Properties

Label 279.2.h.b.253.1
Level $279$
Weight $2$
Character 279.253
Analytic conductor $2.228$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [279,2,Mod(118,279)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(279, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("279.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 279 = 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 279.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.22782621639\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 93)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 253.1
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 279.253
Dual form 279.2.h.b.118.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} +(-0.292893 - 0.507306i) q^{5} +(-0.414214 + 0.717439i) q^{7} +2.82843 q^{8} +(0.414214 + 0.717439i) q^{10} +(-0.707107 - 1.22474i) q^{11} +(-0.914214 - 1.58346i) q^{13} +(0.585786 - 1.01461i) q^{14} -4.00000 q^{16} +(3.41421 - 5.91359i) q^{17} +(1.91421 - 3.31552i) q^{19} +(1.00000 + 1.73205i) q^{22} -3.65685 q^{23} +(2.32843 - 4.03295i) q^{25} +(1.29289 + 2.23936i) q^{26} +3.41421 q^{29} +(2.00000 - 5.19615i) q^{31} +(-4.82843 + 8.36308i) q^{34} +0.485281 q^{35} +(-0.500000 + 0.866025i) q^{37} +(-2.70711 + 4.68885i) q^{38} +(-0.828427 - 1.43488i) q^{40} +(-2.12132 - 3.67423i) q^{41} +(2.74264 - 4.75039i) q^{43} +5.17157 q^{46} -0.585786 q^{47} +(3.15685 + 5.46783i) q^{49} +(-3.29289 + 5.70346i) q^{50} +(-0.707107 - 1.22474i) q^{53} +(-0.414214 + 0.717439i) q^{55} +(-1.17157 + 2.02922i) q^{56} -4.82843 q^{58} +(-4.24264 + 7.34847i) q^{59} -12.4853 q^{61} +(-2.82843 + 7.34847i) q^{62} +8.00000 q^{64} +(-0.535534 + 0.927572i) q^{65} +(7.24264 + 12.5446i) q^{67} -0.686292 q^{70} +(3.00000 + 5.19615i) q^{71} +(-1.91421 - 3.31552i) q^{73} +(0.707107 - 1.22474i) q^{74} +1.17157 q^{77} +(-7.82843 + 13.5592i) q^{79} +(1.17157 + 2.02922i) q^{80} +(3.00000 + 5.19615i) q^{82} +(-3.70711 - 6.42090i) q^{83} -4.00000 q^{85} +(-3.87868 + 6.71807i) q^{86} +(-2.00000 - 3.46410i) q^{88} +17.8995 q^{89} +1.51472 q^{91} +0.828427 q^{94} -2.24264 q^{95} -11.4853 q^{97} +(-4.46447 - 7.73268i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} + 4 q^{7} - 4 q^{10} + 2 q^{13} + 8 q^{14} - 16 q^{16} + 8 q^{17} + 2 q^{19} + 4 q^{22} + 8 q^{23} - 2 q^{25} + 8 q^{26} + 8 q^{29} + 8 q^{31} - 8 q^{34} - 32 q^{35} - 2 q^{37} - 8 q^{38}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/279\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(218\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(3\) 0 0
\(4\) 0 0
\(5\) −0.292893 0.507306i −0.130986 0.226874i 0.793071 0.609129i \(-0.208481\pi\)
−0.924057 + 0.382255i \(0.875148\pi\)
\(6\) 0 0
\(7\) −0.414214 + 0.717439i −0.156558 + 0.271166i −0.933625 0.358251i \(-0.883373\pi\)
0.777067 + 0.629418i \(0.216706\pi\)
\(8\) 2.82843 1.00000
\(9\) 0 0
\(10\) 0.414214 + 0.717439i 0.130986 + 0.226874i
\(11\) −0.707107 1.22474i −0.213201 0.369274i 0.739514 0.673141i \(-0.235055\pi\)
−0.952714 + 0.303867i \(0.901722\pi\)
\(12\) 0 0
\(13\) −0.914214 1.58346i −0.253557 0.439174i 0.710945 0.703247i \(-0.248267\pi\)
−0.964503 + 0.264073i \(0.914934\pi\)
\(14\) 0.585786 1.01461i 0.156558 0.271166i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 3.41421 5.91359i 0.828068 1.43426i −0.0714831 0.997442i \(-0.522773\pi\)
0.899551 0.436815i \(-0.143893\pi\)
\(18\) 0 0
\(19\) 1.91421 3.31552i 0.439151 0.760631i −0.558473 0.829522i \(-0.688613\pi\)
0.997624 + 0.0688910i \(0.0219461\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000 + 1.73205i 0.213201 + 0.369274i
\(23\) −3.65685 −0.762507 −0.381253 0.924471i \(-0.624507\pi\)
−0.381253 + 0.924471i \(0.624507\pi\)
\(24\) 0 0
\(25\) 2.32843 4.03295i 0.465685 0.806591i
\(26\) 1.29289 + 2.23936i 0.253557 + 0.439174i
\(27\) 0 0
\(28\) 0 0
\(29\) 3.41421 0.634004 0.317002 0.948425i \(-0.397324\pi\)
0.317002 + 0.948425i \(0.397324\pi\)
\(30\) 0 0
\(31\) 2.00000 5.19615i 0.359211 0.933257i
\(32\) 0 0
\(33\) 0 0
\(34\) −4.82843 + 8.36308i −0.828068 + 1.43426i
\(35\) 0.485281 0.0820275
\(36\) 0 0
\(37\) −0.500000 + 0.866025i −0.0821995 + 0.142374i −0.904194 0.427121i \(-0.859528\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) −2.70711 + 4.68885i −0.439151 + 0.760631i
\(39\) 0 0
\(40\) −0.828427 1.43488i −0.130986 0.226874i
\(41\) −2.12132 3.67423i −0.331295 0.573819i 0.651471 0.758673i \(-0.274152\pi\)
−0.982766 + 0.184854i \(0.940819\pi\)
\(42\) 0 0
\(43\) 2.74264 4.75039i 0.418249 0.724428i −0.577515 0.816380i \(-0.695977\pi\)
0.995763 + 0.0919522i \(0.0293107\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 5.17157 0.762507
\(47\) −0.585786 −0.0854457 −0.0427229 0.999087i \(-0.513603\pi\)
−0.0427229 + 0.999087i \(0.513603\pi\)
\(48\) 0 0
\(49\) 3.15685 + 5.46783i 0.450979 + 0.781119i
\(50\) −3.29289 + 5.70346i −0.465685 + 0.806591i
\(51\) 0 0
\(52\) 0 0
\(53\) −0.707107 1.22474i −0.0971286 0.168232i 0.813366 0.581752i \(-0.197632\pi\)
−0.910495 + 0.413520i \(0.864299\pi\)
\(54\) 0 0
\(55\) −0.414214 + 0.717439i −0.0558525 + 0.0967394i
\(56\) −1.17157 + 2.02922i −0.156558 + 0.271166i
\(57\) 0 0
\(58\) −4.82843 −0.634004
\(59\) −4.24264 + 7.34847i −0.552345 + 0.956689i 0.445760 + 0.895152i \(0.352933\pi\)
−0.998105 + 0.0615367i \(0.980400\pi\)
\(60\) 0 0
\(61\) −12.4853 −1.59858 −0.799288 0.600948i \(-0.794790\pi\)
−0.799288 + 0.600948i \(0.794790\pi\)
\(62\) −2.82843 + 7.34847i −0.359211 + 0.933257i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) −0.535534 + 0.927572i −0.0664248 + 0.115051i
