Properties

Label 31.3.f.a.23.1
Level $31$
Weight $3$
Character 31.23
Analytic conductor $0.845$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [31,3,Mod(15,31)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("31.15"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 31.f (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.844688819517\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 20 x^{18} - 33 x^{17} + 250 x^{16} - 510 x^{15} + 2908 x^{14} - 6447 x^{13} + \cdots + 731025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 23.1
Root \(2.39225 - 1.73807i\) of defining polynomial
Character \(\chi\) \(=\) 31.23
Dual form 31.3.f.a.27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.913758 + 2.81226i) q^{2} +(5.20635 - 1.69165i) q^{3} +(-3.83778 - 2.78831i) q^{4} -5.21585 q^{5} +16.1874i q^{6} +(-5.08304 - 3.69304i) q^{7} +(1.77924 - 1.29269i) q^{8} +(16.9633 - 12.3246i) q^{9} +(4.76602 - 14.6683i) q^{10} +(-3.31109 + 4.55732i) q^{11} +(-24.6977 - 8.02475i) q^{12} +(6.36975 - 2.06966i) q^{13} +(15.0305 - 10.9203i) q^{14} +(-27.1556 + 8.82338i) q^{15} +(-3.85401 - 11.8614i) q^{16} +(13.9543 + 19.2065i) q^{17} +(19.1595 + 58.9669i) q^{18} +(-1.04359 + 3.21183i) q^{19} +(20.0173 + 14.5434i) q^{20} +(-32.7114 - 10.6286i) q^{21} +(-9.79083 - 13.4759i) q^{22} +(-5.24664 - 7.22139i) q^{23} +(7.07657 - 9.74007i) q^{24} +2.20508 q^{25} +19.8046i q^{26} +(38.5088 - 53.0029i) q^{27} +(9.21022 + 28.3461i) q^{28} +(-18.6515 - 6.06023i) q^{29} -84.4309i q^{30} +(16.9290 + 25.9694i) q^{31} +45.6760 q^{32} +(-9.52932 + 29.3282i) q^{33} +(-66.7644 + 21.6931i) q^{34} +(26.5124 + 19.2624i) q^{35} -99.4660 q^{36} +7.37919i q^{37} +(-8.07892 - 5.86968i) q^{38} +(29.6621 - 21.5507i) q^{39} +(-9.28025 + 6.74249i) q^{40} +(-8.96363 + 27.5872i) q^{41} +(59.7807 - 82.2810i) q^{42} +(10.2018 + 3.31478i) q^{43} +(25.4144 - 8.25765i) q^{44} +(-88.4781 + 64.2831i) q^{45} +(25.1026 - 8.15632i) q^{46} +(-22.3601 - 68.8174i) q^{47} +(-40.1306 - 55.2351i) q^{48} +(-2.94313 - 9.05803i) q^{49} +(-2.01491 + 6.20127i) q^{50} +(105.142 + 76.3899i) q^{51} +(-30.2165 - 9.81794i) q^{52} +(7.30390 + 10.0530i) q^{53} +(113.870 + 156.729i) q^{54} +(17.2701 - 23.7703i) q^{55} -13.8179 q^{56} +18.4873i q^{57} +(34.0859 - 46.9152i) q^{58} +(-24.3552 - 74.9577i) q^{59} +(128.819 + 41.8559i) q^{60} +61.8106i q^{61} +(-88.5016 + 23.8791i) q^{62} -131.740 q^{63} +(-26.3208 + 81.0072i) q^{64} +(-33.2237 + 10.7950i) q^{65} +(-73.7711 - 53.5978i) q^{66} +63.5225 q^{67} -112.619i q^{68} +(-39.5319 - 28.7216i) q^{69} +(-78.3966 + 56.9585i) q^{70} +(20.4625 - 14.8669i) q^{71} +(14.2499 - 43.8567i) q^{72} +(73.0291 - 100.516i) q^{73} +(-20.7522 - 6.74279i) q^{74} +(11.4804 - 3.73022i) q^{75} +(12.9606 - 9.41645i) q^{76} +(33.6608 - 10.9370i) q^{77} +(33.5023 + 103.110i) q^{78} +(40.3121 + 55.4848i) q^{79} +(20.1019 + 61.8673i) q^{80} +(52.5139 - 161.621i) q^{81} +(-69.3918 - 50.4161i) q^{82} +(-14.4260 - 4.68729i) q^{83} +(95.9033 + 132.000i) q^{84} +(-72.7836 - 100.178i) q^{85} +(-18.6440 + 25.6613i) q^{86} -107.358 q^{87} +12.3888i q^{88} +(-91.9646 + 126.578i) q^{89} +(-99.9331 - 307.562i) q^{90} +(-40.0210 - 13.0036i) q^{91} +42.3433i q^{92} +(132.070 + 106.568i) q^{93} +213.964 q^{94} +(5.44320 - 16.7524i) q^{95} +(237.806 - 77.2677i) q^{96} +(-75.4306 - 54.8035i) q^{97} +28.1628 q^{98} +118.115i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 3 q^{2} - 5 q^{3} - 11 q^{4} - 14 q^{5} - q^{7} - 19 q^{8} + 2 q^{9} + 12 q^{10} - 10 q^{11} + 90 q^{12} + 10 q^{13} - 85 q^{15} - 103 q^{16} + 35 q^{17} + 6 q^{18} + 47 q^{19} - 125 q^{20} - 125 q^{21}+ \cdots - 1000 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.913758 + 2.81226i −0.456879 + 1.40613i 0.412036 + 0.911168i \(0.364818\pi\)
−0.868915 + 0.494962i \(0.835182\pi\)
\(3\) 5.20635 1.69165i 1.73545 0.563882i 0.741232 0.671249i \(-0.234242\pi\)
0.994220 + 0.107366i \(0.0342418\pi\)
\(4\) −3.83778 2.78831i −0.959444 0.697077i
\(5\) −5.21585 −1.04317 −0.521585 0.853199i \(-0.674659\pi\)
−0.521585 + 0.853199i \(0.674659\pi\)
\(6\) 16.1874i 2.69790i
\(7\) −5.08304 3.69304i −0.726148 0.527577i 0.162194 0.986759i \(-0.448143\pi\)
−0.888343 + 0.459181i \(0.848143\pi\)
\(8\) 1.77924 1.29269i 0.222405 0.161587i
\(9\) 16.9633 12.3246i 1.88481 1.36940i
\(10\) 4.76602 14.6683i 0.476602 1.46683i
\(11\) −3.31109 + 4.55732i −0.301008 + 0.414302i −0.932551 0.361039i \(-0.882422\pi\)
0.631543 + 0.775341i \(0.282422\pi\)
\(12\) −24.6977 8.02475i −2.05814 0.668730i
\(13\) 6.36975 2.06966i 0.489981 0.159204i −0.0535979 0.998563i \(-0.517069\pi\)
0.543579 + 0.839358i \(0.317069\pi\)
\(14\) 15.0305 10.9203i 1.07360 0.780019i
\(15\) −27.1556 + 8.82338i −1.81037 + 0.588225i
\(16\) −3.85401 11.8614i −0.240875 0.741338i
\(17\) 13.9543 + 19.2065i 0.820842 + 1.12979i 0.989559 + 0.144127i \(0.0460375\pi\)
−0.168717 + 0.985664i \(0.553962\pi\)
\(18\) 19.1595 + 58.9669i 1.06442 + 3.27594i
\(19\) −1.04359 + 3.21183i −0.0549257 + 0.169044i −0.974756 0.223272i \(-0.928326\pi\)
0.919830 + 0.392316i \(0.128326\pi\)
\(20\) 20.0173 + 14.5434i 1.00086 + 0.727170i
\(21\) −32.7114 10.6286i −1.55769 0.506123i
\(22\) −9.79083 13.4759i −0.445038 0.612542i
\(23\) −5.24664 7.22139i −0.228115 0.313973i 0.679582 0.733599i \(-0.262161\pi\)
−0.907697 + 0.419626i \(0.862161\pi\)
\(24\) 7.07657 9.74007i 0.294857 0.405836i
\(25\) 2.20508 0.0882034
\(26\) 19.8046i 0.761714i
\(27\) 38.5088 53.0029i 1.42625 1.96307i
\(28\) 9.21022 + 28.3461i 0.328936 + 1.01236i
\(29\) −18.6515 6.06023i −0.643154 0.208973i −0.0307608 0.999527i \(-0.509793\pi\)
−0.612393 + 0.790553i \(0.709793\pi\)
\(30\) 84.4309i 2.81436i
\(31\) 16.9290 + 25.9694i 0.546098 + 0.837721i
\(32\) 45.6760 1.42738
\(33\) −9.52932 + 29.3282i −0.288767 + 0.888734i
\(34\) −66.7644 + 21.6931i −1.96366 + 0.638031i
\(35\) 26.5124 + 19.2624i 0.757496 + 0.550353i
\(36\) −99.4660 −2.76295
\(37\) 7.37919i 0.199438i 0.995016 + 0.0997188i \(0.0317943\pi\)
−0.995016 + 0.0997188i \(0.968206\pi\)
\(38\) −8.07892 5.86968i −0.212603 0.154465i
\(39\) 29.6621 21.5507i 0.760566 0.552583i
\(40\) −9.28025 + 6.74249i −0.232006 + 0.168562i
\(41\) −8.96363 + 27.5872i −0.218625 + 0.672859i 0.780251 + 0.625466i \(0.215091\pi\)
−0.998876 + 0.0473927i \(0.984909\pi\)
\(42\) 59.7807 82.2810i 1.42335 1.95907i
\(43\) 10.2018 + 3.31478i 0.237252 + 0.0770879i 0.425230 0.905085i \(-0.360193\pi\)
−0.187978 + 0.982173i \(0.560193\pi\)
\(44\) 25.4144 8.25765i 0.577601 0.187674i
\(45\) −88.4781 + 64.2831i −1.96618 + 1.42851i
\(46\) 25.1026 8.15632i 0.545708 0.177311i
\(47\) −22.3601 68.8174i −0.475747 1.46420i −0.844947 0.534850i \(-0.820368\pi\)
0.369200 0.929350i \(-0.379632\pi\)
\(48\) −40.1306 55.2351i −0.836055 1.15073i
\(49\) −2.94313 9.05803i −0.0600639 0.184858i
\(50\) −2.01491 + 6.20127i −0.0402983 + 0.124025i
\(51\) 105.142 + 76.3899i 2.06160 + 1.49784i
\(52\) −30.2165 9.81794i −0.581087 0.188807i
\(53\) 7.30390 + 10.0530i 0.137809 + 0.189678i 0.872344 0.488893i \(-0.162599\pi\)
−0.734534 + 0.678572i \(0.762599\pi\)
\(54\) 113.870 + 156.729i 2.10870 + 2.90238i
\(55\) 17.2701 23.7703i 0.314002 0.432187i
\(56\) −13.8179 −0.246748
\(57\) 18.4873i 0.324339i
\(58\) 34.0859 46.9152i 0.587687 0.808882i
\(59\) −24.3552 74.9577i −0.412801 1.27047i −0.914203 0.405255i \(-0.867183\pi\)
0.501403 0.865214i \(-0.332817\pi\)
\(60\) 128.819 + 41.8559i 2.14699 + 0.697598i
\(61\) 61.8106i 1.01329i 0.862155 + 0.506644i \(0.169114\pi\)
