Properties

Label 1488.2.q.g.625.1
Level $1488$
Weight $2$
Character 1488.625
Analytic conductor $11.882$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1488,2,Mod(625,1488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1488, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1488.625"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1488 = 2^{4} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1488.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8817398208\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 93)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 625.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1488.625
Dual form 1488.2.q.g.769.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(0.292893 + 0.507306i) q^{5} +(0.414214 - 0.717439i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-0.707107 - 1.22474i) q^{11} +(-0.914214 - 1.58346i) q^{13} -0.585786 q^{15} +(-3.41421 + 5.91359i) q^{17} +(-1.91421 + 3.31552i) q^{19} +(0.414214 + 0.717439i) q^{21} -3.65685 q^{23} +(2.32843 - 4.03295i) q^{25} +1.00000 q^{27} -3.41421 q^{29} +(-2.00000 + 5.19615i) q^{31} +1.41421 q^{33} +0.485281 q^{35} +(-0.500000 + 0.866025i) q^{37} +1.82843 q^{39} +(2.12132 + 3.67423i) q^{41} +(-2.74264 + 4.75039i) q^{43} +(0.292893 - 0.507306i) q^{45} -0.585786 q^{47} +(3.15685 + 5.46783i) q^{49} +(-3.41421 - 5.91359i) q^{51} +(0.707107 + 1.22474i) q^{53} +(0.414214 - 0.717439i) q^{55} +(-1.91421 - 3.31552i) q^{57} +(-4.24264 + 7.34847i) q^{59} -12.4853 q^{61} -0.828427 q^{63} +(0.535534 - 0.927572i) q^{65} +(-7.24264 - 12.5446i) q^{67} +(1.82843 - 3.16693i) q^{69} +(3.00000 + 5.19615i) q^{71} +(-1.91421 - 3.31552i) q^{73} +(2.32843 + 4.03295i) q^{75} -1.17157 q^{77} +(7.82843 - 13.5592i) q^{79} +(-0.500000 + 0.866025i) q^{81} +(-3.70711 - 6.42090i) q^{83} -4.00000 q^{85} +(1.70711 - 2.95680i) q^{87} -17.8995 q^{89} -1.51472 q^{91} +(-3.50000 - 4.33013i) q^{93} -2.24264 q^{95} -11.4853 q^{97} +(-0.707107 + 1.22474i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 4 q^{5} - 4 q^{7} - 2 q^{9} + 2 q^{13} - 8 q^{15} - 8 q^{17} - 2 q^{19} - 4 q^{21} + 8 q^{23} - 2 q^{25} + 4 q^{27} - 8 q^{29} - 8 q^{31} - 32 q^{35} - 2 q^{37} - 4 q^{39} + 6 q^{43} + 4 q^{45}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1488\mathbb{Z}\right)^\times\).

\(n\) \(373\) \(497\) \(559\) \(1057\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0.292893 + 0.507306i 0.130986 + 0.226874i 0.924057 0.382255i \(-0.124852\pi\)
−0.793071 + 0.609129i \(0.791519\pi\)
\(6\) 0 0
\(7\) 0.414214 0.717439i 0.156558 0.271166i −0.777067 0.629418i \(-0.783294\pi\)
0.933625 + 0.358251i \(0.116627\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −0.707107 1.22474i −0.213201 0.369274i 0.739514 0.673141i \(-0.235055\pi\)
−0.952714 + 0.303867i \(0.901722\pi\)
\(12\) 0 0
\(13\) −0.914214 1.58346i −0.253557 0.439174i 0.710945 0.703247i \(-0.248267\pi\)
−0.964503 + 0.264073i \(0.914934\pi\)
\(14\) 0 0
\(15\) −0.585786 −0.151249
\(16\) 0 0
\(17\) −3.41421 + 5.91359i −0.828068 + 1.43426i 0.0714831 + 0.997442i \(0.477227\pi\)
−0.899551 + 0.436815i \(0.856107\pi\)
\(18\) 0 0
\(19\) −1.91421 + 3.31552i −0.439151 + 0.760631i −0.997624 0.0688910i \(-0.978054\pi\)
0.558473 + 0.829522i \(0.311387\pi\)
\(20\) 0 0
\(21\) 0.414214 + 0.717439i 0.0903888 + 0.156558i
\(22\) 0 0
\(23\) −3.65685 −0.762507 −0.381253 0.924471i \(-0.624507\pi\)
−0.381253 + 0.924471i \(0.624507\pi\)
\(24\) 0 0
\(25\) 2.32843 4.03295i 0.465685 0.806591i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −3.41421 −0.634004 −0.317002 0.948425i \(-0.602676\pi\)
−0.317002 + 0.948425i \(0.602676\pi\)
\(30\) 0 0
\(31\) −2.00000 + 5.19615i −0.359211 + 0.933257i
\(32\) 0 0
\(33\) 1.41421 0.246183
\(34\) 0 0
\(35\) 0.485281 0.0820275
\(36\) 0 0
\(37\) −0.500000 + 0.866025i −0.0821995 + 0.142374i −0.904194 0.427121i \(-0.859528\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) 1.82843 0.292783
\(40\) 0 0
\(41\) 2.12132 + 3.67423i 0.331295 + 0.573819i 0.982766 0.184854i \(-0.0591813\pi\)
−0.651471 + 0.758673i \(0.725848\pi\)
\(42\) 0 0
