 0
\(868\) −580.211 719.056i −0.668446 0.828406i
\(869\) 386.339 0.444579
\(870\) 0 0
\(871\) 404.623 + 131.470i 0.464550 + 0.150941i
\(872\) −91.3896 + 66.3984i −0.104805 + 0.0761450i
\(873\) 0 0
\(874\) 89.1371i 0.101988i
\(875\) 604.347 439.084i 0.690682 0.501810i
\(876\) 0 0
\(877\) 385.885 + 280.362i 0.440006 + 0.319683i 0.785637 0.618687i \(-0.212335\pi\)
−0.345631 + 0.938370i \(0.612335\pi\)
\(878\) −261.062 803.466i −0.297337 0.915110i
\(879\) 0 0
\(880\) −348.509 + 113.237i −0.396032 + 0.128679i
\(881\) −132.919 43.1879i −0.150872 0.0490214i 0.232607 0.972571i \(-0.425274\pi\)
−0.383480 + 0.923549i \(0.625274\pi\)
\(882\) 0 0
\(883\) −1251.19 406.536i −1.41698 0.460403i −0.502336 0.864672i \(-0.667526\pi\)
−0.914640 + 0.404269i \(0.867526\pi\)
\(884\) 233.083 717.355i 0.263668 0.811488i
\(885\) 0 0
\(886\) 439.445 1352.47i 0.495988 1.52649i
\(887\) 188.419 + 579.895i 0.212423 + 0.653771i 0.999327 + 0.0366948i \(0.0116830\pi\)
−0.786903 + 0.617076i \(0.788317\pi\)
\(888\) 0 0
\(889\) −216.685 + 70.4052i −0.243740 + 0.0791959i
\(890\) −1418.39 + 1952.24i −1.59369 + 2.19353i
\(891\) 0 0
\(892\) −741.871 1021.10i −0.831694 1.14473i
\(893\) −244.365 −0.273645
\(894\) 0 0
\(895\) −627.550 863.749i −0.701173 0.965083i
\(896\) −134.277 + 413.262i −0.149863 + 0.461230i
\(897\) 0 0
\(898\) 440.185i 0.490184i
\(899\) 158.371 586.961i 0.176163 0.652904i
\(900\) 0 0
\(901\) −91.1608 280.564i −0.101177 0.311392i
\(902\) −459.525 149.309i −0.509451 0.165531i
\(903\) 0 0
\(904\) −192.049 −0.212444
\(905\) 650.720i 0.719028i
\(906\) 0 0
\(907\) 1126.58 + 818.508i 1.24209 + 0.902435i 0.997736 0.0672504i \(-0.0214226\pi\)
0.244359 + 0.969685i \(0.421423\pi\)
\(908\) −47.6976 34.6543i −0.0525304 0.0381656i
\(909\) 0 0
\(910\) −381.482 525.065i −0.419211 0.576995i
\(911\) −994.153 + 323.020i −1.09128 + 0.354577i −0.798740 0.601677i \(-0.794499\pi\)
−0.292537 + 0.956254i \(0.594499\pi\)
\(912\) 0 0
\(913\) 69.1273 + 50.2239i 0.0757144 + 0.0550098i
\(914\) 286.647 + 93.1373i 0.313618 + 0.101901i
\(915\) 0 0
\(916\) 766.934 1055.59i 0.837264 1.15239i
\(917\) −354.987 + 1092.54i −0.387117 + 1.19143i
\(918\) 0 0
\(919\) −94.1551 + 68.4077i −0.102454 + 0.0744371i −0.637833 0.770175i \(-0.720169\pi\)
0.535379 + 0.844612i \(0.320169\pi\)
\(920\) −97.3803 + 31.6408i −0.105848 + 0.0343921i
\(921\) 0 0
\(922\) 419.689 577.653i 0.455194 0.626521i
\(923\) −99.5716 137.048i −0.107878 0.148482i
\(924\) 0 0
\(925\) 16.2717i 0.0175911i
\(926\) 746.562 + 1027.55i 0.806222 + 1.10967i
\(927\) 0 0
\(928\) −851.925 + 276.807i −0.918023 + 0.298284i
\(929\) 16.8619i 0.0181506i 0.999959 + 0.00907531i \(0.00288880\pi\)
−0.999959 + 0.00907531i \(0.997111\pi\)
\(930\) 0 0
\(931\) 32.1643 0.0345481
\(932\) −291.054 895.773i −0.312290 0.961130i
\(933\) 0 0
\(934\) 1359.49 987.724i 1.45555 1.05752i
\(935\) −697.536 −0.746028
\(936\) 0 0
\(937\) −229.398 + 166.668i −0.244822 + 0.177874i −0.703429 0.710766i \(-0.748349\pi\)
0.458607 + 0.888639i \(0.348349\pi\)
\(938\) −954.772 693.683i −1.01788 0.739534i