\(66\) 0 0
\(67\) 7.24264 + 12.5446i 0.884829 + 1.53257i 0.845909 + 0.533327i \(0.179059\pi\)
0.0389203 + 0.999242i \(0.487608\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −0.686292 −0.0820275
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 0 0
\(73\) −1.91421 3.31552i −0.224042 0.388052i 0.731990 0.681316i \(-0.238592\pi\)
−0.956032 + 0.293264i \(0.905259\pi\)
\(74\) 0.707107 1.22474i 0.0821995 0.142374i
\(75\) 0 0
\(76\) 0 0
\(77\) 1.17157 0.133513
\(78\) 0 0
\(79\) −7.82843 + 13.5592i −0.880767 + 1.52553i −0.0302770 + 0.999542i \(0.509639\pi\)
−0.850490 + 0.525991i \(0.823694\pi\)
\(80\) 1.17157 + 2.02922i 0.130986 + 0.226874i
\(81\) 0 0
\(82\) 3.00000 + 5.19615i 0.331295 + 0.573819i
\(83\) −3.70711 6.42090i −0.406908 0.704785i 0.587634 0.809127i \(-0.300060\pi\)
−0.994541 + 0.104342i \(0.966726\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) −3.87868 + 6.71807i −0.418249 + 0.724428i
\(87\) 0 0
\(88\) −2.00000 3.46410i −0.213201 0.369274i
\(89\) 17.8995 1.89734 0.948671 0.316264i \(-0.102428\pi\)
0.948671 + 0.316264i \(0.102428\pi\)
\(90\) 0 0
\(91\) 1.51472 0.158786
\(92\) 0 0
\(93\) 0 0
\(94\) 0.828427 0.0854457
\(95\) −2.24264 −0.230090
\(96\) 0 0
\(97\) −11.4853 −1.16615 −0.583077 0.812417i \(-0.698151\pi\)
−0.583077 + 0.812417i \(0.698151\pi\)
\(98\) −4.46447 7.73268i −0.450979 0.781119i
\(99\) 0 0
\(100\) 0 0
\(101\) 15.4142 1.53377 0.766886 0.641784i \(-0.221805\pi\)
0.766886 + 0.641784i \(0.221805\pi\)
\(102\) 0 0
\(103\) −8.15685 14.1281i −0.803719 1.39208i −0.917153 0.398536i \(-0.869518\pi\)
0.113434 0.993546i \(-0.463815\pi\)
\(104\) −2.58579 4.47871i −0.253557 0.439174i
\(105\) 0 0
\(106\) 1.00000 + 1.73205i 0.0971286 + 0.168232i
\(107\) 1.94975 3.37706i 0.188489 0.326473i −0.756258 0.654274i \(-0.772974\pi\)
0.944747 + 0.327801i \(0.106308\pi\)
\(108\) 0 0
\(109\) 9.48528 0.908525 0.454263 0.890868i \(-0.349903\pi\)
0.454263 + 0.890868i \(0.349903\pi\)
\(110\) 0.585786 1.01461i 0.0558525 0.0967394i
\(111\) 0 0
\(112\) 1.65685 2.86976i 0.156558 0.271166i
\(113\) −7.82843 13.5592i −0.736436 1.27555i −0.954090 0.299519i \(-0.903174\pi\)
0.217654 0.976026i \(-0.430160\pi\)
\(114\) 0 0
\(115\) 1.07107 + 1.85514i 0.0998776 + 0.172993i
\(116\) 0 0
\(117\) 0 0
\(118\) 6.00000 10.3923i 0.552345 0.956689i
\(119\) 2.82843 + 4.89898i 0.259281 + 0.449089i
\(120\) 0 0
\(121\) 4.50000 7.79423i 0.409091 0.708566i
\(122\) 17.6569 1.59858
\(123\) 0 0
\(124\) 0 0
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) −2.67157 + 4.62730i −0.237064 + 0.410606i −0.959870 0.280444i \(-0.909518\pi\)
0.722807 + 0.691050i \(0.242852\pi\)
\(128\) −11.3137 −1.00000
\(129\) 0 0
\(130\) 0.757359 1.31178i 0.0664248 0.115051i
\(131\) −8.12132 + 14.0665i −0.709563 + 1.22900i 0.255456 + 0.966821i \(0.417774\pi\)
−0.965019 + 0.262179i \(0.915559\pi\)
\(132\) 0 0
\(133\) 1.58579 + 2.74666i 0.137505 + 0.238166i
\(134\) −10.2426 17.7408i −0.884829 1.53257i
\(135\) 0 0
\(136\) 9.65685 16.7262i 0.828068 1.43426i
\(137\) −7.70711 13.3491i −0.658463 1.14049i −0.981014 0.193939i \(-0.937874\pi\)
0.322551 0.946552i \(-0.395460\pi\)
\(138\) 0 0
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.24264 7.34847i −0.356034 0.616670i
\(143\) −1.29289 + 2.23936i −0.108117 + 0.187264i
\(144\) 0 0
\(145\) −1.00000 1.73205i −0.0830455 0.143839i
\(146\) 2.70711 + 4.68885i 0.224042 + 0.388052i
\(147\) 0 0
\(148\) 0 0
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) 0 0
\(151\) 6.31371 0.513802 0.256901 0.966438i \(-0.417299\pi\)
0.256901 + 0.966438i \(0.417299\pi\)
\(152\) 5.41421 9.37769i 0.439151 0.760631i
\(153\) 0 0
\(154\) −1.65685 −0.133513
\(155\) −3.22183 + 0.507306i −0.258783 + 0.0407478i
\(156\) 0 0
\(157\) 7.82843 0.624777 0.312388 0.949955i \(-0.398871\pi\)
0.312388 + 0.949955i \(0.398871\pi\)
\(158\) 11.0711 19.1757i 0.880767 1.52553i
\(159\) 0 0
\(160\) 0 0
\(161\) 1.51472 2.62357i 0.119377 0.206766i
\(162\) 0 0
\(163\) −4.65685 −0.364753 −0.182376 0.983229i \(-0.558379\pi\)
−0.182376 + 0.983229i \(0.558379\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 5.24264 + 9.08052i 0.406908 + 0.704785i
\(167\) 5.94975 10.3053i 0.460405 0.797445i −0.538576 0.842577i \(-0.681037\pi\)
0.998981 + 0.0451317i \(0.0143708\pi\)
\(168\) 0 0
\(169\) 4.82843 8.36308i 0.371417 0.643314i
\(170\) 5.65685 0.433861
\(171\) 0 0
\(172\) 0 0
\(173\) 4.65685 + 8.06591i 0.354054 + 0.613240i 0.986956 0.160993i \(-0.0514695\pi\)
−0.632902 + 0.774232i \(0.718136\pi\)
\(174\) 0 0
\(175\) 1.92893 + 3.34101i 0.145814 + 0.252557i
\(176\) 2.82843 + 4.89898i 0.213201 + 0.369274i
\(177\) 0 0
\(178\) −25.3137 −1.89734
\(179\) −6.87868 + 11.9142i −0.514137 + 0.890511i 0.485729 + 0.874110i \(0.338554\pi\)
−0.999865 + 0.0164013i \(0.994779\pi\)
\(180\) 0 0
\(181\) −0.257359 0.445759i −0.0191294 0.0331330i 0.856302 0.516475i \(-0.172756\pi\)
−0.875432 + 0.483342i \(0.839423\pi\)
\(182\) −2.14214 −0.158786
\(183\) 0 0
\(184\) −10.3431 −0.762507
\(185\) 0.585786 0.0430679
\(186\) 0 0
\(187\) −9.65685 −0.706179
\(188\) 0 0
\(189\) 0 0
\(190\) 3.17157 0.230090
\(191\) −1.53553 2.65962i −0.111107 0.192444i 0.805110 0.593126i \(-0.202106\pi\)
−0.916217 + 0.400682i \(0.868773\pi\)
\(192\) 0 0
\(193\) −6.98528 + 12.0989i −0.502812 + 0.870895i 0.497183 + 0.867646i \(0.334368\pi\)
−0.999995 + 0.00324955i \(0.998966\pi\)
\(194\) 16.2426 1.16615
\(195\) 0 0
\(196\) 0 0
\(197\) 1.41421 + 2.44949i 0.100759 + 0.174519i 0.911997 0.410196i \(-0.134540\pi\)
−0.811239 + 0.584715i \(0.801206\pi\)
\(198\) 0 0