\(43\) −2.74264 + 4.75039i −0.418249 + 0.724428i −0.995763 0.0919522i \(-0.970689\pi\)
0.577515 + 0.816380i \(0.304023\pi\)
\(44\) 0 0
\(45\) 0.292893 0.507306i 0.0436619 0.0756247i
\(46\) 0 0
\(47\) −0.585786 −0.0854457 −0.0427229 0.999087i \(-0.513603\pi\)
−0.0427229 + 0.999087i \(0.513603\pi\)
\(48\) 0 0
\(49\) 3.15685 + 5.46783i 0.450979 + 0.781119i
\(50\) 0 0
\(51\) −3.41421 5.91359i −0.478086 0.828068i
\(52\) 0 0
\(53\) 0.707107 + 1.22474i 0.0971286 + 0.168232i 0.910495 0.413520i \(-0.135701\pi\)
−0.813366 + 0.581752i \(0.802368\pi\)
\(54\) 0 0
\(55\) 0.414214 0.717439i 0.0558525 0.0967394i
\(56\) 0 0
\(57\) −1.91421 3.31552i −0.253544 0.439151i
\(58\) 0 0
\(59\) −4.24264 + 7.34847i −0.552345 + 0.956689i 0.445760 + 0.895152i \(0.352933\pi\)
−0.998105 + 0.0615367i \(0.980400\pi\)
\(60\) 0 0
\(61\) −12.4853 −1.59858 −0.799288 0.600948i \(-0.794790\pi\)
−0.799288 + 0.600948i \(0.794790\pi\)
\(62\) 0 0
\(63\) −0.828427 −0.104372
\(64\) 0 0
\(65\) 0.535534 0.927572i 0.0664248 0.115051i
\(66\) 0 0
\(67\) −7.24264 12.5446i −0.884829 1.53257i −0.845909 0.533327i \(-0.820941\pi\)
−0.0389203 0.999242i \(-0.512392\pi\)
\(68\) 0 0
\(69\) 1.82843 3.16693i 0.220117 0.381253i
\(70\) 0 0
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 0 0
\(73\) −1.91421 3.31552i −0.224042 0.388052i 0.731990 0.681316i \(-0.238592\pi\)
−0.956032 + 0.293264i \(0.905259\pi\)
\(74\) 0 0
\(75\) 2.32843 + 4.03295i 0.268864 + 0.465685i
\(76\) 0 0
\(77\) −1.17157 −0.133513
\(78\) 0 0
\(79\) 7.82843 13.5592i 0.880767 1.52553i 0.0302770 0.999542i \(-0.490361\pi\)
0.850490 0.525991i \(-0.176306\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −3.70711 6.42090i −0.406908 0.704785i 0.587634 0.809127i \(-0.300060\pi\)
−0.994541 + 0.104342i \(0.966726\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) 1.70711 2.95680i 0.183021 0.317002i
\(88\) 0 0
\(89\) −17.8995 −1.89734 −0.948671 0.316264i \(-0.897572\pi\)
−0.948671 + 0.316264i \(0.897572\pi\)
\(90\) 0 0
\(91\) −1.51472 −0.158786
\(92\) 0 0
\(93\) −3.50000 4.33013i −0.362933 0.449013i
\(94\) 0 0
\(95\) −2.24264 −0.230090
\(96\) 0 0
\(97\) −11.4853 −1.16615 −0.583077 0.812417i \(-0.698151\pi\)
−0.583077 + 0.812417i \(0.698151\pi\)
\(98\) 0 0
\(99\) −0.707107 + 1.22474i −0.0710669 + 0.123091i
\(100\) 0 0
\(101\) −15.4142 −1.53377 −0.766886 0.641784i \(-0.778195\pi\)
−0.766886 + 0.641784i \(0.778195\pi\)
\(102\) 0 0
\(103\) 8.15685 + 14.1281i 0.803719 + 1.39208i 0.917153 + 0.398536i \(0.130482\pi\)
−0.113434 + 0.993546i \(0.536185\pi\)
\(104\) 0 0
\(105\) −0.242641 + 0.420266i −0.0236793 + 0.0410138i
\(106\) 0 0
\(107\) 1.94975 3.37706i 0.188489 0.326473i −0.756258 0.654274i \(-0.772974\pi\)
0.944747 + 0.327801i \(0.106308\pi\)
\(108\) 0 0
\(109\) 9.48528 0.908525 0.454263 0.890868i \(-0.349903\pi\)
0.454263 + 0.890868i \(0.349903\pi\)
\(110\) 0 0
\(111\) −0.500000 0.866025i −0.0474579 0.0821995i
\(112\) 0 0
\(113\) 7.82843 + 13.5592i 0.736436 + 1.27555i 0.954090 + 0.299519i \(0.0968263\pi\)
−0.217654 + 0.976026i \(0.569840\pi\)
\(114\) 0 0
\(115\) −1.07107 1.85514i −0.0998776 0.172993i
\(116\) 0 0
\(117\) −0.914214 + 1.58346i −0.0845191 + 0.146391i
\(118\) 0 0
\(119\) 2.82843 + 4.89898i 0.259281 + 0.449089i
\(120\) 0 0
\(121\) 4.50000 7.79423i 0.409091 0.708566i
\(122\) 0 0
\(123\) −4.24264 −0.382546
\(124\) 0 0
\(125\) 5.65685 0.505964
\(126\) 0 0
\(127\) 2.67157 4.62730i 0.237064 0.410606i −0.722807 0.691050i \(-0.757148\pi\)
0.959870 + 0.280444i \(0.0904816\pi\)
\(128\) 0 0
\(129\) −2.74264 4.75039i −0.241476 0.418249i
\(130\) 0 0
\(131\) −8.12132 + 14.0665i −0.709563 + 1.22900i 0.255456 + 0.966821i \(0.417774\pi\)
−0.965019 + 0.262179i \(0.915559\pi\)
\(132\) 0 0
\(133\) 1.58579 + 2.74666i 0.137505 + 0.238166i
\(134\) 0 0
\(135\) 0.292893 + 0.507306i 0.0252082 + 0.0436619i
\(136\) 0 0
\(137\) 7.70711 + 13.3491i 0.658463 + 1.14049i 0.981014 + 0.193939i \(0.0621262\pi\)
−0.322551 + 0.946552i \(0.604540\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 0.292893 0.507306i 0.0246661 0.0427229i
\(142\) 0 0
\(143\) −1.29289 + 2.23936i −0.108117 + 0.187264i