−0.862155 + 0.506644i \(0.830886\pi\)
\(62\) −88.5016 + 23.8791i −1.42745 + 0.385147i
\(63\) −131.740 −2.09112
\(64\) −26.3208 + 81.0072i −0.411263 + 1.26574i
\(65\) −33.2237 + 10.7950i −0.511133 + 0.166077i
\(66\) −73.7711 53.5978i −1.11774 0.812088i
\(67\) 63.5225 0.948097 0.474049 0.880499i \(-0.342792\pi\)
0.474049 + 0.880499i \(0.342792\pi\)
\(68\) 112.619i 1.65616i
\(69\) −39.5319 28.7216i −0.572926 0.416255i
\(70\) −78.3966 + 56.9585i −1.11995 + 0.813692i
\(71\) 20.4625 14.8669i 0.288204 0.209392i −0.434284 0.900776i \(-0.642999\pi\)
0.722488 + 0.691384i \(0.242999\pi\)
\(72\) 14.2499 43.8567i 0.197915 0.609121i
\(73\) 73.0291 100.516i 1.00040 1.37693i 0.0753179 0.997160i \(-0.476003\pi\)
0.925081 0.379771i \(-0.123997\pi\)
\(74\) −20.7522 6.74279i −0.280435 0.0911188i
\(75\) 11.4804 3.73022i 0.153073 0.0497363i
\(76\) 12.9606 9.41645i 0.170535 0.123901i
\(77\) 33.6608 10.9370i 0.437153 0.142040i
\(78\) 33.5023 + 103.110i 0.429517 + 1.32192i
\(79\) 40.3121 + 55.4848i 0.510280 + 0.702340i 0.983966 0.178354i \(-0.0570771\pi\)
−0.473687 + 0.880693i \(0.657077\pi\)
\(80\) 20.1019 + 61.8673i 0.251274 + 0.773342i
\(81\) 52.5139 161.621i 0.648319 1.99532i
\(82\) −69.3918 50.4161i −0.846241 0.614830i
\(83\) −14.4260 4.68729i −0.173807 0.0564734i 0.220821 0.975314i \(-0.429126\pi\)
−0.394628 + 0.918841i \(0.629126\pi\)
\(84\) 95.9033 + 132.000i 1.14171 + 1.57142i
\(85\) −72.7836 100.178i −0.856277 1.17856i
\(86\) −18.6440 + 25.6613i −0.216791 + 0.298387i
\(87\) −107.358 −1.23400
\(88\) 12.3888i 0.140782i
\(89\) −91.9646 + 126.578i −1.03331 + 1.42223i −0.130877 + 0.991399i \(0.541779\pi\)
−0.902433 + 0.430831i \(0.858221\pi\)
\(90\) −99.9331 307.562i −1.11037 3.41736i
\(91\) −40.0210 13.0036i −0.439791 0.142897i
\(92\) 42.3433i 0.460253i
\(93\) 132.070 + 106.568i 1.42010 + 1.14589i
\(94\) 213.964 2.27621
\(95\) 5.44320 16.7524i 0.0572968 0.176342i
\(96\) 237.806 77.2677i 2.47714 0.804872i
\(97\) −75.4306 54.8035i −0.777635 0.564985i 0.126633 0.991950i \(-0.459583\pi\)
−0.904268 + 0.426965i \(0.859583\pi\)
\(98\) 28.1628 0.287376
\(99\) 118.115i 1.19308i
\(100\) −8.46262 6.14845i −0.0846262 0.0614845i
\(101\) −37.2606 + 27.0714i −0.368917 + 0.268034i −0.756762 0.653691i \(-0.773220\pi\)
0.387845 + 0.921725i \(0.373220\pi\)
\(102\) −310.902 + 225.884i −3.04806 + 2.21455i
\(103\) 20.3131 62.5174i 0.197215 0.606965i −0.802729 0.596344i \(-0.796619\pi\)
0.999944 0.0106204i \(-0.00338064\pi\)
\(104\) 8.65788 11.9166i 0.0832489 0.114582i
\(105\) 170.618 + 55.4371i 1.62493 + 0.527972i
\(106\) −34.9455 + 11.3545i −0.329674 + 0.107118i
\(107\) 73.7625 53.5916i 0.689370 0.500856i −0.187083 0.982344i \(-0.559903\pi\)
0.876453 + 0.481488i \(0.159903\pi\)
\(108\) −295.577 + 96.0387i −2.73682 + 0.889247i
\(109\) 15.8725 + 48.8504i 0.145619 + 0.448169i 0.997090 0.0762323i \(-0.0242891\pi\)
−0.851471 + 0.524402i \(0.824289\pi\)
\(110\) 51.0675 + 70.2884i 0.464250 + 0.638985i
\(111\) 12.4830 + 38.4187i 0.112459 + 0.346114i
\(112\) −24.2146 + 74.5250i −0.216202 + 0.665402i
\(113\) −70.6470 51.3280i −0.625194 0.454230i 0.229538 0.973300i \(-0.426279\pi\)
−0.854732 + 0.519069i \(0.826279\pi\)
\(114\) −51.9912 16.8929i −0.456063 0.148184i
\(115\) 27.3657 + 37.6657i 0.237963 + 0.327527i
\(116\) 54.6824 + 75.2638i 0.471400 + 0.648826i
\(117\) 82.5444 113.613i 0.705508 0.971048i
\(118\) 233.055 1.97504
\(119\) 149.161i 1.25345i
\(120\) −36.9103 + 50.8027i −0.307586 + 0.423356i
\(121\) 27.5852 + 84.8985i 0.227977 + 0.701640i
\(122\) −173.827 56.4800i −1.42482 0.462951i
\(123\) 158.792i 1.29099i
\(124\) 7.44074 146.868i 0.0600060 1.18442i
\(125\) 118.895 0.951159
\(126\) 120.379 370.488i 0.955387 2.94038i
\(127\) 34.4876 11.2057i 0.271556 0.0882338i −0.170074 0.985431i \(-0.554401\pi\)
0.441630 + 0.897198i \(0.354401\pi\)
\(128\) −55.9515 40.6511i −0.437121 0.317587i
\(129\) 58.7219 0.455208
\(130\) 103.298i 0.794597i
\(131\) −147.918 107.469i −1.12915 0.820373i −0.143577 0.989639i \(-0.545860\pi\)
−0.985570 + 0.169266i \(0.945860\pi\)
\(132\) 118.347 85.9845i 0.896572 0.651398i
\(133\) 17.1660 12.4719i 0.129068 0.0937733i
\(134\) −58.0442 + 178.642i −0.433166 + 1.33315i
\(135\) −200.856 + 276.455i −1.48782 + 2.04781i
\(136\) 49.6561 + 16.1343i 0.365119 + 0.118634i
\(137\) 119.519 38.8342i 0.872404 0.283461i 0.161604 0.986856i \(-0.448333\pi\)
0.710800 + 0.703394i \(0.248333\pi\)
\(138\) 116.895 84.9294i 0.847067 0.615430i
\(139\) −236.072 + 76.7046i −1.69836 + 0.551832i −0.988329 0.152336i \(-0.951321\pi\)
−0.710034 + 0.704167i \(0.751321\pi\)
\(140\) −48.0391 147.849i −0.343137 1.05607i
\(141\) −232.829 320.462i −1.65127 2.27278i
\(142\) 23.1117 + 71.1305i 0.162758 + 0.500919i
\(143\) −11.6587 + 35.8818i −0.0815295 + 0.250922i
\(144\) −211.563 153.710i −1.46919 1.06743i
\(145\) 97.2832 + 31.6092i 0.670919 + 0.217995i
\(146\) 215.946 + 297.224i 1.47908 + 2.03578i
\(147\) −30.6460 42.1806i −0.208476 0.286943i
\(148\) 20.5754 28.3197i 0.139023 0.191349i
\(149\) −196.177 −1.31662 −0.658310 0.752747i \(-0.728729\pi\)
−0.658310 + 0.752747i \(0.728729\pi\)
\(150\) 35.6945i 0.237963i
\(151\) 4.51948 6.22054i 0.0299304 0.0411956i −0.793790 0.608193i \(-0.791895\pi\)
0.823720 + 0.566997i \(0.191895\pi\)
\(152\) 2.29512 + 7.06366i 0.0150995 + 0.0464715i
\(153\) 473.423 + 153.824i 3.09427 + 1.00539i
\(154\) 104.657i 0.679588i
\(155\) −88.2993 135.452i −0.569673 0.873886i
\(156\) −173.926 −1.11491
\(157\) −85.2127 + 262.258i −0.542756 + 1.67043i 0.183509 + 0.983018i \(0.441254\pi\)
−0.726266 + 0.687414i \(0.758746\pi\)
\(158\) −192.873 + 62.6683i −1.22072 + 0.396635i
\(159\) 55.0327 + 39.9836i 0.346118 + 0.251469i
\(160\) −238.239 −1.48900
\(161\) 56.0826i 0.348339i
\(162\) 406.535 + 295.365i 2.50948 + 1.82324i
\(163\) −117.611 + 85.4491i −0.721538 + 0.524228i −0.886875 0.462009i \(-0.847129\pi\)
0.165338 + 0.986237i \(0.447129\pi\)
\(164\) 111.322 80.8802i 0.678793 0.493172i
\(165\) 49.7035 152.972i 0.301233 0.927101i
\(166\) 26.3638 36.2866i 0.158818 0.218594i
\(167\) 271.725 + 88.2887i 1.62709 + 0.528675i 0.973601 0.228257i \(-0.0733026\pi\)
0.653494 + 0.756932i \(0.273303\pi\)
\(168\) −71.9410 + 23.3750i −0.428220 + 0.139137i
\(169\) −100.434 + 72.9693i −0.594282 + 0.431771i
\(170\) 348.233 113.148i 2.04843 0.665575i
\(171\) 21.8817 + 67.3451i 0.127963 + 0.393831i
\(172\) −29.9098 41.1673i −0.173894 0.239345i
\(173\) −44.4941 136.939i −0.257191 0.791553i −0.993390 0.114788i \(-0.963381\pi\)
0.736199 0.676765i \(-0.236619\pi\)
\(174\) 98.0992 301.918i 0.563788 1.73516i
\(175\) −11.2085 8.14347i −0.0640487 0.0465341i
\(176\) 66.8172 + 21.7102i 0.379643 + 0.123354i
\(177\) −253.604 349.056i −1.43279 1.97207i
\(178\) −271.938 374.290i −1.52774 2.10275i
\(179\) 120.316 165.601i 0.672157 0.925144i −0.327650 0.944799i \(-0.606257\pi\)
0.999807 + 0.0196549i \(0.00625676\pi\)
\(180\) 518.800 2.88222
\(181\) 124.758i 0.689272i 0.938736 + 0.344636i \(0.111998\pi\)
−0.938736 + 0.344636i \(0.888002\pi\)
\(182\) 73.1391 100.667i 0.401863 0.553117i
\(183\) 104.562 + 321.808i 0.571376 + 1.75851i
\(184\) −18.6701 6.06627i −0.101468 0.0329689i
\(185\) 38.4887i 0.208047i
\(186\) −420.376 + 274.037i −2.26008 + 1.47331i
\(187\) −133.734 −0.715155
\(188\) −106.071 + 326.453i −0.564207 + 1.73645i
\(189\) −391.484 + 127.201i −2.07134 + 0.673020i
\(190\) 42.1384 + 30.6154i 0.221781 + 0.161133i
\(191\) 95.7014 0.501055 0.250527 0.968110i \(-0.419396\pi\)
0.250527 + 0.968110i \(0.419396\pi\)