\(199\) 6.07107 + 10.5154i 0.430367 + 0.745417i 0.996905 0.0786187i \(-0.0250510\pi\)
−0.566538 + 0.824035i \(0.691718\pi\)
\(200\) 6.58579 11.4069i 0.465685 0.806591i
\(201\) 0 0
\(202\) −21.7990 −1.53377
\(203\) −1.41421 + 2.44949i −0.0992583 + 0.171920i
\(204\) 0 0
\(205\) −1.24264 + 2.15232i −0.0867898 + 0.150324i
\(206\) 11.5355 + 19.9801i 0.803719 + 1.39208i
\(207\) 0 0
\(208\) 3.65685 + 6.33386i 0.253557 + 0.439174i
\(209\) −5.41421 −0.374509
\(210\) 0 0
\(211\) 2.74264 4.75039i 0.188811 0.327031i −0.756043 0.654522i \(-0.772870\pi\)
0.944854 + 0.327491i \(0.106203\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −2.75736 + 4.77589i −0.188489 + 0.326473i
\(215\) −3.21320 −0.219139
\(216\) 0 0
\(217\) 2.89949 + 3.58719i 0.196831 + 0.243515i
\(218\) −13.4142 −0.908525
\(219\) 0 0
\(220\) 0 0
\(221\) −12.4853 −0.839851
\(222\) 0 0
\(223\) −8.32843 + 14.4253i −0.557713 + 0.965987i 0.439974 + 0.898010i \(0.354988\pi\)
−0.997687 + 0.0679764i \(0.978346\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 11.0711 + 19.1757i 0.736436 + 1.27555i
\(227\) 5.41421 + 9.37769i 0.359354 + 0.622419i 0.987853 0.155391i \(-0.0496637\pi\)
−0.628499 + 0.777810i \(0.716330\pi\)
\(228\) 0 0
\(229\) 5.74264 9.94655i 0.379484 0.657286i −0.611503 0.791242i \(-0.709435\pi\)
0.990987 + 0.133956i \(0.0427681\pi\)
\(230\) −1.51472 2.62357i −0.0998776 0.172993i
\(231\) 0 0
\(232\) 9.65685 0.634004
\(233\) −24.0000 −1.57229 −0.786146 0.618041i \(-0.787927\pi\)
−0.786146 + 0.618041i \(0.787927\pi\)
\(234\) 0 0
\(235\) 0.171573 + 0.297173i 0.0111922 + 0.0193854i
\(236\) 0 0
\(237\) 0 0
\(238\) −4.00000 6.92820i −0.259281 0.449089i
\(239\) 12.8995 + 22.3426i 0.834399 + 1.44522i 0.894519 + 0.447030i \(0.147518\pi\)
−0.0601199 + 0.998191i \(0.519148\pi\)
\(240\) 0 0
\(241\) 2.98528 5.17066i 0.192299 0.333071i −0.753713 0.657204i \(-0.771739\pi\)
0.946012 + 0.324132i \(0.105072\pi\)
\(242\) −6.36396 + 11.0227i −0.409091 + 0.708566i
\(243\) 0 0
\(244\) 0 0
\(245\) 1.84924 3.20298i 0.118144 0.204631i
\(246\) 0 0
\(247\) −7.00000 −0.445399
\(248\) 5.65685 14.6969i 0.359211 0.933257i
\(249\) 0 0
\(250\) 8.00000 0.505964
\(251\) −12.5355 + 21.7122i −0.791236 + 1.37046i 0.133966 + 0.990986i \(0.457229\pi\)
−0.925202 + 0.379475i \(0.876105\pi\)
\(252\) 0 0
\(253\) 2.58579 + 4.47871i 0.162567 + 0.281574i
\(254\) 3.77817 6.54399i 0.237064 0.410606i
\(255\) 0 0
\(256\) 0 0
\(257\) 5.12132 + 8.87039i 0.319459 + 0.553320i 0.980375 0.197140i \(-0.0631654\pi\)
−0.660916 + 0.750460i \(0.729832\pi\)
\(258\) 0 0
\(259\) −0.414214 0.717439i −0.0257380 0.0445795i
\(260\) 0 0
\(261\) 0 0
\(262\) 11.4853 19.8931i 0.709563 1.22900i
\(263\) 12.8284 0.791035 0.395517 0.918459i \(-0.370565\pi\)
0.395517 + 0.918459i \(0.370565\pi\)
\(264\) 0 0
\(265\) −0.414214 + 0.717439i −0.0254449 + 0.0440719i
\(266\) −2.24264 3.88437i −0.137505 0.238166i
\(267\) 0 0
\(268\) 0 0
\(269\) −9.89949 17.1464i −0.603583 1.04544i −0.992274 0.124068i \(-0.960406\pi\)
0.388691 0.921368i \(-0.372927\pi\)
\(270\) 0 0
\(271\) −28.4558 −1.72857 −0.864285 0.503003i \(-0.832228\pi\)
−0.864285 + 0.503003i \(0.832228\pi\)
\(272\) −13.6569 + 23.6544i −0.828068 + 1.43426i
\(273\) 0 0
\(274\) 10.8995 + 18.8785i 0.658463 + 1.14049i
\(275\) −6.58579 −0.397138
\(276\) 0 0
\(277\) 11.3431 0.681544 0.340772 0.940146i \(-0.389312\pi\)
0.340772 + 0.940146i \(0.389312\pi\)
\(278\) −19.7990 −1.18746
\(279\) 0 0
\(280\) 1.37258 0.0820275
\(281\) 20.0416 1.19558 0.597792 0.801651i \(-0.296045\pi\)
0.597792 + 0.801651i \(0.296045\pi\)
\(282\) 0 0
\(283\) 15.4853 0.920504 0.460252 0.887788i \(-0.347759\pi\)
0.460252 + 0.887788i \(0.347759\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 1.82843 3.16693i 0.108117 0.187264i
\(287\) 3.51472 0.207467
\(288\) 0 0
\(289\) −14.8137 25.6581i −0.871395 1.50930i
\(290\) 1.41421 + 2.44949i 0.0830455 + 0.143839i
\(291\) 0 0
\(292\) 0 0
\(293\) 6.41421 11.1097i 0.374722 0.649038i −0.615563 0.788088i \(-0.711071\pi\)
0.990285 + 0.139049i \(0.0444047\pi\)
\(294\) 0 0
\(295\) 4.97056 0.289397
\(296\) −1.41421 + 2.44949i −0.0821995 + 0.142374i
\(297\) 0 0
\(298\) 4.24264 7.34847i 0.245770 0.425685i
\(299\) 3.34315 + 5.79050i 0.193339 + 0.334873i
\(300\) 0 0
\(301\) 2.27208 + 3.93535i 0.130960 + 0.226830i
\(302\) −8.92893 −0.513802
\(303\) 0 0
\(304\) −7.65685 + 13.2621i −0.439151 + 0.760631i
\(305\) 3.65685 + 6.33386i 0.209391 + 0.362676i
\(306\) 0 0
\(307\) −3.84315 + 6.65652i −0.219340 + 0.379908i −0.954606 0.297870i \(-0.903724\pi\)
0.735266 + 0.677778i \(0.237057\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.55635 0.717439i 0.258783 0.0407478i
\(311\) 19.8995 1.12840 0.564198 0.825639i \(-0.309185\pi\)
0.564198 + 0.825639i \(0.309185\pi\)
\(312\) 0 0
\(313\) 2.84315 4.92447i 0.160704 0.278348i −0.774417 0.632675i \(-0.781957\pi\)
0.935121 + 0.354327i \(0.115290\pi\)
\(314\) −11.0711 −0.624777
\(315\) 0 0
\(316\) 0 0
\(317\) −11.1213 + 19.2627i −0.624636 + 1.08190i 0.363976 + 0.931408i \(0.381419\pi\)
−0.988611 + 0.150492i \(0.951914\pi\)
\(318\) 0 0
\(319\) −2.41421 4.18154i −0.135170 0.234121i
\(320\) −2.34315 4.05845i −0.130986 0.226874i
\(321\) 0 0
\(322\) −2.14214 + 3.71029i −0.119377 + 0.206766i
\(323\) −13.0711 22.6398i −0.727294 1.25971i
\(324\) 0 0
\(325\) −8.51472 −0.472312
\(326\) 6.58579 0.364753
\(327\) 0 0
\(328\) −6.00000 10.3923i −0.331295 0.573819i
\(329\) 0.242641 0.420266i 0.0133772 0.0231700i
\(330\) 0 0
\(331\) −1.50000 2.59808i −0.0824475 0.142803i 0.821853 0.569699i \(-0.192940\pi\)