\(144\) 0 0
\(145\) −1.00000 1.73205i −0.0830455 0.143839i
\(146\) 0 0
\(147\) −6.31371 −0.520746
\(148\) 0 0
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) 0 0
\(151\) −6.31371 −0.513802 −0.256901 0.966438i \(-0.582701\pi\)
−0.256901 + 0.966438i \(0.582701\pi\)
\(152\) 0 0
\(153\) 6.82843 0.552046
\(154\) 0 0
\(155\) −3.22183 + 0.507306i −0.258783 + 0.0407478i
\(156\) 0 0
\(157\) 7.82843 0.624777 0.312388 0.949955i \(-0.398871\pi\)
0.312388 + 0.949955i \(0.398871\pi\)
\(158\) 0 0
\(159\) −1.41421 −0.112154
\(160\) 0 0
\(161\) −1.51472 + 2.62357i −0.119377 + 0.206766i
\(162\) 0 0
\(163\) 4.65685 0.364753 0.182376 0.983229i \(-0.441621\pi\)
0.182376 + 0.983229i \(0.441621\pi\)
\(164\) 0 0
\(165\) 0.414214 + 0.717439i 0.0322465 + 0.0558525i
\(166\) 0 0
\(167\) 5.94975 10.3053i 0.460405 0.797445i −0.538576 0.842577i \(-0.681037\pi\)
0.998981 + 0.0451317i \(0.0143708\pi\)
\(168\) 0 0
\(169\) 4.82843 8.36308i 0.371417 0.643314i
\(170\) 0 0
\(171\) 3.82843 0.292767
\(172\) 0 0
\(173\) −4.65685 8.06591i −0.354054 0.613240i 0.632902 0.774232i \(-0.281864\pi\)
−0.986956 + 0.160993i \(0.948530\pi\)
\(174\) 0 0
\(175\) −1.92893 3.34101i −0.145814 0.252557i
\(176\) 0 0
\(177\) −4.24264 7.34847i −0.318896 0.552345i
\(178\) 0 0
\(179\) −6.87868 + 11.9142i −0.514137 + 0.890511i 0.485729 + 0.874110i \(0.338554\pi\)
−0.999865 + 0.0164013i \(0.994779\pi\)
\(180\) 0 0
\(181\) −0.257359 0.445759i −0.0191294 0.0331330i 0.856302 0.516475i \(-0.172756\pi\)
−0.875432 + 0.483342i \(0.839423\pi\)
\(182\) 0 0
\(183\) 6.24264 10.8126i 0.461469 0.799288i
\(184\) 0 0
\(185\) −0.585786 −0.0430679
\(186\) 0 0
\(187\) 9.65685 0.706179
\(188\) 0 0
\(189\) 0.414214 0.717439i 0.0301296 0.0521860i
\(190\) 0 0
\(191\) −1.53553 2.65962i −0.111107 0.192444i 0.805110 0.593126i \(-0.202106\pi\)
−0.916217 + 0.400682i \(0.868773\pi\)
\(192\) 0 0
\(193\) −6.98528 + 12.0989i −0.502812 + 0.870895i 0.497183 + 0.867646i \(0.334368\pi\)
−0.999995 + 0.00324955i \(0.998966\pi\)
\(194\) 0 0
\(195\) 0.535534 + 0.927572i 0.0383504 + 0.0664248i
\(196\) 0 0
\(197\) −1.41421 2.44949i −0.100759 0.174519i 0.811239 0.584715i \(-0.198794\pi\)
−0.911997 + 0.410196i \(0.865460\pi\)
\(198\) 0 0
\(199\) −6.07107 10.5154i −0.430367 0.745417i 0.566538 0.824035i \(-0.308282\pi\)
−0.996905 + 0.0786187i \(0.974949\pi\)
\(200\) 0 0
\(201\) 14.4853 1.02171
\(202\) 0 0
\(203\) −1.41421 + 2.44949i −0.0992583 + 0.171920i
\(204\) 0 0
\(205\) −1.24264 + 2.15232i −0.0867898 + 0.150324i
\(206\) 0 0
\(207\) 1.82843 + 3.16693i 0.127084 + 0.220117i
\(208\) 0 0
\(209\) 5.41421 0.374509
\(210\) 0 0
\(211\) −2.74264 + 4.75039i −0.188811 + 0.327031i −0.944854 0.327491i \(-0.893797\pi\)
0.756043 + 0.654522i \(0.227130\pi\)
\(212\) 0 0
\(213\) −6.00000 −0.411113
\(214\) 0 0
\(215\) −3.21320 −0.219139
\(216\) 0 0
\(217\) 2.89949 + 3.58719i 0.196831 + 0.243515i
\(218\) 0 0
\(219\) 3.82843 0.258701
\(220\) 0 0
\(221\) 12.4853 0.839851
\(222\) 0 0
\(223\) 8.32843 14.4253i 0.557713 0.965987i −0.439974 0.898010i \(-0.645012\pi\)
0.997687 0.0679764i \(-0.0216542\pi\)
\(224\) 0 0
\(225\) −4.65685 −0.310457
\(226\) 0 0
\(227\) 5.41421 + 9.37769i 0.359354 + 0.622419i 0.987853 0.155391i \(-0.0496637\pi\)
−0.628499 + 0.777810i \(0.716330\pi\)
\(228\) 0 0
\(229\) 5.74264 9.94655i 0.379484 0.657286i −0.611503 0.791242i \(-0.709435\pi\)
0.990987 + 0.133956i \(0.0427681\pi\)
\(230\) 0 0
\(231\) 0.585786 1.01461i 0.0385419 0.0667566i
\(232\) 0 0
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) 0 0
\(235\) −0.171573 0.297173i −0.0111922 0.0193854i
\(236\) 0 0
\(237\) 7.82843 + 13.5592i 0.508511 + 0.880767i
\(238\) 0 0
\(239\) 12.8995 + 22.3426i 0.834399 + 1.44522i 0.894519 + 0.447030i \(0.147518\pi\)
−0.0601199 + 0.998191i \(0.519148\pi\)
\(240\) 0 0
\(241\) 2.98528 5.17066i 0.192299 0.333071i −0.753713 0.657204i \(-0.771739\pi\)
0.946012 + 0.324132i \(0.105072\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) −1.84924 + 3.20298i −0.118144 + 0.204631i
\(246\) 0 0
\(247\) 7.00000 0.445399
\(248\) 0 0
\(249\) 7.41421 0.469857
\(250\) 0 0