\(192\) 466.278i 2.42853i
\(193\) 100.339 + 72.9004i 0.519890 + 0.377722i 0.816563 0.577257i \(-0.195877\pi\)
−0.296672 + 0.954979i \(0.595877\pi\)
\(194\) 223.047 162.053i 1.14973 0.835326i
\(195\) −154.713 + 112.405i −0.793399 + 0.576438i
\(196\) −13.9615 + 42.9690i −0.0712321 + 0.219230i
\(197\) −90.5460 + 124.626i −0.459624 + 0.632618i −0.974431 0.224688i \(-0.927864\pi\)
0.514807 + 0.857306i \(0.327864\pi\)
\(198\) −332.170 107.929i −1.67763 0.545093i
\(199\) 262.101 85.1617i 1.31709 0.427948i 0.435595 0.900143i \(-0.356538\pi\)
0.881494 + 0.472194i \(0.156538\pi\)
\(200\) 3.92337 2.85050i 0.0196169 0.0142525i
\(201\) 330.721 107.458i 1.64538 0.534615i
\(202\) −42.0846 129.523i −0.208340 0.641204i
\(203\) 72.4254 + 99.6850i 0.356775 + 0.491059i
\(204\) −190.512 586.334i −0.933881 2.87419i
\(205\) 46.7529 143.891i 0.228063 0.701906i
\(206\) 157.254 + 114.251i 0.763367 + 0.554619i
\(207\) −178.001 57.8360i −0.859907 0.279401i
\(208\) −49.0981 67.5778i −0.236049 0.324893i
\(209\) −11.1819 15.3906i −0.0535021 0.0736394i
\(210\) −311.807 + 429.165i −1.48479 + 2.04364i
\(211\) 10.5159 0.0498383 0.0249191 0.999689i \(-0.492067\pi\)
0.0249191 + 0.999689i \(0.492067\pi\)
\(212\) 58.9465i 0.278049i
\(213\) 81.3854 112.017i 0.382091 0.525903i
\(214\) 83.3124 + 256.409i 0.389310 + 1.19817i
\(215\) −53.2113 17.2894i −0.247494 0.0804158i
\(216\) 144.085i 0.667060i
\(217\) 9.85508 194.523i 0.0454151 0.896419i
\(218\) −151.884 −0.696714
\(219\) 210.178 646.861i 0.959716 2.95370i
\(220\) −132.558 + 43.0706i −0.602536 + 0.195776i
\(221\) 128.636 + 93.4597i 0.582065 + 0.422895i
\(222\) −119.450 −0.538062
\(223\) 266.065i 1.19312i −0.802570 0.596558i \(-0.796534\pi\)
0.802570 0.596558i \(-0.203466\pi\)
\(224\) −232.173 168.684i −1.03649 0.753051i
\(225\) 37.4055 27.1767i 0.166247 0.120785i
\(226\) 208.902 151.776i 0.924345 0.671576i
\(227\) −3.84060 + 11.8202i −0.0169189 + 0.0520712i −0.959160 0.282866i \(-0.908715\pi\)
0.942241 + 0.334937i \(0.108715\pi\)
\(228\) 51.5484 70.9502i 0.226089 0.311185i
\(229\) −261.591 84.9962i −1.14232 0.371163i −0.324075 0.946031i \(-0.605053\pi\)
−0.818246 + 0.574869i \(0.805053\pi\)
\(230\) −130.931 + 42.5421i −0.569266 + 0.184966i
\(231\) 156.748 113.884i 0.678564 0.493006i
\(232\) −41.0194 + 13.3280i −0.176808 + 0.0574484i
\(233\) 61.3553 + 188.832i 0.263327 + 0.810438i 0.992074 + 0.125655i \(0.0401032\pi\)
−0.728747 + 0.684783i \(0.759897\pi\)
\(234\) 244.082 + 335.951i 1.04309 + 1.43569i
\(235\) 116.627 + 358.941i 0.496285 + 1.52741i
\(236\) −115.535 + 355.581i −0.489556 + 1.50670i
\(237\) 303.740 + 220.680i 1.28160 + 0.931139i
\(238\) 419.479 + 136.297i 1.76252 + 0.572677i
\(239\) 129.225 + 177.863i 0.540689 + 0.744195i 0.988712 0.149827i \(-0.0478718\pi\)
−0.448023 + 0.894022i \(0.647872\pi\)
\(240\) 209.315 + 288.098i 0.872148 + 1.20041i
\(241\) 79.4670 109.377i 0.329739 0.453846i −0.611671 0.791112i \(-0.709502\pi\)
0.941409 + 0.337266i \(0.109502\pi\)
\(242\) −263.963 −1.09075
\(243\) 340.655i 1.40187i
\(244\) 172.347 237.215i 0.706340 0.972194i
\(245\) 15.3509 + 47.2453i 0.0626569 + 0.192838i
\(246\) −446.565 145.098i −1.81530 0.589828i
\(247\) 22.6185i 0.0915727i
\(248\) 63.6912 + 24.3217i 0.256819 + 0.0980713i
\(249\) −83.0362 −0.333479
\(250\) −108.641 + 334.363i −0.434565 + 1.33745i
\(251\) −78.1627 + 25.3966i −0.311405 + 0.101182i −0.460550 0.887634i \(-0.652348\pi\)
0.149145 + 0.988815i \(0.452348\pi\)
\(252\) 505.590 + 367.332i 2.00631 + 1.45767i
\(253\) 50.2823 0.198744
\(254\) 107.227i 0.422155i
\(255\) −548.403 398.438i −2.15060 1.56250i
\(256\) −110.188 + 80.0560i −0.430421 + 0.312719i
\(257\) −82.5128 + 59.9490i −0.321061 + 0.233265i −0.736628 0.676298i \(-0.763583\pi\)
0.415567 + 0.909563i \(0.363583\pi\)
\(258\) −53.6576 + 165.141i −0.207975 + 0.640082i
\(259\) 27.2517 37.5087i 0.105219 0.144821i
\(260\) 157.605 + 51.2089i 0.606172 + 0.196957i
\(261\) −391.080 + 127.070i −1.49839 + 0.486857i
\(262\) 437.392 317.784i 1.66943 1.21292i
\(263\) −166.458 + 54.0855i −0.632921 + 0.205648i −0.607868 0.794038i \(-0.707975\pi\)
−0.0250522 + 0.999686i \(0.507975\pi\)
\(264\) 20.9575 + 64.5004i 0.0793843 + 0.244320i
\(265\) −38.0960 52.4347i −0.143759 0.197867i
\(266\) 19.3885 + 59.6716i 0.0728890 + 0.224329i
\(267\) −264.674 + 814.584i −0.991290 + 3.05088i
\(268\) −243.785 177.120i −0.909646 0.660897i
\(269\) 184.972 + 60.1011i 0.687629 + 0.223424i 0.631932 0.775024i \(-0.282262\pi\)
0.0556964 + 0.998448i \(0.482262\pi\)
\(270\) −593.929 817.473i −2.19974 3.02768i
\(271\) −54.2554 74.6762i −0.200204 0.275558i 0.697096 0.716978i \(-0.254475\pi\)
−0.897301 + 0.441420i \(0.854475\pi\)
\(272\) 174.036 239.540i 0.639837 0.880661i
\(273\) −230.361 −0.843814
\(274\) 371.605i 1.35622i
\(275\) −7.30123 + 10.0493i −0.0265499 + 0.0365428i
\(276\) 71.6299 + 220.454i 0.259529 + 0.798747i
\(277\) −14.0177 4.55461i −0.0506053 0.0164426i 0.283605 0.958941i \(-0.408470\pi\)
−0.334210 + 0.942499i \(0.608470\pi\)
\(278\) 733.986i 2.64024i
\(279\) 607.233 + 231.883i 2.17646 + 0.831123i
\(280\) 72.0722 0.257401
\(281\) 31.0701 95.6241i 0.110570 0.340299i −0.880427 0.474181i \(-0.842744\pi\)
0.990997 + 0.133882i \(0.0427443\pi\)
\(282\) 1113.97 361.952i 3.95026 1.28352i
\(283\) −150.671 109.469i −0.532408 0.386817i 0.288850 0.957374i \(-0.406727\pi\)
−0.821258 + 0.570558i \(0.806727\pi\)
\(284\) −119.984 −0.422478
\(285\) 96.4271i 0.338341i
\(286\) −90.2557 65.5746i −0.315579 0.229282i
\(287\) 147.443 107.124i 0.513739 0.373254i
\(288\) 774.817 562.937i 2.69034 1.95464i
\(289\) −84.8595 + 261.171i −0.293631 + 0.903704i
\(290\) −177.787 + 244.702i −0.613058 + 0.843801i
\(291\) −485.427 157.725i −1.66813 0.542009i
\(292\) −560.539 + 182.130i −1.91965 + 0.623733i
\(293\) −259.380 + 188.451i −0.885257 + 0.643177i −0.934637 0.355603i \(-0.884275\pi\)
0.0493799 + 0.998780i \(0.484275\pi\)
\(294\) 146.626 47.6416i 0.498727 0.162046i
\(295\) 127.033 + 390.968i 0.430621 + 1.32532i
\(296\) 9.53903 + 13.1293i 0.0322265 + 0.0443559i
\(297\) 114.045 + 350.994i 0.383990 + 1.18180i
\(298\) 179.258 551.699i 0.601537 1.85134i
\(299\) −48.3656 35.1397i −0.161758 0.117524i
\(300\) −54.4604 17.6953i −0.181535 0.0589842i
\(301\) −39.6147 54.5250i −0.131610 0.181146i
\(302\) 13.3640 + 18.3940i 0.0442518 + 0.0609074i
\(303\) −148.197 + 203.975i −0.489098 + 0.673185i
\(304\) 42.1189 0.138549
\(305\) 322.395i 1.05703i
\(306\) −865.187 + 1190.83i −2.82741 + 3.89160i
\(307\) −153.090 471.163i −0.498665 1.53473i −0.811167 0.584815i \(-0.801167\pi\)
0.312502 0.949917i \(-0.398833\pi\)
\(308\) −159.678 51.8826i −0.518436 0.168450i
\(309\) 359.850i 1.16456i
\(310\) 461.611 124.550i 1.48907 0.401773i
\(311\) 321.930 1.03514 0.517572 0.855640i \(-0.326836\pi\)
0.517572 + 0.855640i \(0.326836\pi\)
\(312\) 24.9174 76.6879i 0.0798635 0.245795i
\(313\) −78.3120 + 25.4451i −0.250198 + 0.0812943i −0.431431 0.902146i \(-0.641991\pi\)
0.181233 + 0.983440i \(0.441991\pi\)
\(314\) −659.673 479.280i −2.10087 1.52637i
\(315\) 687.137 2.18139
\(316\) 325.341i 1.02956i
\(317\) 433.663 + 315.075i 1.36802 + 0.993927i 0.997889 + 0.0649488i \(0.0206884\pi\)
0.370135 + 0.928978i \(0.379312\pi\)
\(318\) −162.731 + 118.231i −0.511732 + 0.371795i
\(319\) 89.3751 64.9348i 0.280173 0.203557i
\(320\) 137.285 422.521i 0.429017 1.32038i
\(321\) 293.376 403.797i 0.913943 1.25794i
\(322\) −157.719 51.2460i −0.489810 0.159149i
\(323\) −76.2505 + 24.7753i −0.236070 + 0.0767037i