−0.904301 + 0.426896i \(0.859607\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −8.41421 + 14.5738i −0.460405 + 0.797445i
\(335\) 4.24264 7.34847i 0.231800 0.401490i
\(336\) 0 0
\(337\) 18.6274 1.01470 0.507350 0.861740i \(-0.330625\pi\)
0.507350 + 0.861740i \(0.330625\pi\)
\(338\) −6.82843 + 11.8272i −0.371417 + 0.643314i
\(339\) 0 0
\(340\) 0 0
\(341\) −7.77817 + 1.22474i −0.421212 + 0.0663237i
\(342\) 0 0
\(343\) −11.0294 −0.595534
\(344\) 7.75736 13.4361i 0.418249 0.724428i
\(345\) 0 0
\(346\) −6.58579 11.4069i −0.354054 0.613240i
\(347\) 8.70711 15.0812i 0.467422 0.809599i −0.531885 0.846816i \(-0.678516\pi\)
0.999307 + 0.0372179i \(0.0118495\pi\)
\(348\) 0 0
\(349\) 33.1421 1.77406 0.887029 0.461714i \(-0.152765\pi\)
0.887029 + 0.461714i \(0.152765\pi\)
\(350\) −2.72792 4.72490i −0.145814 0.252557i
\(351\) 0 0
\(352\) 0 0
\(353\) 13.5858 23.5313i 0.723098 1.25244i −0.236653 0.971594i \(-0.576051\pi\)
0.959752 0.280849i \(-0.0906161\pi\)
\(354\) 0 0
\(355\) 1.75736 3.04384i 0.0932709 0.161550i
\(356\) 0 0
\(357\) 0 0
\(358\) 9.72792 16.8493i 0.514137 0.890511i
\(359\) 9.02082 + 15.6245i 0.476100 + 0.824630i 0.999625 0.0273804i \(-0.00871654\pi\)
−0.523525 + 0.852011i \(0.675383\pi\)
\(360\) 0 0
\(361\) 2.17157 + 3.76127i 0.114293 + 0.197962i
\(362\) 0.363961 + 0.630399i 0.0191294 + 0.0331330i
\(363\) 0 0
\(364\) 0 0
\(365\) −1.12132 + 1.94218i −0.0586926 + 0.101659i
\(366\) 0 0
\(367\) −9.57107 16.5776i −0.499606 0.865342i 0.500394 0.865798i \(-0.333188\pi\)
−1.00000 0.000455270i \(0.999855\pi\)
\(368\) 14.6274 0.762507
\(369\) 0 0
\(370\) −0.828427 −0.0430679
\(371\) 1.17157 0.0608250
\(372\) 0 0
\(373\) −29.4853 −1.52669 −0.763345 0.645991i \(-0.776444\pi\)
−0.763345 + 0.645991i \(0.776444\pi\)
\(374\) 13.6569 0.706179
\(375\) 0 0
\(376\) −1.65685 −0.0854457
\(377\) −3.12132 5.40629i −0.160756 0.278438i
\(378\) 0 0
\(379\) −4.91421 + 8.51167i −0.252426 + 0.437215i −0.964193 0.265201i \(-0.914562\pi\)
0.711767 + 0.702416i \(0.247895\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2.17157 + 3.76127i 0.111107 + 0.192444i
\(383\) −3.19239 5.52938i −0.163123 0.282538i 0.772864 0.634572i \(-0.218824\pi\)
−0.935987 + 0.352034i \(0.885490\pi\)
\(384\) 0 0
\(385\) −0.343146 0.594346i −0.0174883 0.0302907i
\(386\) 9.87868 17.1104i 0.502812 0.870895i
\(387\) 0 0
\(388\) 0 0
\(389\) −8.65685 + 14.9941i −0.438920 + 0.760232i −0.997606 0.0691473i \(-0.977972\pi\)
0.558687 + 0.829379i \(0.311305\pi\)
\(390\) 0 0
\(391\) −12.4853 + 21.6251i −0.631408 + 1.09363i
\(392\) 8.92893 + 15.4654i 0.450979 + 0.781119i
\(393\) 0 0
\(394\) −2.00000 3.46410i −0.100759 0.174519i
\(395\) 9.17157 0.461472
\(396\) 0 0
\(397\) −4.48528 + 7.76874i −0.225110 + 0.389902i −0.956352 0.292216i \(-0.905607\pi\)
0.731243 + 0.682118i \(0.238941\pi\)
\(398\) −8.58579 14.8710i −0.430367 0.745417i
\(399\) 0 0
\(400\) −9.31371 + 16.1318i −0.465685 + 0.806591i
\(401\) 14.8284 0.740496 0.370248 0.928933i \(-0.379273\pi\)
0.370248 + 0.928933i \(0.379273\pi\)
\(402\) 0 0
\(403\) −10.0563 + 1.58346i −0.500942 + 0.0788780i
\(404\) 0 0
\(405\) 0 0
\(406\) 2.00000 3.46410i 0.0992583 0.171920i
\(407\) 1.41421 0.0701000
\(408\) 0 0
\(409\) 3.25736 5.64191i 0.161066 0.278975i −0.774185 0.632959i \(-0.781840\pi\)
0.935251 + 0.353985i \(0.115173\pi\)
\(410\) 1.75736 3.04384i 0.0867898 0.150324i
\(411\) 0 0
\(412\) 0 0
\(413\) −3.51472 6.08767i −0.172948 0.299555i
\(414\) 0 0
\(415\) −2.17157 + 3.76127i −0.106598 + 0.184634i
\(416\) 0 0
\(417\) 0 0
\(418\) 7.65685 0.374509
\(419\) −22.9706 −1.12219 −0.561093 0.827753i \(-0.689619\pi\)
−0.561093 + 0.827753i \(0.689619\pi\)
\(420\) 0 0
\(421\) 11.0000 + 19.0526i 0.536107 + 0.928565i 0.999109 + 0.0422075i \(0.0134391\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) −3.87868 + 6.71807i −0.188811 + 0.327031i
\(423\) 0 0
\(424\) −2.00000 3.46410i −0.0971286 0.168232i
\(425\) −15.8995 27.5387i −0.771239 1.33582i
\(426\) 0 0
\(427\) 5.17157 8.95743i 0.250270 0.433480i
\(428\) 0 0
\(429\) 0 0
\(430\) 4.54416 0.219139
\(431\) 2.17157 3.76127i 0.104601 0.181174i −0.808974 0.587844i \(-0.799977\pi\)
0.913575 + 0.406670i \(0.133310\pi\)
\(432\) 0 0
\(433\) −3.82843 −0.183982 −0.0919912 0.995760i \(-0.529323\pi\)
−0.0919912 + 0.995760i \(0.529323\pi\)
\(434\) −4.10051 5.07306i −0.196831 0.243515i
\(435\) 0 0
\(436\) 0 0
\(437\) −7.00000 + 12.1244i −0.334855 + 0.579987i
\(438\) 0 0
\(439\) 1.74264 + 3.01834i 0.0831717 + 0.144058i 0.904611 0.426239i \(-0.140162\pi\)
−0.821439 + 0.570296i \(0.806828\pi\)
\(440\) −1.17157 + 2.02922i −0.0558525 + 0.0967394i
\(441\) 0 0
\(442\) 17.6569 0.839851
\(443\) 4.07107 + 7.05130i 0.193422 + 0.335017i 0.946382 0.323049i \(-0.104708\pi\)
−0.752960 + 0.658066i \(0.771375\pi\)
\(444\) 0 0
\(445\) −5.24264 9.08052i −0.248525 0.430458i
\(446\) 11.7782 20.4004i 0.557713 0.965987i
\(447\) 0 0
\(448\) −3.31371 + 5.73951i −0.156558 + 0.271166i
\(449\) 18.3431 0.865667 0.432833 0.901474i \(-0.357514\pi\)
0.432833 + 0.901474i \(0.357514\pi\)
\(450\) 0 0
\(451\) −3.00000 + 5.19615i −0.141264 + 0.244677i
\(452\) 0 0
\(453\) 0 0
\(454\) −7.65685 13.2621i −0.359354 0.622419i
\(455\) −0.443651 0.768426i −0.0207987 0.0360244i
\(456\) 0 0
\(457\) 35.4853 1.65993 0.829966 0.557814i \(-0.188360\pi\)
0.829966 + 0.557814i \(0.188360\pi\)
\(458\) −8.12132 + 14.0665i −0.379484 + 0.657286i
\(459\) 0 0
\(460\) 0 0
\(461\) −3.55635 −0.165636 −0.0828178 0.996565i \(-0.526392\pi\)
−0.0828178 + 0.996565i \(0.526392\pi\)
\(462\) 0 0
\(463\) 36.4558 1.69425 0.847123 0.531396i \(-0.178332\pi\)