\(251\) −12.5355 + 21.7122i −0.791236 + 1.37046i 0.133966 + 0.990986i \(0.457229\pi\)
−0.925202 + 0.379475i \(0.876105\pi\)
\(252\) 0 0
\(253\) 2.58579 + 4.47871i 0.162567 + 0.281574i
\(254\) 0 0
\(255\) 2.00000 3.46410i 0.125245 0.216930i
\(256\) 0 0
\(257\) −5.12132 8.87039i −0.319459 0.553320i 0.660916 0.750460i \(-0.270168\pi\)
−0.980375 + 0.197140i \(0.936835\pi\)
\(258\) 0 0
\(259\) 0.414214 + 0.717439i 0.0257380 + 0.0445795i
\(260\) 0 0
\(261\) 1.70711 + 2.95680i 0.105667 + 0.183021i
\(262\) 0 0
\(263\) 12.8284 0.791035 0.395517 0.918459i \(-0.370565\pi\)
0.395517 + 0.918459i \(0.370565\pi\)
\(264\) 0 0
\(265\) −0.414214 + 0.717439i −0.0254449 + 0.0440719i
\(266\) 0 0
\(267\) 8.94975 15.5014i 0.547716 0.948671i
\(268\) 0 0
\(269\) 9.89949 + 17.1464i 0.603583 + 1.04544i 0.992274 + 0.124068i \(0.0395941\pi\)
−0.388691 + 0.921368i \(0.627073\pi\)
\(270\) 0 0
\(271\) 28.4558 1.72857 0.864285 0.503003i \(-0.167772\pi\)
0.864285 + 0.503003i \(0.167772\pi\)
\(272\) 0 0
\(273\) 0.757359 1.31178i 0.0458375 0.0793928i
\(274\) 0 0
\(275\) −6.58579 −0.397138
\(276\) 0 0
\(277\) 11.3431 0.681544 0.340772 0.940146i \(-0.389312\pi\)
0.340772 + 0.940146i \(0.389312\pi\)
\(278\) 0 0
\(279\) 5.50000 0.866025i 0.329276 0.0518476i
\(280\) 0 0
\(281\) −20.0416 −1.19558 −0.597792 0.801651i \(-0.703955\pi\)
−0.597792 + 0.801651i \(0.703955\pi\)
\(282\) 0 0
\(283\) −15.4853 −0.920504 −0.460252 0.887788i \(-0.652241\pi\)
−0.460252 + 0.887788i \(0.652241\pi\)
\(284\) 0 0
\(285\) 1.12132 1.94218i 0.0664213 0.115045i
\(286\) 0 0
\(287\) 3.51472 0.207467
\(288\) 0 0
\(289\) −14.8137 25.6581i −0.871395 1.50930i
\(290\) 0 0
\(291\) 5.74264 9.94655i 0.336640 0.583077i
\(292\) 0 0
\(293\) −6.41421 + 11.1097i −0.374722 + 0.649038i −0.990285 0.139049i \(-0.955595\pi\)
0.615563 + 0.788088i \(0.288929\pi\)
\(294\) 0 0
\(295\) −4.97056 −0.289397
\(296\) 0 0
\(297\) −0.707107 1.22474i −0.0410305 0.0710669i
\(298\) 0 0
\(299\) 3.34315 + 5.79050i 0.193339 + 0.334873i
\(300\) 0 0
\(301\) 2.27208 + 3.93535i 0.130960 + 0.226830i
\(302\) 0 0
\(303\) 7.70711 13.3491i 0.442762 0.766886i
\(304\) 0 0
\(305\) −3.65685 6.33386i −0.209391 0.362676i
\(306\) 0 0
\(307\) 3.84315 6.65652i 0.219340 0.379908i −0.735266 0.677778i \(-0.762943\pi\)
0.954606 + 0.297870i \(0.0962763\pi\)
\(308\) 0 0
\(309\) −16.3137 −0.928054
\(310\) 0 0
\(311\) 19.8995 1.12840 0.564198 0.825639i \(-0.309185\pi\)
0.564198 + 0.825639i \(0.309185\pi\)
\(312\) 0 0
\(313\) 2.84315 4.92447i 0.160704 0.278348i −0.774417 0.632675i \(-0.781957\pi\)
0.935121 + 0.354327i \(0.115290\pi\)
\(314\) 0 0
\(315\) −0.242641 0.420266i −0.0136713 0.0236793i
\(316\) 0 0
\(317\) 11.1213 19.2627i 0.624636 1.08190i −0.363976 0.931408i \(-0.618581\pi\)
0.988611 0.150492i \(-0.0480858\pi\)
\(318\) 0 0
\(319\) 2.41421 + 4.18154i 0.135170 + 0.234121i
\(320\) 0 0
\(321\) 1.94975 + 3.37706i 0.108824 + 0.188489i
\(322\) 0 0
\(323\) −13.0711 22.6398i −0.727294 1.25971i
\(324\) 0 0
\(325\) −8.51472 −0.472312
\(326\) 0 0
\(327\) −4.74264 + 8.21449i −0.262269 + 0.454263i
\(328\) 0 0
\(329\) −0.242641 + 0.420266i −0.0133772 + 0.0231700i
\(330\) 0 0
\(331\) 1.50000 + 2.59808i 0.0824475 + 0.142803i 0.904301 0.426896i \(-0.140393\pi\)
−0.821853 + 0.569699i \(0.807060\pi\)
\(332\) 0 0
\(333\) 1.00000 0.0547997
\(334\) 0 0
\(335\) 4.24264 7.34847i 0.231800 0.401490i
\(336\) 0 0
\(337\) 18.6274 1.01470 0.507350 0.861740i \(-0.330625\pi\)
0.507350 + 0.861740i \(0.330625\pi\)
\(338\) 0 0
\(339\) −15.6569 −0.850364
\(340\) 0 0
\(341\) 7.77817 1.22474i 0.421212 0.0663237i
\(342\) 0 0
\(343\) 11.0294 0.595534
\(344\) 0 0
\(345\) 2.14214 0.115329
\(346\) 0 0
\(347\) 8.70711 15.0812i 0.467422 0.809599i −0.531885 0.846816i \(-0.678516\pi\)
0.999307 + 0.0372179i \(0.0118495\pi\)
\(348\) 0 0
\(349\) 33.1421 1.77406 0.887029 0.461714i \(-0.152765\pi\)
0.887029 + 0.461714i \(0.152765\pi\)
\(350\) 0 0
\(351\) −0.914214 1.58346i −0.0487971 0.0845191i
\(352\) 0 0
\(353\) −13.5858 + 23.5313i −0.723098 + 1.25244i 0.236653 + 0.971594i \(0.423949\pi\)
−0.959752 + 0.280849i \(0.909384\pi\)
\(354\) 0 0