\(324\) −652.186 + 473.841i −2.01292 + 1.46247i
\(325\) 14.0458 4.56377i 0.0432180 0.0140424i
\(326\) −132.837 408.831i −0.407476 1.25408i
\(327\) 165.275 + 227.482i 0.505430 + 0.695664i
\(328\) 19.7134 + 60.6715i 0.0601017 + 0.184974i
\(329\) −140.488 + 432.378i −0.427016 + 1.31422i
\(330\) 384.779 + 279.558i 1.16600 + 0.847146i
\(331\) 13.6662 + 4.44042i 0.0412876 + 0.0134152i 0.329588 0.944125i \(-0.393090\pi\)
−0.288300 + 0.957540i \(0.593090\pi\)
\(332\) 42.2942 + 58.2129i 0.127392 + 0.175340i
\(333\) 90.9453 + 125.175i 0.273109 + 0.375902i
\(334\) −496.582 + 683.486i −1.48677 + 2.04636i
\(335\) −331.324 −0.989027
\(336\) 428.966i 1.27669i
\(337\) 377.588 519.705i 1.12044 1.54215i 0.315372 0.948968i \(-0.397871\pi\)
0.805067 0.593184i \(-0.202129\pi\)
\(338\) −113.436 349.122i −0.335611 1.03290i
\(339\) −454.642 147.722i −1.34113 0.435759i
\(340\) 587.404i 1.72766i
\(341\) −174.404 8.83581i −0.511449 0.0259115i
\(342\) −209.386 −0.612241
\(343\) −113.627 + 349.709i −0.331275 + 1.01956i
\(344\) 22.4365 7.29007i 0.0652224 0.0211921i
\(345\) 206.193 + 149.808i 0.597660 + 0.434225i
\(346\) 425.764 1.23053
\(347\) 145.682i 0.419832i 0.977719 + 0.209916i \(0.0673191\pi\)
−0.977719 + 0.209916i \(0.932681\pi\)
\(348\) 412.016 + 299.347i 1.18395 + 0.860192i
\(349\) −376.007 + 273.185i −1.07738 + 0.782765i −0.977225 0.212207i \(-0.931935\pi\)
−0.100158 + 0.994972i \(0.531935\pi\)
\(350\) 33.1434 24.0801i 0.0946955 0.0688003i
\(351\) 135.594 417.315i 0.386308 1.18893i
\(352\) −151.237 + 208.160i −0.429652 + 0.591365i
\(353\) 265.392 + 86.2310i 0.751818 + 0.244281i 0.659763 0.751473i \(-0.270656\pi\)
0.0920548 + 0.995754i \(0.470656\pi\)
\(354\) 1213.37 394.247i 3.42759 1.11369i
\(355\) −106.729 + 77.5433i −0.300646 + 0.218432i
\(356\) 705.879 229.354i 1.98281 0.644253i
\(357\) −252.328 776.585i −0.706801 2.17531i
\(358\) 355.773 + 489.679i 0.993778 + 1.36782i
\(359\) −161.666 497.557i −0.450323 1.38595i −0.876539 0.481330i \(-0.840154\pi\)
0.426216 0.904621i \(-0.359846\pi\)
\(360\) −74.3254 + 228.750i −0.206459 + 0.635417i
\(361\) 282.828 + 205.487i 0.783458 + 0.569216i
\(362\) −350.852 113.999i −0.969205 0.314914i
\(363\) 287.236 + 395.347i 0.791285 + 1.08911i
\(364\) 117.334 + 161.496i 0.322345 + 0.443670i
\(365\) −380.909 + 524.276i −1.04359 + 1.43637i
\(366\) −1000.55 −2.73375
\(367\) 330.694i 0.901074i −0.892758 0.450537i \(-0.851233\pi\)
0.892758 0.450537i \(-0.148767\pi\)
\(368\) −65.4352 + 90.0639i −0.177813 + 0.244739i
\(369\) 187.948 + 578.443i 0.509343 + 1.56760i
\(370\) 108.240 + 35.1694i 0.292541 + 0.0950524i
\(371\) 78.0731i 0.210440i
\(372\) −209.710 777.234i −0.563735 2.08934i
\(373\) −65.8984 −0.176671 −0.0883356 0.996091i \(-0.528155\pi\)
−0.0883356 + 0.996091i \(0.528155\pi\)
\(374\) 122.201 376.095i 0.326739 1.00560i
\(375\) 619.009 201.128i 1.65069 0.536342i
\(376\) −128.744 93.5378i −0.342404 0.248771i
\(377\) −131.348 −0.348403
\(378\) 1217.18i 3.22006i
\(379\) 402.911 + 292.732i 1.06309 + 0.772381i 0.974658 0.223702i \(-0.0718141\pi\)
0.0884330 + 0.996082i \(0.471814\pi\)
\(380\) −67.6007 + 49.1148i −0.177897 + 0.129249i
\(381\) 160.599 116.682i 0.421518 0.306251i
\(382\) −87.4480 + 269.137i −0.228921 + 0.704548i
\(383\) −154.922 + 213.231i −0.404495 + 0.556739i −0.961865 0.273525i \(-0.911810\pi\)
0.557370 + 0.830264i \(0.311810\pi\)
\(384\) −360.071 116.994i −0.937684 0.304672i
\(385\) −175.569 + 57.0460i −0.456025 + 0.148171i
\(386\) −296.700 + 215.565i −0.768654 + 0.558460i
\(387\) 213.910 69.5037i 0.552740 0.179596i
\(388\) 136.677 + 420.647i 0.352259 + 1.08414i
\(389\) −416.464 573.214i −1.07060 1.47356i −0.869465 0.493995i \(-0.835536\pi\)
−0.201137 0.979563i \(-0.564464\pi\)
\(390\) −174.743 537.804i −0.448059 1.37898i
\(391\) 65.4840 201.539i 0.167478 0.515445i
\(392\) −16.9458 12.3118i −0.0432291 0.0314078i
\(393\) −951.914 309.296i −2.42217 0.787012i
\(394\) −267.743 368.516i −0.679550 0.935321i
\(395\) −210.262 289.401i −0.532308 0.732660i
\(396\) 329.341 453.299i 0.831669 1.14469i
\(397\) 439.070 1.10597 0.552985 0.833191i \(-0.313489\pi\)
0.552985 + 0.833191i \(0.313489\pi\)
\(398\) 814.912i 2.04752i
\(399\) 68.2745 93.9718i 0.171114 0.235518i
\(400\) −8.49841 26.1554i −0.0212460 0.0653885i
\(401\) 380.052 + 123.486i 0.947762 + 0.307946i 0.741806 0.670615i \(-0.233970\pi\)
0.205956 + 0.978561i \(0.433970\pi\)
\(402\) 1028.26i 2.55787i
\(403\) 161.581 + 130.381i 0.400946 + 0.323526i
\(404\) 218.481 0.540795
\(405\) −273.904 + 842.991i −0.676307 + 2.08146i
\(406\) −346.519 + 112.591i −0.853496 + 0.277318i
\(407\) −33.6293 24.4331i −0.0826274 0.0600323i
\(408\) 285.821 0.700541
\(409\) 225.799i 0.552075i −0.961147 0.276037i \(-0.910979\pi\)
0.961147 0.276037i \(-0.0890214\pi\)
\(410\) 361.937 + 262.963i 0.882773 + 0.641372i
\(411\) 556.567 404.369i 1.35418 0.983867i
\(412\) −252.275 + 183.288i −0.612317 + 0.444875i
\(413\) −153.023 + 470.958i −0.370517 + 1.14033i
\(414\) 325.299 447.736i 0.785747 1.08149i
\(415\) 75.2439 + 24.4482i 0.181311 + 0.0589114i
\(416\) 290.945 94.5338i 0.699387 0.227245i
\(417\) −1099.32 + 798.703i −2.63626 + 1.91535i
\(418\) 53.5000 17.3832i 0.127991 0.0415866i
\(419\) 136.617 + 420.465i 0.326056 + 1.00350i 0.970962 + 0.239234i \(0.0768964\pi\)
−0.644906 + 0.764262i \(0.723104\pi\)
\(420\) −500.217 688.490i −1.19099 1.63926i
\(421\) −134.613 414.296i −0.319745 0.984075i −0.973757 0.227590i \(-0.926915\pi\)
0.654012 0.756485i \(-0.273085\pi\)
\(422\) −9.60896 + 29.5733i −0.0227701 + 0.0700790i
\(423\) −1227.45 891.792i −2.90176 2.10825i
\(424\) 25.9908 + 8.44491i 0.0612990 + 0.0199172i
\(425\) 30.7704 + 42.3519i 0.0724010 + 0.0996514i
\(426\) 240.655 + 331.234i 0.564919 + 0.777544i
\(427\) 228.269 314.186i 0.534588 0.735798i
\(428\) −432.514 −1.01055
\(429\) 206.536i 0.481436i
\(430\) 97.2445 133.846i 0.226150 0.311269i
\(431\) −79.0915 243.419i −0.183507 0.564776i 0.816413 0.577469i \(-0.195960\pi\)
−0.999919 + 0.0126929i \(0.995960\pi\)
\(432\) −777.102 252.496i −1.79885 0.584481i
\(433\) 135.443i 0.312801i −0.987694 0.156400i \(-0.950011\pi\)
0.987694 0.156400i \(-0.0499890\pi\)
\(434\) 538.043 + 205.462i 1.23973 + 0.473414i
\(435\) 559.963 1.28727
\(436\) 75.2951 231.734i 0.172695 0.531501i
\(437\) 28.6692 9.31520i 0.0656046 0.0213162i
\(438\) 1627.09 + 1182.15i 3.71481 + 2.69897i
\(439\) −285.701 −0.650800 −0.325400 0.945576i \(-0.605499\pi\)
−0.325400 + 0.945576i \(0.605499\pi\)
\(440\) 64.6181i 0.146859i
\(441\) −161.562 117.381i −0.366353 0.266171i
\(442\) −380.375 + 276.359i −0.860578 + 0.625246i
\(443\) 389.073 282.678i 0.878269 0.638100i −0.0545242 0.998512i \(-0.517364\pi\)
0.932793 + 0.360413i \(0.117364\pi\)
\(444\) 59.2162 182.249i 0.133370 0.410470i
\(445\) 479.674 660.214i 1.07792 1.48363i
\(446\) 748.244 + 243.119i 1.67768 + 0.545110i
\(447\) −1021.36 + 331.861i −2.28493 + 0.742419i
\(448\) 432.953 314.558i 0.966412 0.702139i
\(449\) 141.577 46.0012i 0.315316 0.102452i −0.147083 0.989124i \(-0.546989\pi\)
0.462400 + 0.886672i \(0.346989\pi\)
\(450\) 42.2483 + 130.027i 0.0938851 + 0.288949i
\(451\) −96.0444 132.194i −0.212959 0.293113i
\(452\) 128.009 + 393.971i 0.283206 + 0.871617i
\(453\) 13.0071 40.0317i 0.0287132 0.0883702i
\(454\) −29.7320 21.6015i −0.0654889 0.0475805i
\(455\) 208.744 + 67.8249i 0.458777 + 0.149066i
\(456\) 23.8985 + 32.8934i 0.0524089 + 0.0721346i
\(457\) 59.9116 + 82.4613i 0.131098 + 0.180440i 0.869519 0.493899i \(-0.164429\pi\)
−0.738422 + 0.674339i \(0.764429\pi\)