0.847123 + 0.531396i \(0.178332\pi\)
\(464\) −13.6569 −0.634004
\(465\) 0 0
\(466\) 33.9411 1.57229
\(467\) 9.31371 0.430987 0.215494 0.976505i \(-0.430864\pi\)
0.215494 + 0.976505i \(0.430864\pi\)
\(468\) 0 0
\(469\) −12.0000 −0.554109
\(470\) −0.242641 0.420266i −0.0111922 0.0193854i
\(471\) 0 0
\(472\) −12.0000 + 20.7846i −0.552345 + 0.956689i
\(473\) −7.75736 −0.356684
\(474\) 0 0
\(475\) −8.91421 15.4399i −0.409012 0.708430i
\(476\) 0 0
\(477\) 0 0
\(478\) −18.2426 31.5972i −0.834399 1.44522i
\(479\) −5.82843 + 10.0951i −0.266308 + 0.461258i −0.967905 0.251315i \(-0.919137\pi\)
0.701598 + 0.712573i \(0.252470\pi\)
\(480\) 0 0
\(481\) 1.82843 0.0833691
\(482\) −4.22183 + 7.31242i −0.192299 + 0.333071i
\(483\) 0 0
\(484\) 0 0
\(485\) 3.36396 + 5.82655i 0.152750 + 0.264570i
\(486\) 0 0
\(487\) −3.25736 5.64191i −0.147605 0.255659i 0.782737 0.622353i \(-0.213823\pi\)
−0.930342 + 0.366693i \(0.880490\pi\)
\(488\) −35.3137 −1.59858
\(489\) 0 0
\(490\) −2.61522 + 4.52970i −0.118144 + 0.204631i
\(491\) −16.1421 27.9590i −0.728484 1.26177i −0.957524 0.288355i \(-0.906892\pi\)
0.229039 0.973417i \(-0.426442\pi\)
\(492\) 0 0
\(493\) 11.6569 20.1903i 0.524998 0.909324i
\(494\) 9.89949 0.445399
\(495\) 0 0
\(496\) −8.00000 + 20.7846i −0.359211 + 0.933257i
\(497\) −4.97056 −0.222960
\(498\) 0 0
\(499\) 3.92893 6.80511i 0.175883 0.304639i −0.764583 0.644525i \(-0.777055\pi\)
0.940467 + 0.339886i \(0.110389\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 17.7279 30.7057i 0.791236 1.37046i
\(503\) 3.89949 6.75412i 0.173870 0.301151i −0.765900 0.642960i \(-0.777706\pi\)
0.939770 + 0.341809i \(0.111039\pi\)
\(504\) 0 0
\(505\) −4.51472 7.81972i −0.200902 0.347973i
\(506\) −3.65685 6.33386i −0.162567 0.281574i
\(507\) 0 0
\(508\) 0 0
\(509\) 13.2426 + 22.9369i 0.586970 + 1.01666i 0.994627 + 0.103526i \(0.0330126\pi\)
−0.407657 + 0.913135i \(0.633654\pi\)
\(510\) 0 0
\(511\) 3.17157 0.140302
\(512\) 22.6274 1.00000
\(513\) 0 0
\(514\) −7.24264 12.5446i −0.319459 0.553320i
\(515\) −4.77817 + 8.27604i −0.210552 + 0.364686i
\(516\) 0 0
\(517\) 0.414214 + 0.717439i 0.0182171 + 0.0315529i
\(518\) 0.585786 + 1.01461i 0.0257380 + 0.0445795i
\(519\) 0 0
\(520\) −1.51472 + 2.62357i −0.0664248 + 0.115051i
\(521\) 9.94975 17.2335i 0.435906 0.755012i −0.561463 0.827502i \(-0.689761\pi\)
0.997369 + 0.0724900i \(0.0230946\pi\)
\(522\) 0 0
\(523\) 6.00000 0.262362 0.131181 0.991358i \(-0.458123\pi\)
0.131181 + 0.991358i \(0.458123\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −18.1421 −0.791035
\(527\) −23.8995 29.5680i −1.04108 1.28800i
\(528\) 0 0
\(529\) −9.62742 −0.418583
\(530\) 0.585786 1.01461i 0.0254449 0.0440719i
\(531\) 0 0
\(532\) 0 0
\(533\) −3.87868 + 6.71807i −0.168004 + 0.290992i
\(534\) 0 0
\(535\) −2.28427 −0.0987577
\(536\) 20.4853 + 35.4815i 0.884829 + 1.53257i
\(537\) 0 0
\(538\) 14.0000 + 24.2487i 0.603583 + 1.04544i
\(539\) 4.46447 7.73268i 0.192298 0.333070i
\(540\) 0 0
\(541\) −18.9853 + 32.8835i −0.816241 + 1.41377i 0.0921924 + 0.995741i \(0.470613\pi\)
−0.908433 + 0.418030i \(0.862721\pi\)
\(542\) 40.2426 1.72857
\(543\) 0 0
\(544\) 0 0
\(545\) −2.77817 4.81194i −0.119004 0.206121i
\(546\) 0 0
\(547\) 0.500000 + 0.866025i 0.0213785 + 0.0370286i 0.876517 0.481371i \(-0.159861\pi\)
−0.855138 + 0.518400i \(0.826528\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 9.31371 0.397138
\(551\) 6.53553 11.3199i 0.278423 0.482243i
\(552\) 0 0
\(553\) −6.48528 11.2328i −0.275782 0.477669i
\(554\) −16.0416 −0.681544
\(555\) 0 0
\(556\) 0 0
\(557\) 4.62742 0.196070 0.0980350 0.995183i \(-0.468744\pi\)
0.0980350 + 0.995183i \(0.468744\pi\)
\(558\) 0 0
\(559\) −10.0294 −0.424200
\(560\) −1.94113 −0.0820275
\(561\) 0 0
\(562\) −28.3431 −1.19558
\(563\) 11.6777 + 20.2263i 0.492155 + 0.852438i 0.999959 0.00903495i \(-0.00287595\pi\)
−0.507804 + 0.861473i \(0.669543\pi\)
\(564\) 0 0
\(565\) −4.58579 + 7.94282i −0.192925 + 0.334157i
\(566\) −21.8995 −0.920504
\(567\) 0 0
\(568\) 8.48528 + 14.6969i 0.356034 + 0.616670i
\(569\) 4.07107 + 7.05130i 0.170668 + 0.295606i 0.938654 0.344861i \(-0.112074\pi\)
−0.767986 + 0.640467i \(0.778741\pi\)
\(570\) 0 0
\(571\) −0.742641 1.28629i −0.0310785 0.0538296i 0.850068 0.526673i \(-0.176561\pi\)
−0.881146 + 0.472844i \(0.843228\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −4.97056 −0.207467
\(575\) −8.51472 + 14.7479i −0.355088 + 0.615031i
\(576\) 0 0
\(577\) −1.17157 + 2.02922i −0.0487732 + 0.0844777i −0.889381 0.457166i \(-0.848864\pi\)
0.840608 + 0.541644i \(0.182198\pi\)
\(578\) 20.9497 + 36.2860i 0.871395 + 1.50930i
\(579\) 0 0
\(580\) 0 0
\(581\) 6.14214 0.254819
\(582\) 0 0
\(583\) −1.00000 + 1.73205i −0.0414158 + 0.0717342i
\(584\) −5.41421 9.37769i −0.224042 0.388052i
\(585\) 0 0
\(586\) −9.07107 + 15.7116i −0.374722 + 0.649038i
\(587\) 16.6274 0.686287 0.343143 0.939283i \(-0.388508\pi\)
0.343143 + 0.939283i \(0.388508\pi\)
\(588\) 0 0
\(589\) −13.3995 16.5776i −0.552117 0.683067i
\(590\) −7.02944 −0.289397
\(591\) 0 0
\(592\) 2.00000 3.46410i 0.0821995 0.142374i
\(593\) 36.0000 1.47834 0.739171 0.673517i \(-0.235217\pi\)
0.739171 + 0.673517i \(0.235217\pi\)
\(594\) 0 0
\(595\) 1.65685 2.86976i 0.0679244 0.117649i
\(596\) 0 0
\(597\) 0 0
\(598\) −4.72792 8.18900i −0.193339 0.334873i
\(599\) −11.2635 19.5089i −0.460212 0.797111i 0.538759 0.842460i \(-0.318893\pi\)
−0.998971 + 0.0453489i \(0.985560\pi\)
\(600\) 0 0
\(601\) 3.48528 6.03668i 0.142168 0.246241i −0.786145 0.618042i \(-0.787926\pi\)
0.928313 + 0.371801i \(0.121259\pi\)