\(355\) −1.75736 + 3.04384i −0.0932709 + 0.161550i
\(356\) 0 0
\(357\) −5.65685 −0.299392
\(358\) 0 0
\(359\) 9.02082 + 15.6245i 0.476100 + 0.824630i 0.999625 0.0273804i \(-0.00871654\pi\)
−0.523525 + 0.852011i \(0.675383\pi\)
\(360\) 0 0
\(361\) 2.17157 + 3.76127i 0.114293 + 0.197962i
\(362\) 0 0
\(363\) 4.50000 + 7.79423i 0.236189 + 0.409091i
\(364\) 0 0
\(365\) 1.12132 1.94218i 0.0586926 0.101659i
\(366\) 0 0
\(367\) 9.57107 + 16.5776i 0.499606 + 0.865342i 1.00000 0.000455270i \(-0.000144917\pi\)
−0.500394 + 0.865798i \(0.666812\pi\)
\(368\) 0 0
\(369\) 2.12132 3.67423i 0.110432 0.191273i
\(370\) 0 0
\(371\) 1.17157 0.0608250
\(372\) 0 0
\(373\) −29.4853 −1.52669 −0.763345 0.645991i \(-0.776444\pi\)
−0.763345 + 0.645991i \(0.776444\pi\)
\(374\) 0 0
\(375\) −2.82843 + 4.89898i −0.146059 + 0.252982i
\(376\) 0 0
\(377\) 3.12132 + 5.40629i 0.160756 + 0.278438i
\(378\) 0 0
\(379\) 4.91421 8.51167i 0.252426 0.437215i −0.711767 0.702416i \(-0.752105\pi\)
0.964193 + 0.265201i \(0.0854382\pi\)
\(380\) 0 0
\(381\) 2.67157 + 4.62730i 0.136869 + 0.237064i
\(382\) 0 0
\(383\) −3.19239 5.52938i −0.163123 0.282538i 0.772864 0.634572i \(-0.218824\pi\)
−0.935987 + 0.352034i \(0.885490\pi\)
\(384\) 0 0
\(385\) −0.343146 0.594346i −0.0174883 0.0302907i
\(386\) 0 0
\(387\) 5.48528 0.278833
\(388\) 0 0
\(389\) 8.65685 14.9941i 0.438920 0.760232i −0.558687 0.829379i \(-0.688695\pi\)
0.997606 + 0.0691473i \(0.0220278\pi\)
\(390\) 0 0
\(391\) 12.4853 21.6251i 0.631408 1.09363i
\(392\) 0 0
\(393\) −8.12132 14.0665i −0.409666 0.709563i
\(394\) 0 0
\(395\) 9.17157 0.461472
\(396\) 0 0
\(397\) −4.48528 + 7.76874i −0.225110 + 0.389902i −0.956352 0.292216i \(-0.905607\pi\)
0.731243 + 0.682118i \(0.238941\pi\)
\(398\) 0 0
\(399\) −3.17157 −0.158777
\(400\) 0 0
\(401\) −14.8284 −0.740496 −0.370248 0.928933i \(-0.620727\pi\)
−0.370248 + 0.928933i \(0.620727\pi\)
\(402\) 0 0
\(403\) 10.0563 1.58346i 0.500942 0.0788780i
\(404\) 0 0
\(405\) −0.585786 −0.0291080
\(406\) 0 0
\(407\) 1.41421 0.0701000
\(408\) 0 0
\(409\) 3.25736 5.64191i 0.161066 0.278975i −0.774185 0.632959i \(-0.781840\pi\)
0.935251 + 0.353985i \(0.115173\pi\)
\(410\) 0 0
\(411\) −15.4142 −0.760327
\(412\) 0 0
\(413\) 3.51472 + 6.08767i 0.172948 + 0.299555i
\(414\) 0 0
\(415\) 2.17157 3.76127i 0.106598 0.184634i
\(416\) 0 0
\(417\) 7.00000 12.1244i 0.342791 0.593732i
\(418\) 0 0
\(419\) −22.9706 −1.12219 −0.561093 0.827753i \(-0.689619\pi\)
−0.561093 + 0.827753i \(0.689619\pi\)
\(420\) 0 0
\(421\) 11.0000 + 19.0526i 0.536107 + 0.928565i 0.999109 + 0.0422075i \(0.0134391\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 0.292893 + 0.507306i 0.0142410 + 0.0246661i
\(424\) 0 0
\(425\) 15.8995 + 27.5387i 0.771239 + 1.33582i
\(426\) 0 0
\(427\) −5.17157 + 8.95743i −0.250270 + 0.433480i
\(428\) 0 0
\(429\) −1.29289 2.23936i −0.0624215 0.108117i
\(430\) 0 0
\(431\) 2.17157 3.76127i 0.104601 0.181174i −0.808974 0.587844i \(-0.799977\pi\)
0.913575 + 0.406670i \(0.133310\pi\)
\(432\) 0 0
\(433\) −3.82843 −0.183982 −0.0919912 0.995760i \(-0.529323\pi\)
−0.0919912 + 0.995760i \(0.529323\pi\)
\(434\) 0 0
\(435\) 2.00000 0.0958927
\(436\) 0 0
\(437\) 7.00000 12.1244i 0.334855 0.579987i
\(438\) 0 0
\(439\) −1.74264 3.01834i −0.0831717 0.144058i 0.821439 0.570296i \(-0.193172\pi\)
−0.904611 + 0.426239i \(0.859838\pi\)
\(440\) 0 0
\(441\) 3.15685 5.46783i 0.150326 0.260373i
\(442\) 0 0
\(443\) 4.07107 + 7.05130i 0.193422 + 0.335017i 0.946382 0.323049i \(-0.104708\pi\)
−0.752960 + 0.658066i \(0.771375\pi\)
\(444\) 0 0
\(445\) −5.24264 9.08052i −0.248525 0.430458i
\(446\) 0 0
\(447\) 3.00000 + 5.19615i 0.141895 + 0.245770i
\(448\) 0 0
\(449\) −18.3431 −0.865667 −0.432833 0.901474i \(-0.642486\pi\)
−0.432833 + 0.901474i \(0.642486\pi\)
\(450\) 0 0
\(451\) 3.00000 5.19615i 0.141264 0.244677i
\(452\) 0 0
\(453\) 3.15685 5.46783i 0.148322 0.256901i
\(454\) 0 0
\(455\) −0.443651 0.768426i −0.0207987 0.0360244i
\(456\) 0 0
\(457\) 35.4853 1.65993 0.829966 0.557814i \(-0.188360\pi\)
0.829966 + 0.557814i \(0.188360\pi\)
\(458\) 0 0
\(459\) −3.41421 + 5.91359i −0.159362 + 0.276023i