\(939\) 0 0
\(940\) 553.250 + 1702.73i 0.588563 + 1.81141i
\(941\) −631.597 869.318i −0.671197 0.923824i 0.328590 0.944473i \(-0.393427\pi\)
−0.999787 + 0.0206491i \(0.993427\pi\)
\(942\) 0 0
\(943\) 246.247 + 80.0105i 0.261131 + 0.0848467i
\(944\) 795.239 + 577.775i 0.842414 + 0.612050i
\(945\) 0 0
\(946\) −55.2148 + 169.934i −0.0583666 + 0.179634i
\(947\) −69.0430 + 95.0295i −0.0729071 + 0.100348i −0.843913 0.536480i \(-0.819754\pi\)
0.771006 + 0.636828i \(0.219754\pi\)
\(948\) 0 0
\(949\) 257.144 + 791.407i 0.270963 + 0.833937i
\(950\) 17.8147 12.9431i 0.0187523 0.0136244i
\(951\) 0 0
\(952\) −192.819 + 265.393i −0.202541 + 0.278774i
\(953\) 326.856 449.879i 0.342976 0.472066i −0.602332 0.798246i \(-0.705762\pi\)
0.945308 + 0.326180i \(0.105762\pi\)
\(954\) 0 0
\(955\) −499.164 −0.522685
\(956\) 1042.91i 1.09091i
\(957\) 0 0
\(958\) 453.403 1395.43i 0.473281 1.45661i
\(959\) 750.938 243.995i 0.783043 0.254426i
\(960\) 0 0
\(961\) −387.816 879.272i −0.403554 0.914956i
\(962\) 146.142 0.151914
\(963\) 0 0
\(964\) −609.953 198.186i −0.632731 0.205587i
\(965\) 523.352 380.238i 0.542334 0.394029i
\(966\) 0 0
\(967\) 441.345i 0.456406i −0.973614 0.228203i \(-0.926715\pi\)
0.973614 0.228203i \(-0.0732850\pi\)
\(968\) −158.828 + 115.396i −0.164079 + 0.119210i
\(969\) 0 0
\(970\) −1163.38 845.245i −1.19936 0.871387i
\(971\) 86.3666 + 265.809i 0.0889461 + 0.273748i 0.985629 0.168926i \(-0.0540299\pi\)
−0.896683 + 0.442674i \(0.854030\pi\)
\(972\) 0 0
\(973\) 1483.24 481.933i 1.52440 0.495307i
\(974\) −742.331 241.198i −0.762147 0.247636i
\(975\) 0 0
\(976\) 733.161 + 238.219i 0.751190 + 0.244076i
\(977\) −369.006 + 1135.68i −0.377693 + 1.16242i 0.563951 + 0.825808i \(0.309281\pi\)
−0.941644 + 0.336611i \(0.890719\pi\)
\(978\) 0 0
\(979\) −272.356 + 838.225i −0.278198 + 0.856205i
\(980\) −72.8210 224.120i −0.0743072 0.228694i
\(981\) 0 0
\(982\) −1357.75 + 441.158i −1.38263 + 0.449245i
\(983\) 724.460 997.133i 0.736989 1.01438i −0.261798 0.965123i \(-0.584315\pi\)
0.998786 0.0492549i \(-0.0156847\pi\)
\(984\) 0 0
\(985\) 472.274 + 650.029i 0.479466 + 0.659928i
\(986\) −1376.72 −1.39627
\(987\) 0 0
\(988\) 63.0672 + 86.8046i 0.0638332 + 0.0878589i
\(989\) 29.5881 91.0629i 0.0299172 0.0920757i
\(990\) 0 0
\(991\) 875.612i 0.883564i 0.897122 + 0.441782i \(0.145654\pi\)
−0.897122 + 0.441782i \(0.854346\pi\)
\(992\) −773.251 + 1186.18i −0.779487 + 1.19574i
\(993\) 0 0
\(994\) 145.210 + 446.911i 0.146087 + 0.449609i
\(995\) 1367.08 + 444.191i 1.37395 + 0.446423i
\(996\) 0 0
\(997\) −1277.59 −1.28144 −0.640719 0.767776i \(-0.721363\pi\)
−0.640719 + 0.767776i \(0.721363\pi\)
\(998\) 993.552i 0.995543i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 279.3.v.a.244.5 20
3.2 odd 2 31.3.f.a.27.1 yes 20
31.23 odd 10 inner 279.3.v.a.271.5 20
93.23 even 10 31.3.f.a.23.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.3.f.a.23.1 20 93.23 even 10
31.3.f.a.27.1 yes 20 3.2 odd 2
279.3.v.a.244.5 20 1.1 even 1 trivial
279.3.v.a.271.5 20 31.23 odd 10 inner