\(602\) −3.21320 5.56543i −0.130960 0.226830i
\(603\) 0 0
\(604\) 0 0
\(605\) −5.27208 −0.214340
\(606\) 0 0
\(607\) 20.2279 + 35.0358i 0.821026 + 1.42206i 0.904919 + 0.425584i \(0.139931\pi\)
−0.0838929 + 0.996475i \(0.526735\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −5.17157 8.95743i −0.209391 0.362676i
\(611\) 0.535534 + 0.927572i 0.0216654 + 0.0375255i
\(612\) 0 0
\(613\) −18.7426 + 32.4632i −0.757008 + 1.31118i 0.187362 + 0.982291i \(0.440006\pi\)
−0.944370 + 0.328886i \(0.893327\pi\)
\(614\) 5.43503 9.41375i 0.219340 0.379908i
\(615\) 0 0
\(616\) 3.31371 0.133513
\(617\) −16.6066 + 28.7635i −0.668557 + 1.15797i 0.309751 + 0.950818i \(0.399754\pi\)
−0.978308 + 0.207156i \(0.933579\pi\)
\(618\) 0 0
\(619\) 29.4853 1.18511 0.592557 0.805529i \(-0.298119\pi\)
0.592557 + 0.805529i \(0.298119\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −28.1421 −1.12840
\(623\) −7.41421 + 12.8418i −0.297044 + 0.514496i
\(624\) 0 0
\(625\) −9.98528 17.2950i −0.399411 0.691801i
\(626\) −4.02082 + 6.96426i −0.160704 + 0.278348i
\(627\) 0 0
\(628\) 0 0
\(629\) 3.41421 + 5.91359i 0.136134 + 0.235790i
\(630\) 0 0
\(631\) −21.4853 37.2136i −0.855316 1.48145i −0.876352 0.481671i \(-0.840030\pi\)
0.0210364 0.999779i \(-0.493303\pi\)
\(632\) −22.1421 + 38.3513i −0.880767 + 1.52553i
\(633\) 0 0
\(634\) 15.7279 27.2416i 0.624636 1.08190i
\(635\) 3.12994 0.124208
\(636\) 0 0
\(637\) 5.77208 9.99753i 0.228698 0.396117i
\(638\) 3.41421 + 5.91359i 0.135170 + 0.234121i
\(639\) 0 0
\(640\) 3.31371 + 5.73951i 0.130986 + 0.226874i
\(641\) −22.0919 38.2643i −0.872577 1.51135i −0.859322 0.511435i \(-0.829114\pi\)
−0.0132552 0.999912i \(-0.504219\pi\)
\(642\) 0 0
\(643\) 35.7696 1.41061 0.705307 0.708902i \(-0.250809\pi\)
0.705307 + 0.708902i \(0.250809\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 18.4853 + 32.0174i 0.727294 + 1.25971i
\(647\) −14.4437 −0.567839 −0.283919 0.958848i \(-0.591635\pi\)
−0.283919 + 0.958848i \(0.591635\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 12.0416 0.472312
\(651\) 0 0
\(652\) 0 0
\(653\) −41.0122 −1.60493 −0.802466 0.596698i \(-0.796479\pi\)
−0.802466 + 0.596698i \(0.796479\pi\)
\(654\) 0 0
\(655\) 9.51472 0.371771
\(656\) 8.48528 + 14.6969i 0.331295 + 0.573819i
\(657\) 0 0
\(658\) −0.343146 + 0.594346i −0.0133772 + 0.0231700i
\(659\) −1.61522 −0.0629202 −0.0314601 0.999505i \(-0.510016\pi\)
−0.0314601 + 0.999505i \(0.510016\pi\)
\(660\) 0 0
\(661\) 24.8848 + 43.1017i 0.967906 + 1.67646i 0.701597 + 0.712574i \(0.252471\pi\)
0.266309 + 0.963888i \(0.414196\pi\)
\(662\) 2.12132 + 3.67423i 0.0824475 + 0.142803i
\(663\) 0 0
\(664\) −10.4853 18.1610i −0.406908 0.704785i
\(665\) 0.928932 1.60896i 0.0360224 0.0623927i
\(666\) 0 0
\(667\) −12.4853 −0.483432
\(668\) 0 0
\(669\) 0 0
\(670\) −6.00000 + 10.3923i −0.231800 + 0.401490i
\(671\) 8.82843 + 15.2913i 0.340818 + 0.590313i
\(672\) 0 0
\(673\) 6.24264 + 10.8126i 0.240636 + 0.416794i 0.960896 0.276911i \(-0.0893106\pi\)
−0.720260 + 0.693705i \(0.755977\pi\)
\(674\) −26.3431 −1.01470
\(675\) 0 0
\(676\) 0 0
\(677\) 8.94975 + 15.5014i 0.343967 + 0.595768i 0.985165 0.171607i \(-0.0548959\pi\)
−0.641199 + 0.767375i \(0.721563\pi\)
\(678\) 0 0
\(679\) 4.75736 8.23999i 0.182571 0.316222i
\(680\) −11.3137 −0.433861
\(681\) 0 0
\(682\) 11.0000 1.73205i 0.421212 0.0663237i
\(683\) 23.6569 0.905204 0.452602 0.891713i \(-0.350496\pi\)
0.452602 + 0.891713i \(0.350496\pi\)
\(684\) 0 0
\(685\) −4.51472 + 7.81972i −0.172499 + 0.298776i
\(686\) 15.5980 0.595534
\(687\) 0 0
\(688\) −10.9706 + 19.0016i −0.418249 + 0.724428i
\(689\) −1.29289 + 2.23936i −0.0492553 + 0.0853127i
\(690\) 0 0
\(691\) 7.48528 + 12.9649i 0.284754 + 0.493208i 0.972549 0.232697i \(-0.0747549\pi\)
−0.687796 + 0.725904i \(0.741422\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −12.3137 + 21.3280i −0.467422 + 0.809599i
\(695\) −4.10051 7.10228i −0.155541 0.269405i
\(696\) 0 0
\(697\) −28.9706 −1.09734
\(698\) −46.8701 −1.77406
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0000 + 31.1769i −0.679851 + 1.17754i 0.295175 + 0.955443i \(0.404622\pi\)
−0.975026 + 0.222093i \(0.928711\pi\)
\(702\) 0 0
\(703\) 1.91421 + 3.31552i 0.0721959 + 0.125047i
\(704\) −5.65685 9.79796i −0.213201 0.369274i
\(705\) 0 0
\(706\) −19.2132 + 33.2782i −0.723098 + 1.25244i
\(707\) −6.38478 + 11.0588i −0.240124 + 0.415907i
\(708\) 0 0
\(709\) −19.9706 −0.750010 −0.375005 0.927023i \(-0.622359\pi\)
−0.375005 + 0.927023i \(0.622359\pi\)
\(710\) −2.48528 + 4.30463i −0.0932709 + 0.161550i
\(711\) 0 0
\(712\) 50.6274 1.89734
\(713\) −7.31371 + 19.0016i −0.273901 + 0.711614i
\(714\) 0 0
\(715\) 1.51472 0.0566473
\(716\) 0 0
\(717\) 0 0
\(718\) −12.7574 22.0964i −0.476100 0.824630i
\(719\) 12.4142 21.5020i 0.462972 0.801891i −0.536135 0.844132i \(-0.680116\pi\)
0.999107 + 0.0422409i \(0.0134497\pi\)
\(720\) 0 0
\(721\) 13.5147 0.503314
\(722\) −3.07107 5.31925i −0.114293 0.197962i
\(723\) 0 0
\(724\) 0 0
\(725\) 7.94975 13.7694i 0.295246 0.511381i
\(726\) 0 0
\(727\) 2.50000 4.33013i 0.0927199 0.160596i −0.815935 0.578144i \(-0.803777\pi\)
0.908655 + 0.417548i \(0.137111\pi\)
\(728\) 4.28427 0.158786
\(729\) 0 0
\(730\) 1.58579 2.74666i 0.0586926 0.101659i
\(731\) −18.7279 32.4377i −0.692677 1.19975i
\(732\) 0 0
\(733\) −3.01472 5.22165i −0.111351 0.192866i 0.804964 0.593324i \(-0.202185\pi\)
−0.916315 + 0.400458i \(0.868851\pi\)
\(734\) 13.5355 + 23.4442i 0.499606 + 0.865342i
\(735\) 0 0
\(736\) 0 0
\(737\) 10.2426 17.7408i 0.377293 0.653490i
\(738\) 0 0