\(460\) 0 0
\(461\) 3.55635 0.165636 0.0828178 0.996565i \(-0.473608\pi\)
0.0828178 + 0.996565i \(0.473608\pi\)
\(462\) 0 0
\(463\) −36.4558 −1.69425 −0.847123 0.531396i \(-0.821668\pi\)
−0.847123 + 0.531396i \(0.821668\pi\)
\(464\) 0 0
\(465\) 1.17157 3.04384i 0.0543304 0.141154i
\(466\) 0 0
\(467\) 9.31371 0.430987 0.215494 0.976505i \(-0.430864\pi\)
0.215494 + 0.976505i \(0.430864\pi\)
\(468\) 0 0
\(469\) −12.0000 −0.554109
\(470\) 0 0
\(471\) −3.91421 + 6.77962i −0.180357 + 0.312388i
\(472\) 0 0
\(473\) 7.75736 0.356684
\(474\) 0 0
\(475\) 8.91421 + 15.4399i 0.409012 + 0.708430i
\(476\) 0 0
\(477\) 0.707107 1.22474i 0.0323762 0.0560772i
\(478\) 0 0
\(479\) −5.82843 + 10.0951i −0.266308 + 0.461258i −0.967905 0.251315i \(-0.919137\pi\)
0.701598 + 0.712573i \(0.252470\pi\)
\(480\) 0 0
\(481\) 1.82843 0.0833691
\(482\) 0 0
\(483\) −1.51472 2.62357i −0.0689221 0.119377i
\(484\) 0 0
\(485\) −3.36396 5.82655i −0.152750 0.264570i
\(486\) 0 0
\(487\) 3.25736 + 5.64191i 0.147605 + 0.255659i 0.930342 0.366693i \(-0.119510\pi\)
−0.782737 + 0.622353i \(0.786177\pi\)
\(488\) 0 0
\(489\) −2.32843 + 4.03295i −0.105295 + 0.182376i
\(490\) 0 0
\(491\) −16.1421 27.9590i −0.728484 1.26177i −0.957524 0.288355i \(-0.906892\pi\)
0.229039 0.973417i \(-0.426442\pi\)
\(492\) 0 0
\(493\) 11.6569 20.1903i 0.524998 0.909324i
\(494\) 0 0
\(495\) −0.828427 −0.0372350
\(496\) 0 0
\(497\) 4.97056 0.222960
\(498\) 0 0
\(499\) −3.92893 + 6.80511i −0.175883 + 0.304639i −0.940467 0.339886i \(-0.889611\pi\)
0.764583 + 0.644525i \(0.222945\pi\)
\(500\) 0 0
\(501\) 5.94975 + 10.3053i 0.265815 + 0.460405i
\(502\) 0 0
\(503\) 3.89949 6.75412i 0.173870 0.301151i −0.765900 0.642960i \(-0.777706\pi\)
0.939770 + 0.341809i \(0.111039\pi\)
\(504\) 0 0
\(505\) −4.51472 7.81972i −0.200902 0.347973i
\(506\) 0 0
\(507\) 4.82843 + 8.36308i 0.214438 + 0.371417i
\(508\) 0 0
\(509\) −13.2426 22.9369i −0.586970 1.01666i −0.994627 0.103526i \(-0.966987\pi\)
0.407657 0.913135i \(-0.366346\pi\)
\(510\) 0 0
\(511\) −3.17157 −0.140302
\(512\) 0 0
\(513\) −1.91421 + 3.31552i −0.0845146 + 0.146384i
\(514\) 0 0
\(515\) −4.77817 + 8.27604i −0.210552 + 0.364686i
\(516\) 0 0
\(517\) 0.414214 + 0.717439i 0.0182171 + 0.0315529i
\(518\) 0 0
\(519\) 9.31371 0.408826
\(520\) 0 0
\(521\) −9.94975 + 17.2335i −0.435906 + 0.755012i −0.997369 0.0724900i \(-0.976905\pi\)
0.561463 + 0.827502i \(0.310239\pi\)
\(522\) 0 0
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) 0 0
\(525\) 3.85786 0.168371
\(526\) 0 0
\(527\) −23.8995 29.5680i −1.04108 1.28800i
\(528\) 0 0
\(529\) −9.62742 −0.418583
\(530\) 0 0
\(531\) 8.48528 0.368230
\(532\) 0 0
\(533\) 3.87868 6.71807i 0.168004 0.290992i
\(534\) 0 0
\(535\) 2.28427 0.0987577
\(536\) 0 0
\(537\) −6.87868 11.9142i −0.296837 0.514137i
\(538\) 0 0
\(539\) 4.46447 7.73268i 0.192298 0.333070i
\(540\) 0 0
\(541\) −18.9853 + 32.8835i −0.816241 + 1.41377i 0.0921924 + 0.995741i \(0.470613\pi\)
−0.908433 + 0.418030i \(0.862721\pi\)
\(542\) 0 0
\(543\) 0.514719 0.0220887
\(544\) 0 0
\(545\) 2.77817 + 4.81194i 0.119004 + 0.206121i
\(546\) 0 0
\(547\) −0.500000 0.866025i −0.0213785 0.0370286i 0.855138 0.518400i \(-0.173472\pi\)
−0.876517 + 0.481371i \(0.840139\pi\)
\(548\) 0 0
\(549\) 6.24264 + 10.8126i 0.266429 + 0.461469i
\(550\) 0 0
\(551\) 6.53553 11.3199i 0.278423 0.482243i
\(552\) 0 0
\(553\) −6.48528 11.2328i −0.275782 0.477669i
\(554\) 0 0
\(555\) 0.292893 0.507306i 0.0124326 0.0215339i
\(556\) 0 0
\(557\) −4.62742 −0.196070 −0.0980350 0.995183i \(-0.531256\pi\)
−0.0980350 + 0.995183i \(0.531256\pi\)
\(558\) 0 0
\(559\) 10.0294 0.424200
\(560\) 0 0
\(561\) −4.82843 + 8.36308i −0.203856 + 0.353090i
\(562\) 0 0
\(563\) 11.6777 + 20.2263i 0.492155 + 0.852438i 0.999959 0.00903495i \(-0.00287595\pi\)
−0.507804 + 0.861473i \(0.669543\pi\)
\(564\) 0 0
\(565\) −4.58579 + 7.94282i −0.192925 + 0.334157i
\(566\) 0 0
\(567\) 0.414214 + 0.717439i 0.0173953 + 0.0301296i
\(568\) 0 0
\(569\) −4.07107 7.05130i −0.170668 0.295606i 0.767986 0.640467i \(-0.221259\pi\)
−0.938654 + 0.344861i \(0.887926\pi\)