\(458\) 478.063 657.997i 1.04380 1.43667i
\(459\) 1555.36 3.38859
\(460\) 220.856i 0.480122i
\(461\) 141.932 195.352i 0.307878 0.423757i −0.626840 0.779148i \(-0.715652\pi\)
0.934718 + 0.355391i \(0.115652\pi\)
\(462\) 177.042 + 544.879i 0.383208 + 1.17939i
\(463\) 408.512 + 132.734i 0.882315 + 0.286681i 0.714918 0.699208i \(-0.246464\pi\)
0.167397 + 0.985890i \(0.446464\pi\)
\(464\) 244.589i 0.527131i
\(465\) −688.855 555.841i −1.48141 1.19536i
\(466\) −587.109 −1.25989
\(467\) 175.611 540.474i 0.376040 1.15733i −0.566735 0.823900i \(-0.691794\pi\)
0.942775 0.333431i \(-0.108206\pi\)
\(468\) −633.574 + 205.861i −1.35379 + 0.439873i
\(469\) −322.887 234.591i −0.688459 0.500195i
\(470\) −1116.00 −2.37448
\(471\) 1509.56i 3.20500i
\(472\) −140.231 101.884i −0.297100 0.215856i
\(473\) −48.8857 + 35.5176i −0.103352 + 0.0750900i
\(474\) −898.154 + 652.547i −1.89484 + 1.37668i
\(475\) −2.30120 + 7.08236i −0.00484463 + 0.0149102i
\(476\) −415.907 + 572.447i −0.873754 + 1.20262i
\(477\) 247.796 + 80.5140i 0.519489 + 0.168792i
\(478\) −618.276 + 200.890i −1.29346 + 0.420272i
\(479\) 401.431 291.657i 0.838061 0.608887i −0.0837673 0.996485i \(-0.526695\pi\)
0.921828 + 0.387598i \(0.126695\pi\)
\(480\) −1240.36 + 403.017i −2.58408 + 0.839618i
\(481\) 15.2724 + 47.0036i 0.0317513 + 0.0977206i
\(482\) 234.983 + 323.426i 0.487516 + 0.671008i
\(483\) 94.8720 + 291.986i 0.196422 + 0.604526i
\(484\) 130.857 402.737i 0.270366 0.832102i
\(485\) 393.435 + 285.847i 0.811206 + 0.589375i
\(486\) 958.011 + 311.277i 1.97122 + 0.640487i
\(487\) −155.153 213.550i −0.318590 0.438501i 0.619446 0.785039i \(-0.287357\pi\)
−0.938036 + 0.346538i \(0.887357\pi\)
\(488\) 79.9022 + 109.976i 0.163734 + 0.225361i
\(489\) −467.773 + 643.834i −0.956591 + 1.31663i
\(490\) −146.893 −0.299782
\(491\) 482.796i 0.983290i 0.870796 + 0.491645i \(0.163604\pi\)
−0.870796 + 0.491645i \(0.836396\pi\)
\(492\) 442.761 609.409i 0.899921 1.23864i
\(493\) −143.873 442.795i −0.291831 0.898164i
\(494\) −63.6089 20.6678i −0.128763 0.0418376i
\(495\) 616.070i 1.24459i
\(496\) 242.789 300.888i 0.489493 0.606630i
\(497\) −158.915 −0.319749
\(498\) 75.8750 233.519i 0.152359 0.468914i
\(499\) −319.557 + 103.830i −0.640394 + 0.208077i −0.611174 0.791496i \(-0.709302\pi\)
−0.0292203 + 0.999573i \(0.509302\pi\)
\(500\) −456.292 331.515i −0.912584 0.663031i
\(501\) 1564.05 3.12185
\(502\) 243.020i 0.484104i
\(503\) 10.4474 + 7.59051i 0.0207703 + 0.0150905i 0.598122 0.801405i \(-0.295914\pi\)
−0.577352 + 0.816496i \(0.695914\pi\)
\(504\) −234.398 + 170.300i −0.465074 + 0.337896i
\(505\) 194.346 141.200i 0.384843 0.279605i
\(506\) −45.9458 + 141.407i −0.0908020 + 0.279460i
\(507\) −399.455 + 549.802i −0.787879 + 1.08442i
\(508\) −163.601 53.1570i −0.322048 0.104640i
\(509\) 387.512 125.910i 0.761320 0.247368i 0.0974751 0.995238i \(-0.468923\pi\)
0.663845 + 0.747870i \(0.268923\pi\)
\(510\) 1621.62 1178.17i 3.17964 2.31015i
\(511\) −742.419 + 241.227i −1.45288 + 0.472068i
\(512\) −209.940 646.128i −0.410038 1.26197i
\(513\) 130.049 + 178.997i 0.253507 + 0.348922i
\(514\) −93.1955 286.826i −0.181314 0.558028i
\(515\) −105.950 + 326.081i −0.205728 + 0.633167i
\(516\) −225.361 163.735i −0.436747 0.317315i
\(517\) 387.659 + 125.958i 0.749824 + 0.243633i
\(518\) 80.5827 + 110.913i 0.155565 + 0.214117i
\(519\) −463.304 637.683i −0.892686 1.22868i
\(520\) −45.1582 + 62.1549i −0.0868427 + 0.119529i
\(521\) 248.737 0.477423 0.238711 0.971091i \(-0.423275\pi\)
0.238711 + 0.971091i \(0.423275\pi\)
\(522\) 1215.93i 2.32937i
\(523\) −480.687 + 661.609i −0.919095 + 1.26503i 0.0448683 + 0.998993i \(0.485713\pi\)
−0.963964 + 0.266033i \(0.914287\pi\)
\(524\) 268.021 + 824.883i 0.511490 + 1.57420i
\(525\) −72.1314 23.4369i −0.137393 0.0446418i
\(526\) 517.544i 0.983925i
\(527\) −262.547 + 687.531i −0.498191 + 1.30461i
\(528\) 384.600 0.728410
\(529\) 138.849 427.333i 0.262474 0.807813i
\(530\) 182.270 59.2232i 0.343906 0.111742i
\(531\) −1336.97 971.363i −2.51783 1.82931i
\(532\) −100.655 −0.189201
\(533\) 194.275i 0.364494i
\(534\) −2048.97 1488.67i −3.83703 2.78776i
\(535\) −384.734 + 279.526i −0.719130 + 0.522478i
\(536\) 113.022 82.1151i 0.210862 0.153200i
\(537\) 346.270 1065.71i 0.644823 1.98456i
\(538\) −338.040 + 465.271i −0.628326 + 0.864817i
\(539\) 51.0253 + 16.5791i 0.0946666 + 0.0307591i
\(540\) 1541.68 500.923i 2.85497 0.927636i
\(541\) 513.683 373.212i 0.949506 0.689856i −0.00118419 0.999999i \(-0.500377\pi\)
0.950690 + 0.310143i \(0.100377\pi\)
\(542\) 259.585 84.3443i 0.478939 0.155617i
\(543\) 211.047 + 649.535i 0.388668 + 1.19620i
\(544\) 637.378 + 877.275i 1.17165 + 1.61264i
\(545\) −82.7884 254.797i −0.151905 0.467517i
\(546\) 210.494 647.835i 0.385521 1.18651i
\(547\) 511.421 + 371.569i 0.934957 + 0.679286i 0.947201 0.320639i \(-0.103898\pi\)
−0.0122447 + 0.999925i \(0.503898\pi\)
\(548\) −566.970 184.220i −1.03462 0.336168i
\(549\) 761.789 + 1048.51i 1.38759 + 1.90986i
\(550\) −21.5896 29.7155i −0.0392538 0.0540283i
\(551\) 38.9289 53.5810i 0.0706514 0.0972432i
\(552\) −107.465 −0.194683
\(553\) 430.906i 0.779215i
\(554\) 25.6175 35.2595i 0.0462410 0.0636452i
\(555\) −65.1094 200.386i −0.117314 0.361056i
\(556\) 1119.87 + 363.868i 2.01415 + 0.654438i
\(557\) 46.8846i 0.0841734i −0.999114 0.0420867i \(-0.986599\pi\)
0.999114 0.0420867i \(-0.0134006\pi\)
\(558\) −1206.98 + 1495.81i −2.16305 + 2.68067i
\(559\) 71.8437 0.128522
\(560\) 126.300 388.711i 0.225536 0.694127i
\(561\) −696.267 + 226.231i −1.24112 + 0.403263i
\(562\) 240.529 + 174.755i 0.427987 + 0.310951i
\(563\) −807.800 −1.43481 −0.717407 0.696655i \(-0.754671\pi\)
−0.717407 + 0.696655i \(0.754671\pi\)
\(564\) 1879.06i 3.33167i
\(565\) 368.484 + 267.719i 0.652184 + 0.473839i
\(566\) 445.533 323.699i 0.787160 0.571905i
\(567\) −863.803 + 627.590i −1.52346 + 1.10686i
\(568\) 17.1894 52.9034i 0.0302630 0.0931398i
\(569\) −145.543 + 200.323i −0.255788 + 0.352061i −0.917528 0.397672i \(-0.869818\pi\)
0.661740 + 0.749733i \(0.269818\pi\)
\(570\) 271.178 + 88.1111i 0.475751 + 0.154581i
\(571\) −903.094 + 293.433i −1.58160 + 0.513893i −0.962468 0.271394i \(-0.912515\pi\)
−0.619132 + 0.785287i \(0.712515\pi\)
\(572\) 144.793 105.198i 0.253135 0.183913i
\(573\) 498.256 161.893i 0.869556 0.282536i
\(574\) 166.532 + 512.534i 0.290126 + 0.892916i
\(575\) −11.5693 15.9238i −0.0201205 0.0276935i
\(576\) 551.890 + 1698.54i 0.958142 + 2.94886i
\(577\) 10.8420 33.3682i 0.0187903 0.0578306i −0.941222 0.337789i \(-0.890321\pi\)
0.960012 + 0.279959i \(0.0903208\pi\)
\(578\) −656.938 477.294i −1.13657 0.825767i
\(579\) 645.721 + 209.808i 1.11524 + 0.362362i
\(580\) −285.215 392.565i −0.491750 0.676836i
\(581\) 56.0176 + 77.1016i 0.0964158 + 0.132705i
\(582\) 887.125 1221.02i 1.52427 2.09798i
\(583\) −69.9984 −0.120066
\(584\) 273.246i 0.467887i
\(585\) −430.539 + 592.586i −0.735965 + 1.01297i
\(586\) −292.962 901.643i −0.499934 1.53864i
\(587\) −220.922 71.7818i −0.376357 0.122286i 0.114729 0.993397i \(-0.463400\pi\)
−0.491086 + 0.871111i \(0.663400\pi\)
\(588\) 247.330i 0.420629i
\(589\) −101.076 + 27.2719i −0.171606 + 0.0463021i
\(590\) −1215.58 −2.06031
\(591\) −260.591 + 802.018i −0.440933 + 1.35705i
\(592\) 87.5276 28.4394i 0.147851 0.0480396i
\(593\) 143.431 + 104.208i 0.241873 + 0.175731i 0.702117 0.712061i \(-0.252238\pi\)
−0.460244 + 0.887792i \(0.652238\pi\)
\(594\) −1091.30 −1.83720
\(595\) 778.001i 1.30757i
\(596\) 752.881 + 547.000i 1.26322 + 0.917786i