\(739\) 0.843146 + 1.46037i 0.0310156 + 0.0537206i 0.881117 0.472899i \(-0.156793\pi\)
−0.850101 + 0.526620i \(0.823459\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.65685 −0.0608250
\(743\) 17.7990 0.652982 0.326491 0.945200i \(-0.394134\pi\)
0.326491 + 0.945200i \(0.394134\pi\)
\(744\) 0 0
\(745\) 3.51472 0.128769
\(746\) 41.6985 1.52669
\(747\) 0 0
\(748\) 0 0
\(749\) 1.61522 + 2.79765i 0.0590190 + 0.102224i
\(750\) 0 0
\(751\) 20.2279 35.0358i 0.738127 1.27847i −0.215210 0.976568i \(-0.569044\pi\)
0.953338 0.301906i \(-0.0976230\pi\)
\(752\) 2.34315 0.0854457
\(753\) 0 0
\(754\) 4.41421 + 7.64564i 0.160756 + 0.278438i
\(755\) −1.84924 3.20298i −0.0673008 0.116568i
\(756\) 0 0
\(757\) −25.3137 43.8446i −0.920042 1.59356i −0.799346 0.600871i \(-0.794821\pi\)
−0.120696 0.992690i \(-0.538513\pi\)
\(758\) 6.94975 12.0373i 0.252426 0.437215i
\(759\) 0 0
\(760\) −6.34315 −0.230090
\(761\) 20.5355 35.5686i 0.744413 1.28936i −0.206056 0.978540i \(-0.566063\pi\)
0.950469 0.310820i \(-0.100604\pi\)
\(762\) 0 0
\(763\) −3.92893 + 6.80511i −0.142237 + 0.246362i
\(764\) 0 0
\(765\) 0 0
\(766\) 4.51472 + 7.81972i 0.163123 + 0.282538i
\(767\) 15.5147 0.560204
\(768\) 0 0
\(769\) −10.2426 + 17.7408i −0.369359 + 0.639749i −0.989465 0.144769i \(-0.953756\pi\)
0.620106 + 0.784518i \(0.287089\pi\)
\(770\) 0.485281 + 0.840532i 0.0174883 + 0.0302907i
\(771\) 0 0
\(772\) 0 0
\(773\) 11.8579 0.426498 0.213249 0.976998i \(-0.431595\pi\)
0.213249 + 0.976998i \(0.431595\pi\)
\(774\) 0 0
\(775\) −16.2990 20.1648i −0.585477 0.724340i
\(776\) −32.4853 −1.16615
\(777\) 0 0
\(778\) 12.2426 21.2049i 0.438920 0.760232i
\(779\) −16.2426 −0.581953
\(780\) 0 0
\(781\) 4.24264 7.34847i 0.151814 0.262949i
\(782\) 17.6569 30.5826i 0.631408 1.09363i
\(783\) 0 0
\(784\) −12.6274 21.8713i −0.450979 0.781119i
\(785\) −2.29289 3.97141i −0.0818369 0.141746i
\(786\) 0 0
\(787\) −10.7426 + 18.6068i −0.382934 + 0.663261i −0.991480 0.130258i \(-0.958420\pi\)
0.608546 + 0.793518i \(0.291753\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) −12.9706 −0.461472
\(791\) 12.9706 0.461180
\(792\) 0 0
\(793\) 11.4142 + 19.7700i 0.405331 + 0.702053i
\(794\) 6.34315 10.9867i 0.225110 0.389902i
\(795\) 0 0
\(796\) 0 0
\(797\) −0.343146 0.594346i −0.0121548 0.0210528i 0.859884 0.510489i \(-0.170536\pi\)
−0.872039 + 0.489437i \(0.837202\pi\)
\(798\) 0 0
\(799\) −2.00000 + 3.46410i −0.0707549 + 0.122551i
\(800\) 0 0
\(801\) 0 0
\(802\) −20.9706 −0.740496
\(803\) −2.70711 + 4.68885i −0.0955317 + 0.165466i
\(804\) 0 0
\(805\) −1.77460 −0.0625465
\(806\) 14.2218 2.23936i 0.500942 0.0788780i
\(807\) 0 0
\(808\) 43.5980 1.53377
\(809\) −8.46447 + 14.6609i −0.297595 + 0.515449i −0.975585 0.219621i \(-0.929518\pi\)
0.677990 + 0.735071i \(0.262851\pi\)
\(810\) 0 0
\(811\) −9.50000 16.4545i −0.333590 0.577795i 0.649623 0.760257i \(-0.274927\pi\)
−0.983213 + 0.182462i \(0.941593\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −2.00000 −0.0701000
\(815\) 1.36396 + 2.36245i 0.0477775 + 0.0827530i
\(816\) 0 0
\(817\) −10.5000 18.1865i −0.367348 0.636266i
\(818\) −4.60660 + 7.97887i −0.161066 + 0.278975i
\(819\) 0 0
\(820\) 0 0
\(821\) 37.7990 1.31919 0.659597 0.751620i \(-0.270727\pi\)
0.659597 + 0.751620i \(0.270727\pi\)
\(822\) 0 0
\(823\) 17.2426 29.8651i 0.601041 1.04103i −0.391623 0.920126i \(-0.628086\pi\)
0.992664 0.120907i \(-0.0385804\pi\)
\(824\) −23.0711 39.9603i −0.803719 1.39208i
\(825\) 0 0
\(826\) 4.97056 + 8.60927i 0.172948 + 0.299555i
\(827\) −21.3640 37.0035i −0.742898 1.28674i −0.951171 0.308666i \(-0.900118\pi\)
0.208273 0.978071i \(-0.433216\pi\)
\(828\) 0 0
\(829\) 14.9411 0.518927 0.259463 0.965753i \(-0.416454\pi\)
0.259463 + 0.965753i \(0.416454\pi\)
\(830\) 3.07107 5.31925i 0.106598 0.184634i
\(831\) 0 0
\(832\) −7.31371 12.6677i −0.253557 0.439174i
\(833\) 43.1127 1.49377
\(834\) 0 0
\(835\) −6.97056 −0.241226
\(836\) 0 0
\(837\) 0 0
\(838\) 32.4853 1.12219
\(839\) −7.11270 −0.245558 −0.122779 0.992434i \(-0.539181\pi\)
−0.122779 + 0.992434i \(0.539181\pi\)
\(840\) 0 0
\(841\) −17.3431 −0.598040
\(842\) −15.5563 26.9444i −0.536107 0.928565i
\(843\) 0 0
\(844\) 0 0
\(845\) −5.65685 −0.194602
\(846\) 0 0
\(847\) 3.72792 + 6.45695i 0.128093 + 0.221863i
\(848\) 2.82843 + 4.89898i 0.0971286 + 0.168232i
\(849\) 0 0
\(850\) 22.4853 + 38.9456i 0.771239 + 1.33582i
\(851\) 1.82843 3.16693i 0.0626777 0.108561i
\(852\) 0 0
\(853\) 9.62742 0.329636 0.164818 0.986324i \(-0.447296\pi\)
0.164818 + 0.986324i \(0.447296\pi\)
\(854\) −7.31371 + 12.6677i −0.250270 + 0.433480i
\(855\) 0 0
\(856\) 5.51472 9.55177i 0.188489 0.326473i
\(857\) −6.34315 10.9867i −0.216678 0.375297i 0.737113 0.675770i \(-0.236189\pi\)
−0.953790 + 0.300473i \(0.902855\pi\)
\(858\) 0 0
\(859\) −22.8137 39.5145i −0.778394 1.34822i −0.932867 0.360220i \(-0.882701\pi\)
0.154474 0.987997i \(-0.450632\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −3.07107 + 5.31925i −0.104601 + 0.181174i
\(863\) −6.94975 12.0373i −0.236572 0.409755i 0.723156 0.690684i \(-0.242691\pi\)
−0.959728 + 0.280929i \(0.909357\pi\)
\(864\) 0 0
\(865\) 2.72792 4.72490i 0.0927521 0.160651i
\(866\) 5.41421 0.183982
\(867\) 0 0
\(868\) 0 0
\(869\) 22.1421 0.751121
\(870\) 0 0
\(871\) 13.2426 22.9369i 0.448710 0.777188i
\(872\) 26.8284 0.908525
\(873\) 0 0
\(874\) 9.89949 17.1464i 0.334855 0.579987i
\(875\) 2.34315 4.05845i 0.0792128 0.137201i
\(876\) 0 0
\(877\) 14.7426 + 25.5350i 0.497824 + 0.862256i 0.999997 0.00251127i \(-0.000799362\pi\)
−0.502173 + 0.864767i \(0.667466\pi\)