\(570\) 0 0
\(571\) 0.742641 + 1.28629i 0.0310785 + 0.0538296i 0.881146 0.472844i \(-0.156772\pi\)
−0.850068 + 0.526673i \(0.823439\pi\)
\(572\) 0 0
\(573\) 3.07107 0.128296
\(574\) 0 0
\(575\) −8.51472 + 14.7479i −0.355088 + 0.615031i
\(576\) 0 0
\(577\) −1.17157 + 2.02922i −0.0487732 + 0.0844777i −0.889381 0.457166i \(-0.848864\pi\)
0.840608 + 0.541644i \(0.182198\pi\)
\(578\) 0 0
\(579\) −6.98528 12.0989i −0.290298 0.502812i
\(580\) 0 0
\(581\) −6.14214 −0.254819
\(582\) 0 0
\(583\) 1.00000 1.73205i 0.0414158 0.0717342i
\(584\) 0 0
\(585\) −1.07107 −0.0442832
\(586\) 0 0
\(587\) 16.6274 0.686287 0.343143 0.939283i \(-0.388508\pi\)
0.343143 + 0.939283i \(0.388508\pi\)
\(588\) 0 0
\(589\) −13.3995 16.5776i −0.552117 0.683067i
\(590\) 0 0
\(591\) 2.82843 0.116346
\(592\) 0 0
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) −1.65685 + 2.86976i −0.0679244 + 0.117649i
\(596\) 0 0
\(597\) 12.1421 0.496945
\(598\) 0 0
\(599\) −11.2635 19.5089i −0.460212 0.797111i 0.538759 0.842460i \(-0.318893\pi\)
−0.998971 + 0.0453489i \(0.985560\pi\)
\(600\) 0 0
\(601\) 3.48528 6.03668i 0.142168 0.246241i −0.786145 0.618042i \(-0.787926\pi\)
0.928313 + 0.371801i \(0.121259\pi\)
\(602\) 0 0
\(603\) −7.24264 + 12.5446i −0.294943 + 0.510856i
\(604\) 0 0
\(605\) 5.27208 0.214340
\(606\) 0 0
\(607\) −20.2279 35.0358i −0.821026 1.42206i −0.904919 0.425584i \(-0.860069\pi\)
0.0838929 0.996475i \(-0.473265\pi\)
\(608\) 0 0
\(609\) −1.41421 2.44949i −0.0573068 0.0992583i
\(610\) 0 0
\(611\) 0.535534 + 0.927572i 0.0216654 + 0.0375255i
\(612\) 0 0
\(613\) −18.7426 + 32.4632i −0.757008 + 1.31118i 0.187362 + 0.982291i \(0.440006\pi\)
−0.944370 + 0.328886i \(0.893327\pi\)
\(614\) 0 0
\(615\) −1.24264 2.15232i −0.0501081 0.0867898i
\(616\) 0 0
\(617\) 16.6066 28.7635i 0.668557 1.15797i −0.309751 0.950818i \(-0.600246\pi\)
0.978308 0.207156i \(-0.0664209\pi\)
\(618\) 0 0
\(619\) −29.4853 −1.18511 −0.592557 0.805529i \(-0.701881\pi\)
−0.592557 + 0.805529i \(0.701881\pi\)
\(620\) 0 0
\(621\) −3.65685 −0.146745
\(622\) 0 0
\(623\) −7.41421 + 12.8418i −0.297044 + 0.514496i
\(624\) 0 0
\(625\) −9.98528 17.2950i −0.399411 0.691801i
\(626\) 0 0
\(627\) −2.70711 + 4.68885i −0.108111 + 0.187254i
\(628\) 0 0
\(629\) −3.41421 5.91359i −0.136134 0.235790i
\(630\) 0 0
\(631\) 21.4853 + 37.2136i 0.855316 + 1.48145i 0.876352 + 0.481671i \(0.159970\pi\)
−0.0210364 + 0.999779i \(0.506697\pi\)
\(632\) 0 0
\(633\) −2.74264 4.75039i −0.109010 0.188811i
\(634\) 0 0
\(635\) 3.12994 0.124208
\(636\) 0 0
\(637\) 5.77208 9.99753i 0.228698 0.396117i
\(638\) 0 0
\(639\) 3.00000 5.19615i 0.118678 0.205557i
\(640\) 0 0
\(641\) 22.0919 + 38.2643i 0.872577 + 1.51135i 0.859322 + 0.511435i \(0.170886\pi\)
0.0132552 + 0.999912i \(0.495781\pi\)
\(642\) 0 0
\(643\) −35.7696 −1.41061 −0.705307 0.708902i \(-0.749191\pi\)
−0.705307 + 0.708902i \(0.749191\pi\)
\(644\) 0 0
\(645\) 1.60660 2.78272i 0.0632599 0.109569i
\(646\) 0 0
\(647\) −14.4437 −0.567839 −0.283919 0.958848i \(-0.591635\pi\)
−0.283919 + 0.958848i \(0.591635\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) −4.55635 + 0.717439i −0.178577 + 0.0281186i
\(652\) 0 0
\(653\) 41.0122 1.60493 0.802466 0.596698i \(-0.203521\pi\)
0.802466 + 0.596698i \(0.203521\pi\)
\(654\) 0 0
\(655\) −9.51472 −0.371771
\(656\) 0 0
\(657\) −1.91421 + 3.31552i −0.0746806 + 0.129351i
\(658\) 0 0
\(659\) −1.61522 −0.0629202 −0.0314601 0.999505i \(-0.510016\pi\)
−0.0314601 + 0.999505i \(0.510016\pi\)
\(660\) 0 0
\(661\) 24.8848 + 43.1017i 0.967906 + 1.67646i 0.701597 + 0.712574i \(0.252471\pi\)
0.266309 + 0.963888i \(0.414196\pi\)
\(662\) 0 0
\(663\) −6.24264 + 10.8126i −0.242444 + 0.419925i
\(664\) 0 0
\(665\) −0.928932 + 1.60896i −0.0360224 + 0.0623927i
\(666\) 0 0
\(667\) 12.4853 0.483432
\(668\) 0 0
\(669\) 8.32843 + 14.4253i 0.321996 + 0.557713i
\(670\) 0 0
\(671\) 8.82843 + 15.2913i 0.340818 + 0.590313i
\(672\) 0 0
\(673\) 6.24264 + 10.8126i 0.240636 + 0.416794i 0.960896 0.276911i \(-0.0893106\pi\)
−0.720260 + 0.693705i \(0.755977\pi\)
\(674\) 0 0
\(675\) 2.32843 4.03295i 0.0896212 0.155228i