\(597\) 1220.53 886.764i 2.04443 1.48537i
\(598\) 143.016 103.907i 0.239158 0.173758i
\(599\) 173.180 532.995i 0.289116 0.889807i −0.696019 0.718024i \(-0.745047\pi\)
0.985135 0.171784i \(-0.0549530\pi\)
\(600\) 15.6044 21.4777i 0.0260074 0.0357961i
\(601\) −966.674 314.091i −1.60844 0.522614i −0.639266 0.768985i \(-0.720762\pi\)
−0.969176 + 0.246371i \(0.920762\pi\)
\(602\) 189.537 61.5842i 0.314845 0.102299i
\(603\) 1077.55 782.887i 1.78699 1.29832i
\(604\) −34.6895 + 11.2713i −0.0574330 + 0.0186611i
\(605\) −143.880 442.818i −0.237818 0.731930i
\(606\) −438.215 603.151i −0.723127 0.995299i
\(607\) 96.6970 + 297.603i 0.159303 + 0.490285i 0.998571 0.0534329i \(-0.0170163\pi\)
−0.839268 + 0.543717i \(0.817016\pi\)
\(608\) −47.6670 + 146.704i −0.0783996 + 0.241289i
\(609\) 545.704 + 396.477i 0.896066 + 0.651030i
\(610\) 906.658 + 294.591i 1.48632 + 0.482936i
\(611\) −284.857 392.072i −0.466214 0.641689i
\(612\) −1387.98 1910.39i −2.26794 3.12155i
\(613\) 32.4139 44.6139i 0.0528775 0.0727797i −0.781759 0.623580i \(-0.785677\pi\)
0.834637 + 0.550801i \(0.185677\pi\)
\(614\) 1464.92 2.38586
\(615\) 828.236i 1.34672i
\(616\) 45.7523 62.9727i 0.0742733 0.102228i
\(617\) −34.9324 107.511i −0.0566165 0.174248i 0.918749 0.394841i \(-0.129200\pi\)
−0.975366 + 0.220594i \(0.929200\pi\)
\(618\) 1011.99 + 328.816i 1.63753 + 0.532065i
\(619\) 451.076i 0.728717i 0.931259 + 0.364359i \(0.118712\pi\)
−0.931259 + 0.364359i \(0.881288\pi\)
\(620\) −38.8098 + 766.041i −0.0625964 + 1.23555i
\(621\) −584.796 −0.941701
\(622\) −294.166 + 905.349i −0.472935 + 1.45555i
\(623\) 934.919 303.774i 1.50067 0.487598i
\(624\) −369.940 268.777i −0.592853 0.430733i
\(625\) −675.265 −1.08042
\(626\) 243.484i 0.388952i
\(627\) −84.2527 61.2132i −0.134374 0.0976287i
\(628\) 1058.28 768.887i 1.68516 1.22434i
\(629\) −141.728 + 102.972i −0.225323 + 0.163707i
\(630\) −627.877 + 1932.41i −0.996631 + 3.06731i
\(631\) 183.378 252.399i 0.290616 0.399998i −0.638598 0.769540i \(-0.720485\pi\)
0.929214 + 0.369542i \(0.120485\pi\)
\(632\) 143.450 + 46.6097i 0.226978 + 0.0737495i
\(633\) 54.7494 17.7891i 0.0864919 0.0281029i
\(634\) −1282.34 + 931.671i −2.02261 + 1.46951i
\(635\) −179.882 + 58.4472i −0.283279 + 0.0920429i
\(636\) −99.7166 306.896i −0.156787 0.482541i
\(637\) −37.4940 51.6061i −0.0588603 0.0810143i
\(638\) 100.946 + 310.680i 0.158223 + 0.486960i
\(639\) 163.884 504.382i 0.256469 0.789330i
\(640\) 291.834 + 212.030i 0.455991 + 0.331297i
\(641\) 34.3584 + 11.1637i 0.0536012 + 0.0174161i 0.335695 0.941971i \(-0.391029\pi\)
−0.282094 + 0.959387i \(0.591029\pi\)
\(642\) 867.508 + 1194.02i 1.35126 + 1.85985i
\(643\) −148.338 204.170i −0.230697 0.317527i 0.677938 0.735120i \(-0.262874\pi\)
−0.908634 + 0.417592i \(0.862874\pi\)
\(644\) 156.376 215.233i 0.242819 0.334212i
\(645\) −306.284 −0.474859
\(646\) 237.075i 0.366989i
\(647\) −114.418 + 157.483i −0.176844 + 0.243405i −0.888233 0.459394i \(-0.848067\pi\)
0.711389 + 0.702799i \(0.248067\pi\)
\(648\) −115.492 355.447i −0.178228 0.548529i
\(649\) 422.249 + 137.197i 0.650614 + 0.211397i
\(650\) 43.6707i 0.0671857i
\(651\) −277.755 1029.43i −0.426659 1.58130i
\(652\) 689.622 1.05770
\(653\) 3.50040 10.7731i 0.00536049 0.0164979i −0.948340 0.317254i \(-0.897239\pi\)
0.953701 + 0.300756i \(0.0972391\pi\)
\(654\) −790.760 + 256.934i −1.20911 + 0.392865i
\(655\) 771.519 + 560.542i 1.17789 + 0.855789i
\(656\) 361.769 0.551477
\(657\) 2605.13i 3.96520i
\(658\) −1087.59 790.178i −1.65287 1.20088i
\(659\) −97.3577 + 70.7345i −0.147736 + 0.107336i −0.659198 0.751970i \(-0.729104\pi\)
0.511462 + 0.859306i \(0.329104\pi\)
\(660\) −617.283 + 448.482i −0.935277 + 0.679518i
\(661\) −371.810 + 1144.31i −0.562496 + 1.73119i 0.112779 + 0.993620i \(0.464025\pi\)
−0.675275 + 0.737566i \(0.735975\pi\)
\(662\) −24.9752 + 34.3754i −0.0377269 + 0.0519266i
\(663\) 827.827 + 268.977i 1.24861 + 0.405697i
\(664\) −31.7266 + 10.3086i −0.0477810 + 0.0155250i
\(665\) −89.5355 + 65.0513i −0.134640 + 0.0978215i
\(666\) −435.128 + 141.382i −0.653345 + 0.212285i
\(667\) 54.0943 + 166.485i 0.0811010 + 0.249603i
\(668\) −796.643 1096.48i −1.19258 1.64144i
\(669\) −450.088 1385.23i −0.672777 2.07060i
\(670\) 302.750 931.768i 0.451866 1.39070i
\(671\) −281.691 204.660i −0.419808 0.305008i
\(672\) −1494.13 485.472i −2.22340 0.722428i
\(673\) 632.418 + 870.448i 0.939699 + 1.29339i 0.955954 + 0.293517i \(0.0948258\pi\)
−0.0162545 + 0.999868i \(0.505174\pi\)
\(674\) 1116.52 + 1536.76i 1.65656 + 2.28006i
\(675\) 84.9152 116.876i 0.125800 0.173149i
\(676\) 588.903 0.871158
\(677\) 294.316i 0.434736i 0.976090 + 0.217368i \(0.0697471\pi\)
−0.976090 + 0.217368i \(0.930253\pi\)
\(678\) 830.866 1143.59i 1.22547 1.68671i
\(679\) 181.025 + 557.137i 0.266605 + 0.820526i
\(680\) −258.999 84.1539i −0.380881 0.123756i
\(681\) 68.0369i 0.0999073i
\(682\) 184.212 482.396i 0.270105 0.707326i
\(683\) −1037.16 −1.51853 −0.759264 0.650782i \(-0.774441\pi\)
−0.759264 + 0.650782i \(0.774441\pi\)
\(684\) 103.802 319.468i 0.151757 0.467059i
\(685\) −623.395 + 202.553i −0.910066 + 0.295698i
\(686\) −879.645 639.100i −1.28228 0.931632i
\(687\) −1505.72 −2.19173
\(688\) 133.783i 0.194453i
\(689\) 67.3302 + 48.9182i 0.0977216 + 0.0709989i
\(690\) −609.708 + 442.979i −0.883635 + 0.641998i
\(691\) −634.771 + 461.188i −0.918627 + 0.667422i −0.943182 0.332277i \(-0.892183\pi\)
0.0245548 + 0.999698i \(0.492183\pi\)
\(692\) −211.069 + 649.603i −0.305013 + 0.938733i
\(693\) 436.204 600.383i 0.629442 0.866353i
\(694\) −409.695 133.118i −0.590338 0.191813i
\(695\) 1231.32 400.080i 1.77168 0.575654i
\(696\) −191.015 + 138.781i −0.274448 + 0.199398i
\(697\) −654.934 + 212.801i −0.939647 + 0.305310i
\(698\) −424.687 1307.05i −0.608434 1.87257i
\(699\) 638.875 + 879.336i 0.913984 + 1.25799i
\(700\) 20.3093 + 62.5056i 0.0290133 + 0.0892937i
\(701\) −210.137 + 646.736i −0.299768 + 0.922591i 0.681810 + 0.731529i \(0.261193\pi\)
−0.981578 + 0.191062i \(0.938807\pi\)
\(702\) 1049.70 + 762.650i 1.49530 + 1.08640i
\(703\) −23.7007 7.70083i −0.0337137 0.0109542i
\(704\) −282.025 388.174i −0.400604 0.551384i
\(705\) 1214.40 + 1671.48i 1.72256 + 2.37090i
\(706\) −485.008 + 667.556i −0.686980 + 0.945547i
\(707\) 289.373 0.409297
\(708\) 2046.72i 2.89085i
\(709\) 429.911 591.722i 0.606363 0.834587i −0.389909 0.920853i \(-0.627494\pi\)
0.996272 + 0.0862665i \(0.0274937\pi\)
\(710\) −120.547 371.006i −0.169785 0.522543i
\(711\) 1367.65 + 444.377i 1.92356 + 0.625003i
\(712\) 344.095i 0.483280i
\(713\) 98.7142 258.503i 0.138449 0.362557i
\(714\) 2414.52 3.38169
\(715\) 60.8101 187.154i 0.0850491 0.261754i
\(716\) −923.492 + 300.061i −1.28979 + 0.419079i
\(717\) 973.670 + 707.413i 1.35798 + 0.986629i
\(718\) 1546.98 2.15457
\(719\) 919.406i 1.27873i −0.768904 0.639364i \(-0.779198\pi\)
0.768904 0.639364i \(-0.220802\pi\)
\(720\) 1103.48 + 801.727i 1.53262 + 1.11351i
\(721\) −334.132 + 242.761i −0.463428 + 0.336700i
\(722\) −836.319 + 607.621i −1.15834 + 0.841581i
\(723\) 228.706 703.885i 0.316329 0.973562i
\(724\) 347.864 478.794i 0.480475 0.661318i
\(725\) −41.1280 13.3633i −0.0567283 0.0184322i
\(726\) −1374.28 + 446.532i −1.89295 + 0.615057i
\(727\) 184.984 134.399i 0.254449 0.184868i −0.453247 0.891385i \(-0.649735\pi\)
0.707696 + 0.706517i \(0.249735\pi\)
\(728\) −88.0167 + 28.5984i −0.120902 + 0.0392834i
\(729\) −103.644 318.982i −0.142172 0.437562i
\(730\) −1126.34 1550.28i −1.54293 2.12366i