\(878\) −2.46447 4.26858i −0.0831717 0.144058i
\(879\) 0 0
\(880\) 1.65685 2.86976i 0.0558525 0.0967394i
\(881\) 0.313708 + 0.543359i 0.0105691 + 0.0183062i 0.871262 0.490819i \(-0.163302\pi\)
−0.860692 + 0.509125i \(0.829969\pi\)
\(882\) 0 0
\(883\) −36.9411 −1.24317 −0.621584 0.783348i \(-0.713511\pi\)
−0.621584 + 0.783348i \(0.713511\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −5.75736 9.97204i −0.193422 0.335017i
\(887\) 8.12132 14.0665i 0.272687 0.472308i −0.696862 0.717205i \(-0.745421\pi\)
0.969549 + 0.244897i \(0.0787542\pi\)
\(888\) 0 0
\(889\) −2.21320 3.83338i −0.0742285 0.128567i
\(890\) 7.41421 + 12.8418i 0.248525 + 0.430458i
\(891\) 0 0
\(892\) 0 0
\(893\) −1.12132 + 1.94218i −0.0375236 + 0.0649927i
\(894\) 0 0
\(895\) 8.05887 0.269378
\(896\) 4.68629 8.11689i 0.156558 0.271166i
\(897\) 0 0
\(898\) −25.9411 −0.865667
\(899\) 6.82843 17.7408i 0.227741 0.591688i
\(900\) 0 0
\(901\) −9.65685 −0.321716
\(902\) 4.24264 7.34847i 0.141264 0.244677i
\(903\) 0 0
\(904\) −22.1421 38.3513i −0.736436 1.27555i
\(905\) −0.150758 + 0.261120i −0.00501135 + 0.00867992i
\(906\) 0 0
\(907\) −25.5147 −0.847202 −0.423601 0.905849i \(-0.639234\pi\)
−0.423601 + 0.905849i \(0.639234\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0.627417 + 1.08672i 0.0207987 + 0.0360244i
\(911\) −14.8284 + 25.6836i −0.491288 + 0.850935i −0.999950 0.0100310i \(-0.996807\pi\)
0.508662 + 0.860966i \(0.330140\pi\)
\(912\) 0 0
\(913\) −5.24264 + 9.08052i −0.173506 + 0.300521i
\(914\) −50.1838 −1.65993
\(915\) 0 0
\(916\) 0 0
\(917\) −6.72792 11.6531i −0.222176 0.384819i
\(918\) 0 0
\(919\) 14.7426 + 25.5350i 0.486315 + 0.842322i 0.999876 0.0157308i \(-0.00500748\pi\)
−0.513561 + 0.858053i \(0.671674\pi\)
\(920\) 3.02944 + 5.24714i 0.0998776 + 0.172993i
\(921\) 0 0
\(922\) 5.02944 0.165636
\(923\) 5.48528 9.50079i 0.180550 0.312722i
\(924\) 0 0
\(925\) 2.32843 + 4.03295i 0.0765582 + 0.132603i
\(926\) −51.5563 −1.69425
\(927\) 0 0
\(928\) 0 0
\(929\) 0.343146 0.0112582 0.00562912 0.999984i \(-0.498208\pi\)
0.00562912 + 0.999984i \(0.498208\pi\)
\(930\) 0 0
\(931\) 24.1716 0.792191
\(932\) 0 0
\(933\) 0 0
\(934\) −13.1716 −0.430987
\(935\) 2.82843 + 4.89898i 0.0924995 + 0.160214i
\(936\) 0 0
\(937\) 11.7426 20.3389i 0.383615 0.664441i −0.607961 0.793967i \(-0.708012\pi\)
0.991576 + 0.129526i \(0.0413455\pi\)
\(938\) 16.9706 0.554109
\(939\) 0 0
\(940\) 0 0
\(941\) 13.0711 + 22.6398i 0.426105 + 0.738035i 0.996523 0.0833195i \(-0.0265522\pi\)
−0.570418 + 0.821354i \(0.693219\pi\)
\(942\) 0 0
\(943\) 7.75736 + 13.4361i 0.252614 + 0.437541i
\(944\) 16.9706 29.3939i 0.552345 0.956689i
\(945\) 0 0
\(946\) 10.9706 0.356684
\(947\) −17.3848 + 30.1113i −0.564929 + 0.978486i 0.432127 + 0.901813i \(0.357763\pi\)
−0.997056 + 0.0766735i \(0.975570\pi\)
\(948\) 0 0
\(949\) −3.50000 + 6.06218i −0.113615 + 0.196787i
\(950\) 12.6066 + 21.8353i 0.409012 + 0.708430i
\(951\) 0 0
\(952\) 8.00000 + 13.8564i 0.259281 + 0.449089i
\(953\) −11.8995 −0.385462 −0.192731 0.981252i \(-0.561735\pi\)
−0.192731 + 0.981252i \(0.561735\pi\)
\(954\) 0 0
\(955\) −0.899495 + 1.55797i −0.0291070 + 0.0504148i
\(956\) 0 0
\(957\) 0 0
\(958\) 8.24264 14.2767i 0.266308 0.461258i
\(959\) 12.7696 0.412350
\(960\) 0 0
\(961\) −23.0000 20.7846i −0.741935 0.670471i
\(962\) −2.58579 −0.0833691
\(963\) 0 0
\(964\) 0 0
\(965\) 8.18377 0.263445
\(966\) 0 0
\(967\) 5.97056 10.3413i 0.192000 0.332554i −0.753913 0.656975i \(-0.771836\pi\)
0.945913 + 0.324420i \(0.105169\pi\)
\(968\) 12.7279 22.0454i 0.409091 0.708566i
\(969\) 0 0
\(970\) −4.75736 8.23999i −0.152750 0.264570i
\(971\) 19.9706 + 34.5900i 0.640886 + 1.11005i 0.985235 + 0.171205i \(0.0547662\pi\)
−0.344350 + 0.938842i \(0.611901\pi\)
\(972\) 0 0
\(973\) −5.79899 + 10.0441i −0.185907 + 0.322001i
\(974\) 4.60660 + 7.97887i 0.147605 + 0.255659i
\(975\) 0 0
\(976\) 49.9411 1.59858
\(977\) −12.0000 −0.383914 −0.191957 0.981403i \(-0.561483\pi\)
−0.191957 + 0.981403i \(0.561483\pi\)
\(978\) 0 0
\(979\) −12.6569 21.9223i −0.404515 0.700640i
\(980\) 0 0
\(981\) 0 0
\(982\) 22.8284 + 39.5400i 0.728484 + 1.26177i
\(983\) −29.0416 50.3016i −0.926284 1.60437i −0.789483 0.613773i \(-0.789651\pi\)
−0.136801 0.990598i \(-0.543682\pi\)
\(984\) 0 0
\(985\) 0.828427 1.43488i 0.0263959 0.0457190i
\(986\) −16.4853 + 28.5533i −0.524998 + 0.909324i
\(987\) 0 0
\(988\) 0 0
\(989\) −10.0294 + 17.3715i −0.318918 + 0.552381i
\(990\) 0 0
\(991\) 45.1421 1.43399 0.716994 0.697080i \(-0.245518\pi\)
0.716994 + 0.697080i \(0.245518\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 7.02944 0.222960
\(995\) 3.55635 6.15978i 0.112744 0.195278i
\(996\) 0 0
\(997\) 9.51472 + 16.4800i 0.301334 + 0.521926i 0.976438 0.215796i \(-0.0692347\pi\)
−0.675104 + 0.737722i \(0.735901\pi\)
\(998\) −5.55635 + 9.62388i −0.175883 + 0.304639i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 279.2.h.b.253.1 4
3.2 odd 2 93.2.e.a.67.2 yes 4
12.11 even 2 1488.2.q.g.625.1 4
31.5 even 3 8649.2.a.h.1.1 2
31.25 even 3 inner 279.2.h.b.118.1 4
31.26 odd 6 8649.2.a.i.1.1 2
93.5 odd 6 2883.2.a.b.1.2 2
93.26 even 6 2883.2.a.c.1.2 2
93.56 odd 6 93.2.e.a.25.2 4
372.335 even 6 1488.2.q.g.769.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.2.e.a.25.2 4 93.56 odd 6
93.2.e.a.67.2 yes 4 3.2 odd 2
279.2.h.b.118.1 4 31.25 even 3 inner
279.2.h.b.253.1 4 1.1 even 1 trivial
1488.2.q.g.625.1 4 12.11 even 2
1488.2.q.g.769.1 4 372.335 even 6
2883.2.a.b.1.2 2 93.5 odd 6
2883.2.a.c.1.2 2 93.26 even 6
8649.2.a.h.1.1 2 31.5 even 3
8649.2.a.i.1.1 2 31.26 odd 6