\(731\) 78.6945 + 242.197i 0.107653 + 0.331323i
\(732\) 496.015 1526.58i 0.677616 2.08549i
\(733\) −94.7309 68.8261i −0.129237 0.0938964i 0.521289 0.853380i \(-0.325451\pi\)
−0.650526 + 0.759484i \(0.725451\pi\)
\(734\) 929.997 + 302.174i 1.26703 + 0.411682i
\(735\) 159.845 + 220.007i 0.217476 + 0.299330i
\(736\) −239.646 329.844i −0.325606 0.448158i
\(737\) −210.329 + 289.493i −0.285385 + 0.392799i
\(738\) −1798.47 −2.43695
\(739\) 942.715i 1.27566i −0.770176 0.637832i \(-0.779832\pi\)
0.770176 0.637832i \(-0.220168\pi\)
\(740\) −107.318 + 147.711i −0.145025 + 0.199610i
\(741\) 38.2624 + 117.760i 0.0516362 + 0.158920i
\(742\) 219.562 + 71.3399i 0.295905 + 0.0961455i
\(743\) 759.232i 1.02185i −0.859626 0.510923i \(-0.829304\pi\)
0.859626 0.510923i \(-0.170696\pi\)
\(744\) 372.743 + 18.8842i 0.500998 + 0.0253820i
\(745\) 1023.23 1.37346
\(746\) 60.2152 185.323i 0.0807174 0.248423i
\(747\) −302.482 + 98.2823i −0.404929 + 0.131569i
\(748\) 513.241 + 372.891i 0.686151 + 0.498518i
\(749\) −572.854 −0.764825
\(750\) 1924.60i 2.56613i
\(751\) 326.330 + 237.093i 0.434527 + 0.315703i 0.783457 0.621446i \(-0.213455\pi\)
−0.348929 + 0.937149i \(0.613455\pi\)
\(752\) −730.095 + 530.445i −0.970871 + 0.705379i
\(753\) −363.981 + 264.447i −0.483374 + 0.351192i
\(754\) 120.020 369.384i 0.159178 0.489899i
\(755\) −23.5729 + 32.4454i −0.0312224 + 0.0429740i
\(756\) 1857.10 + 603.409i 2.45648 + 0.798160i
\(757\) 766.011 248.892i 1.01190 0.328787i 0.244291 0.969702i \(-0.421445\pi\)
0.767612 + 0.640915i \(0.221445\pi\)
\(758\) −1191.40 + 865.604i −1.57177 + 1.14196i
\(759\) 261.787 85.0599i 0.344911 0.112068i
\(760\) −11.9710 36.8430i −0.0157513 0.0484776i
\(761\) −182.899 251.739i −0.240340 0.330800i 0.671759 0.740770i \(-0.265539\pi\)
−0.912099 + 0.409970i \(0.865539\pi\)
\(762\) 181.391 + 558.263i 0.238046 + 0.732629i
\(763\) 99.7264 306.926i 0.130703 0.402263i
\(764\) −367.281 266.845i −0.480734 0.349274i
\(765\) −2469.30 802.324i −3.22784 1.04879i
\(766\) −458.100 630.521i −0.598042 0.823135i
\(767\) −310.274 427.055i −0.404529 0.556786i
\(768\) −438.250 + 603.199i −0.570637 + 0.785415i
\(769\) −1316.21 −1.71159 −0.855794 0.517316i \(-0.826931\pi\)
−0.855794 + 0.517316i \(0.826931\pi\)
\(770\) 545.873i 0.708926i
\(771\) −328.178 + 451.699i −0.425653 + 0.585861i
\(772\) −181.809 559.551i −0.235504 0.724807i
\(773\) −621.647 201.985i −0.804200 0.261300i −0.122061 0.992523i \(-0.538950\pi\)
−0.682139 + 0.731222i \(0.738950\pi\)
\(774\) 665.080i 0.859277i
\(775\) 37.3299 + 57.2646i 0.0481677 + 0.0738898i
\(776\) −205.053 −0.264244
\(777\) 78.4303 241.384i 0.100940 0.310661i
\(778\) 1992.57 647.426i 2.56115 0.832167i
\(779\) −79.2512 57.5794i −0.101735 0.0739145i
\(780\) 907.174 1.16304
\(781\) 142.480i 0.182432i
\(782\) 506.943 + 368.316i 0.648265 + 0.470992i
\(783\) −1039.46 + 755.209i −1.32753 + 0.964507i
\(784\) −96.0982 + 69.8194i −0.122574 + 0.0890554i
\(785\) 444.457 1367.90i 0.566187 1.74254i
\(786\) 1739.64 2394.41i 2.21328 3.04632i
\(787\) −519.575 168.820i −0.660197 0.214511i −0.0402920 0.999188i \(-0.512829\pi\)
−0.619905 + 0.784677i \(0.712829\pi\)
\(788\) 694.990 225.816i 0.881967 0.286568i
\(789\) −775.146 + 563.177i −0.982442 + 0.713786i
\(790\) 1006.00 326.868i 1.27341 0.413758i
\(791\) 169.545 + 521.805i 0.214342 + 0.659677i
\(792\) 152.686 + 210.155i 0.192786 + 0.265347i
\(793\) 127.927 + 393.718i 0.161320 + 0.496492i
\(794\) −401.204 + 1234.78i −0.505295 + 1.55514i
\(795\) −287.042 208.548i −0.361060 0.262325i
\(796\) −1243.34 403.986i −1.56199 0.507520i
\(797\) −272.719 375.365i −0.342182 0.470973i 0.602895 0.797820i \(-0.294014\pi\)
−0.945077 + 0.326848i \(0.894014\pi\)
\(798\) 201.887 + 277.873i 0.252991 + 0.348212i
\(799\) 1009.72 1389.76i 1.26373 1.73937i
\(800\) 100.719 0.125899
\(801\) 3280.61i 4.09565i
\(802\) −694.552 + 955.969i −0.866025 + 1.19198i
\(803\) 216.278 + 665.634i 0.269337 + 0.828934i
\(804\) −1568.86 509.753i −1.95131 0.634021i
\(805\) 292.519i 0.363377i
\(806\) −514.312 + 335.272i −0.638104 + 0.415970i
\(807\) 1064.70 1.31933
\(808\) −31.3005 + 96.3330i −0.0387382 + 0.119224i
\(809\) 244.661 79.4951i 0.302424 0.0982634i −0.153874 0.988090i \(-0.549175\pi\)
0.456298 + 0.889827i \(0.349175\pi\)
\(810\) −2120.43 1540.58i −2.61781 1.90195i
\(811\) 1305.17 1.60933 0.804666 0.593728i \(-0.202345\pi\)
0.804666 + 0.593728i \(0.202345\pi\)
\(812\) 584.513i 0.719844i
\(813\) −408.799 297.010i −0.502827 0.365326i
\(814\) 99.4414 72.2484i 0.122164 0.0887573i
\(815\) 613.439 445.690i 0.752686 0.546859i
\(816\) 500.875 1541.54i 0.613818 1.88914i
\(817\) −21.2930 + 29.3074i −0.0260625 + 0.0358719i
\(818\) 635.004 + 206.325i 0.776289 + 0.252232i
\(819\) −839.153 + 272.657i −1.02461 + 0.332915i
\(820\) −580.639 + 421.859i −0.708096 + 0.514462i
\(821\) −1015.78 + 330.047i −1.23725 + 0.402007i −0.853335 0.521362i \(-0.825424\pi\)
−0.383914 + 0.923369i \(0.625424\pi\)
\(822\) 628.624 + 1934.71i 0.764749 + 2.35366i
\(823\) 230.119 + 316.732i 0.279610 + 0.384850i 0.925605 0.378492i \(-0.123557\pi\)
−0.645995 + 0.763342i \(0.723557\pi\)
\(824\) −44.6739 137.492i −0.0542158 0.166859i
\(825\) −21.0129 + 64.6712i −0.0254702 + 0.0783893i
\(826\) −1184.63 860.683i −1.43417 1.04199i
\(827\) 431.848 + 140.316i 0.522186 + 0.169669i 0.558237 0.829681i \(-0.311478\pi\)
−0.0360511 + 0.999350i \(0.511478\pi\)
\(828\) 521.863 + 718.283i 0.630269 + 0.867491i
\(829\) 629.022 + 865.774i 0.758772 + 1.04436i 0.997315 + 0.0732281i \(0.0233301\pi\)
−0.238543 + 0.971132i \(0.576670\pi\)
\(830\) −137.509 + 189.265i −0.165674 + 0.228031i
\(831\) −80.6857 −0.0970947
\(832\) 570.471i 0.685662i
\(833\) 132.903 182.926i 0.159548 0.219599i
\(834\) −1241.65 3821.39i −1.48878 4.58201i
\(835\) −1417.28 460.501i −1.69734 0.551498i
\(836\) 90.2445i 0.107948i
\(837\) 2028.37 + 102.763i 2.42338 + 0.122775i
\(838\) −1307.29 −1.56001
\(839\) −286.883 + 882.936i −0.341935 + 1.05237i 0.621270 + 0.783597i \(0.286617\pi\)
−0.963204 + 0.268770i \(0.913383\pi\)
\(840\) 375.233 121.921i 0.446706 0.145144i
\(841\) −369.232 268.263i −0.439040 0.318981i
\(842\) 1288.11 1.52982
\(843\) 550.412i 0.652921i
\(844\) −40.3576 29.3215i −0.0478170 0.0347411i
\(845\) 523.847 380.597i 0.619937 0.450410i
\(846\) 3629.54 2637.01i 4.29023 3.11704i
\(847\) 173.317 533.415i 0.204625 0.629770i
\(848\) 91.0929 125.379i 0.107421 0.147852i
\(849\) −969.632 315.052i −1.14209 0.371087i
\(850\) −147.221 + 47.8350i −0.173201 + 0.0562765i
\(851\) 53.2880 38.7160i 0.0626181 0.0454947i
\(852\) −624.678 + 202.970i −0.733190 + 0.238228i
\(853\) 90.7019 + 279.152i 0.106333 + 0.327259i 0.990041 0.140780i \(-0.0449609\pi\)
−0.883708 + 0.468038i \(0.844961\pi\)
\(854\) 674.988 + 929.042i 0.790385 + 1.08787i
\(855\) −114.132 351.262i −0.133488 0.410833i
\(856\) 61.9637 190.705i 0.0723875 0.222786i
\(857\) 633.842 + 460.513i 0.739605 + 0.537355i 0.892587 0.450874i \(-0.148888\pi\)
−0.152982 + 0.988229i \(0.548888\pi\)
\(858\) −580.832 188.724i −0.676961 0.219958i
\(859\) 50.7728 + 69.8827i 0.0591069 + 0.0813536i 0.837547 0.546365i \(-0.183989\pi\)
−0.778440 + 0.627719i \(0.783989\pi\)
\(860\) 156.005 + 214.722i 0.181401 + 0.249677i
\(861\) 586.426 807.146i 0.681099 0.937452i
\(862\) 756.826 0.877989
\(863\) 104.362i 0.120930i 0.998170 + 0.0604648i \(0.0192583\pi\)
−0.998170 + 0.0604648i \(0.980742\pi\)
\(864\) 1758.93 2420.96i 2.03580 2.80204i
\(865\) 232.074 + 714.252i 0.268294 + 0.825724i
\(866\) 380.900 + 123.762i 0.439839 + 0.142912i
\(867\) 1503.30i 1.73391i
\(868\) −580.211 + 719.056i −0.668446 + 0.828406i
\(869\) −386.339 −0.444579
\(870\) −511.671 + 1574.76i −0.588127 + 1.81007i
\(871\) 404.623 131.470i 0.464550 0.150941i
\(872\) 91.3896 + 66.3984i 0.104805 + 0.0761450i
\(873\) −1954.98 −2.23938
\(874\) 89.1371i 0.101988i
\(875\) −604.347 439.084i −0.690682 0.501810i
\(876\) −2610.26 + 1896.47i −2.97975 + 2.16492i
\(877\) 385.885 280.362i 0.440006 0.319683i −0.345631 0.938370i \(-0.612335\pi\)
0.785637 + 0.618687i \(0.212335\pi\)
\(878\) 261.062 803.466i 0.297337 0.915110i
\(879\) −1031.63 + 1419.92i −1.17364 + 1.61538i
\(880\) −348.509 113.237i −0.396032 0.128679i
\(881\) 132.919 43.1879i 0.150872 0.0490214i −0.232607 0.972571i \(-0.574726\pi\)
0.383480 + 0.923549i \(0.374726\pi\)
\(882\) 477.735 347.095i 0.541649 0.393531i
\(883\) −1251.19 + 406.536i −1.41698 + 0.460403i −0.914640 0.404269i \(-0.867526\pi\)
−0.502336 + 0.864672i \(0.667526\pi\)
\(884\) −233.083 717.355i −0.263668 0.811488i
\(885\) 1322.76 + 1820.62i 1.49464 + 2.05720i
\(886\) 439.445 + 1352.47i 0.495988 + 1.52649i
\(887\) −188.419 + 579.895i −0.212423 + 0.653771i 0.786903 + 0.617076i \(0.211683\pi\)
−0.999327 + 0.0366948i \(0.988317\pi\)
\(888\) 71.8738 + 52.2194i 0.0809390 + 0.0588056i
\(889\) −216.685 70.4052i −0.243740 0.0791959i
\(890\) 1418.39 + 1952.24i 1.59369 + 2.19353i
\(891\) 562.681 + 774.464i 0.631517 + 0.869208i
\(892\) −741.871 + 1021.10i −0.831694 + 1.14473i
\(893\) 244.365 0.273645
\(894\) 3175.58i 3.55211i
\(895\) −627.550 + 863.749i −0.701173 + 0.965083i
\(896\) 134.277 + 413.262i 0.149863 + 0.461230i
\(897\) −311.252 101.132i −0.346993 0.112745i
\(898\) 440.185i 0.490184i
\(899\) −158.371 586.961i −0.176163 0.652904i
\(900\) −219.331 −0.243701
\(901\) −91.1608 + 280.564i −0.101177 + 0.311392i
\(902\) 459.525 149.309i 0.509451 0.165531i
\(903\) −298.485 216.862i −0.330549 0.240158i
\(904\) −192.049 −0.212444
\(905\) 650.720i 0.719028i
\(906\) 100.694 + 73.1586i 0.111141 + 0.0807490i
\(907\) 1126.58 818.508i 1.24209 0.902435i 0.244359 0.969685i \(-0.421423\pi\)
0.997736 + 0.0672504i \(0.0214226\pi\)
\(908\) 47.6976 34.6543i 0.0525304 0.0381656i
\(909\) −298.420 + 918.441i −0.328294 + 1.01039i
\(910\) −381.482 + 525.065i −0.419211 + 0.576995i
\(911\) 994.153 + 323.020i 1.09128 + 0.354577i 0.798740 0.601677i \(-0.205501\pi\)
0.292537 + 0.956254i \(0.405501\pi\)
\(912\) 219.286 71.2503i 0.240445 0.0781253i
\(913\) 69.1273 50.2239i 0.0757144 0.0550098i
\(914\) −286.647 + 93.1373i −0.313618 + 0.101901i
\(915\) −545.378 1678.50i −0.596042 1.83443i
\(916\) 766.934 + 1055.59i 0.837264 + 1.15239i
\(917\) 354.987 + 1092.54i 0.387117 + 1.19143i
\(918\) −1421.22 + 4374.08i −1.54818 + 4.76479i
\(919\) −94.1551 68.4077i −0.102454 0.0744371i 0.535379 0.844612i \(-0.320169\pi\)
−0.637833 + 0.770175i \(0.720169\pi\)
\(920\) 97.3803 + 31.6408i 0.105848 + 0.0343921i
\(921\) −1594.08 2194.07i −1.73082 2.38226i
\(922\) 419.689 + 577.653i 0.455194 + 0.626521i
\(923\) 99.5716 137.048i 0.107878 0.148482i
\(924\) −919.109 −0.994707
\(925\) 16.2717i 0.0175911i
\(926\) −746.562 + 1027.55i −0.806222 + 1.10967i
\(927\) −425.921 1310.85i −0.459462 1.41408i
\(928\) −851.925 276.807i −0.918023 0.298284i
\(929\) 16.8619i 0.0181506i 0.999959 + 0.00907531i \(0.00288880\pi\)
−0.999959 + 0.00907531i \(0.997111\pi\)
\(930\) 2192.62 1429.33i 2.35765 1.53692i
\(931\) 32.1643 0.0345481
\(932\) 291.054 895.773i 0.312290 0.961130i
\(933\) 1676.08 544.591i 1.79644 0.583699i
\(934\) 1359.49 + 987.724i 1.45555 + 1.05752i
\(935\) 697.536 0.746028
\(936\) 308.849i 0.329967i
\(937\) −229.398 166.668i −0.244822 0.177874i 0.458607 0.888639i \(-0.348349\pi\)
−0.703429 + 0.710766i \(0.748349\pi\)
\(938\) 954.772 693.683i 1.01788 0.739534i
\(939\) −364.676 + 264.952i −0.388366 + 0.282164i
\(940\) 553.250 1702.73i 0.588563 1.81141i
\(941\) 631.597 869.318i 0.671197 0.923824i −0.328590 0.944473i \(-0.606573\pi\)
0.999787 + 0.0206491i \(0.00657328\pi\)
\(942\) −4245.26 1379.37i −4.50665 1.46430i
\(943\) 246.247 80.0105i 0.261131 0.0848467i
\(944\) −795.239 + 577.775i −0.842414 + 0.612050i
\(945\) 2041.92 663.460i 2.16076 0.702074i
\(946\) −55.2148 169.934i −0.0583666 0.179634i
\(947\) 69.0430 + 95.0295i 0.0729071 + 0.100348i 0.843913 0.536480i \(-0.180246\pi\)
−0.771006 + 0.636828i \(0.780246\pi\)
\(948\) −550.362 1693.84i −0.580551 1.78675i
\(949\) 257.144 791.407i 0.270963 0.833937i
\(950\) −17.8147 12.9431i −0.0187523 0.0136244i
\(951\) 2790.80 + 906.786i 2.93460 + 0.953508i
\(952\) −192.819 265.393i −0.202541 0.278774i
\(953\) −326.856 449.879i −0.342976 0.472066i 0.602332 0.798246i \(-0.294238\pi\)
−0.945308 + 0.326180i \(0.894238\pi\)
\(954\) −452.852 + 623.297i −0.474688 + 0.653352i
\(955\) −499.164 −0.522685
\(956\) 1042.91i 1.09091i
\(957\) 355.472 489.265i 0.371444 0.511248i
\(958\) 453.403 + 1395.43i 0.473281 + 1.45661i
\(959\) −750.938 243.995i −0.783043 0.254426i
\(960\) 2432.03i 2.53337i
\(961\) −387.816 + 879.272i −0.403554 + 0.914956i
\(962\) −146.142 −0.151914
\(963\) 590.763 1818.18i 0.613461 1.88804i
\(964\) −609.953 + 198.186i −0.632731 + 0.205587i
\(965\) −523.352 380.238i −0.542334 0.394029i
\(966\) −907.831 −0.939783
\(967\) 441.345i 0.456406i 0.973614 + 0.228203i \(0.0732850\pi\)
−0.973614 + 0.228203i \(0.926715\pi\)
\(968\) 158.828 + 115.396i 0.164079 + 0.119210i
\(969\) −355.076 + 257.978i −0.366436 + 0.266231i
\(970\) −1163.38 + 845.245i −1.19936 + 0.871387i
\(971\) −86.3666 + 265.809i −0.0889461 + 0.273748i −0.985629 0.168926i \(-0.945970\pi\)
0.896683 + 0.442674i \(0.145970\pi\)
\(972\) −949.852 + 1307.36i −0.977213 + 1.34502i
\(973\) 1483.24 + 481.933i 1.52440 + 0.495307i
\(974\) 742.331 241.198i 0.762147 0.247636i
\(975\) 65.4073 47.5212i 0.0670844 0.0487397i
\(976\) 733.161 238.219i 0.751190 0.244076i
\(977\) 369.006 + 1135.68i 0.377693 + 1.16242i 0.941644 + 0.336611i \(0.109281\pi\)
−0.563951 + 0.825808i \(0.690719\pi\)
\(978\) −1383.20 1903.81i −1.41431 1.94663i
\(979\) −272.356 838.225i −0.278198 0.856205i
\(980\) 72.8210 224.120i 0.0743072 0.228694i
\(981\) 871.310 + 633.044i 0.888186 + 0.645305i
\(982\) −1357.75 441.158i −1.38263 0.449245i
\(983\) −724.460 997.133i −0.736989 1.01438i −0.998786 0.0492549i \(-0.984315\pi\)
0.261798 0.965123i \(-0.415685\pi\)
\(984\) 205.270 + 282.529i 0.208607 + 0.287123i
\(985\) 472.274 650.029i 0.479466 0.659928i
\(986\) 1376.72 1.39627
\(987\) 2488.77i 2.52155i
\(988\) 63.0672 86.8046i 0.0638332 0.0878589i
\(989\) −29.5881 91.0629i −0.0299172 0.0920757i
\(990\) 1732.55 + 562.939i 1.75005 + 0.568625i
\(991\) 875.612i 0.883564i −0.897122 0.441782i \(-0.854346\pi\)
0.897122 0.441782i \(-0.145654\pi\)
\(992\) 773.251 + 1186.18i 0.779487 + 1.19574i
\(993\) 78.6628 0.0792173
\(994\) 145.210 446.911i 0.146087 0.449609i
\(995\) −1367.08 + 444.191i −1.37395 + 0.446423i
\(996\) 318.674 + 231.530i 0.319954 + 0.232460i
\(997\) −1277.59 −1.28144 −0.640719 0.767776i \(-0.721363\pi\)
−0.640719 + 0.767776i \(0.721363\pi\)
\(998\) 993.552i 0.995543i
\(999\) 391.118 + 284.164i 0.391510 + 0.284449i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 31.3.f.a.23.1 20
3.2 odd 2 279.3.v.a.271.5 20
31.27 odd 10 inner 31.3.f.a.27.1 yes 20
93.89 even 10 279.3.v.a.244.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.3.f.a.23.1 20 1.1 even 1 trivial
31.3.f.a.27.1 yes 20 31.27 odd 10 inner
279.3.v.a.244.5 20 93.89 even 10
279.3.v.a.271.5 20 3.2 odd 2