\(676\) 0 0
\(677\) −8.94975 15.5014i −0.343967 0.595768i 0.641199 0.767375i \(-0.278437\pi\)
−0.985165 + 0.171607i \(0.945104\pi\)
\(678\) 0 0
\(679\) −4.75736 + 8.23999i −0.182571 + 0.316222i
\(680\) 0 0
\(681\) −10.8284 −0.414946
\(682\) 0 0
\(683\) 23.6569 0.905204 0.452602 0.891713i \(-0.350496\pi\)
0.452602 + 0.891713i \(0.350496\pi\)
\(684\) 0 0
\(685\) −4.51472 + 7.81972i −0.172499 + 0.298776i
\(686\) 0 0
\(687\) 5.74264 + 9.94655i 0.219095 + 0.379484i
\(688\) 0 0
\(689\) 1.29289 2.23936i 0.0492553 0.0853127i
\(690\) 0 0
\(691\) −7.48528 12.9649i −0.284754 0.493208i 0.687796 0.725904i \(-0.258578\pi\)
−0.972549 + 0.232697i \(0.925245\pi\)
\(692\) 0 0
\(693\) 0.585786 + 1.01461i 0.0222522 + 0.0385419i
\(694\) 0 0
\(695\) −4.10051 7.10228i −0.155541 0.269405i
\(696\) 0 0
\(697\) −28.9706 −1.09734
\(698\) 0 0
\(699\) −12.0000 + 20.7846i −0.453882 + 0.786146i
\(700\) 0 0
\(701\) 18.0000 31.1769i 0.679851 1.17754i −0.295175 0.955443i \(-0.595378\pi\)
0.975026 0.222093i \(-0.0712887\pi\)
\(702\) 0 0
\(703\) −1.91421 3.31552i −0.0721959 0.125047i
\(704\) 0 0
\(705\) 0.343146 0.0129236
\(706\) 0 0
\(707\) −6.38478 + 11.0588i −0.240124 + 0.415907i
\(708\) 0 0
\(709\) −19.9706 −0.750010 −0.375005 0.927023i \(-0.622359\pi\)
−0.375005 + 0.927023i \(0.622359\pi\)
\(710\) 0 0
\(711\) −15.6569 −0.587178
\(712\) 0 0
\(713\) 7.31371 19.0016i 0.273901 0.711614i
\(714\) 0 0
\(715\) −1.51472 −0.0566473
\(716\) 0 0
\(717\) −25.7990 −0.963481
\(718\) 0 0
\(719\) 12.4142 21.5020i 0.462972 0.801891i −0.536135 0.844132i \(-0.680116\pi\)
0.999107 + 0.0422409i \(0.0134497\pi\)
\(720\) 0 0
\(721\) 13.5147 0.503314
\(722\) 0 0
\(723\) 2.98528 + 5.17066i 0.111024 + 0.192299i
\(724\) 0 0
\(725\) −7.94975 + 13.7694i −0.295246 + 0.511381i
\(726\) 0 0
\(727\) −2.50000 + 4.33013i −0.0927199 + 0.160596i −0.908655 0.417548i \(-0.862889\pi\)
0.815935 + 0.578144i \(0.196223\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −18.7279 32.4377i −0.692677 1.19975i
\(732\) 0 0
\(733\) −3.01472 5.22165i −0.111351 0.192866i 0.804964 0.593324i \(-0.202185\pi\)
−0.916315 + 0.400458i \(0.868851\pi\)
\(734\) 0 0
\(735\) −1.84924 3.20298i −0.0682103 0.118144i
\(736\) 0 0
\(737\) −10.2426 + 17.7408i −0.377293 + 0.653490i
\(738\) 0 0
\(739\) −0.843146 1.46037i −0.0310156 0.0537206i 0.850101 0.526620i \(-0.176541\pi\)
−0.881117 + 0.472899i \(0.843207\pi\)
\(740\) 0 0
\(741\) −3.50000 + 6.06218i −0.128576 + 0.222700i
\(742\) 0 0
\(743\) 17.7990 0.652982 0.326491 0.945200i \(-0.394134\pi\)
0.326491 + 0.945200i \(0.394134\pi\)
\(744\) 0 0
\(745\) 3.51472 0.128769
\(746\) 0 0
\(747\) −3.70711 + 6.42090i −0.135636 + 0.234928i
\(748\) 0 0
\(749\) −1.61522 2.79765i −0.0590190 0.102224i
\(750\) 0 0
\(751\) −20.2279 + 35.0358i −0.738127 + 1.27847i 0.215210 + 0.976568i \(0.430956\pi\)
−0.953338 + 0.301906i \(0.902377\pi\)
\(752\) 0 0
\(753\) −12.5355 21.7122i −0.456820 0.791236i
\(754\) 0 0
\(755\) −1.84924 3.20298i −0.0673008 0.116568i
\(756\) 0 0
\(757\) −25.3137 43.8446i −0.920042 1.59356i −0.799346 0.600871i \(-0.794821\pi\)
−0.120696 0.992690i \(-0.538513\pi\)
\(758\) 0 0
\(759\) −5.17157 −0.187716
\(760\) 0 0
\(761\) −20.5355 + 35.5686i −0.744413 + 1.28936i 0.206056 + 0.978540i \(0.433937\pi\)
−0.950469 + 0.310820i \(0.899396\pi\)
\(762\) 0 0
\(763\) 3.92893 6.80511i 0.142237 0.246362i
\(764\) 0 0
\(765\) 2.00000 + 3.46410i 0.0723102 + 0.125245i
\(766\) 0 0
\(767\) 15.5147 0.560204
\(768\) 0 0
\(769\) −10.2426 + 17.7408i −0.369359 + 0.639749i −0.989465 0.144769i \(-0.953756\pi\)
0.620106 + 0.784518i \(0.287089\pi\)
\(770\) 0 0
\(771\) 10.2426 0.368880
\(772\) 0 0
\(773\) −11.8579 −0.426498 −0.213249 0.976998i \(-0.568405\pi\)
−0.213249 + 0.976998i \(0.568405\pi\)
\(774\) 0 0
\(775\) 16.2990 + 20.1648i 0.585477 + 0.724340i
\(776\) 0 0
\(777\) −0.828427 −0.0297197
\(778\) 0 0
\(779\) −16.2426 −0.581953
\(780\) 0 0
\(781\) 4.24264 7.34847i 0.151814 0.262949i
\(782\) 0 0
\(783\) −3.41421 −0.122014
\(784\) 0 0
\(785\) 2.29289 + 3.97141i 0.0818369 + 0.141746i
\(786\) 0 0
\(787\) 10.7426 18.6068i 0.382934 0.663261i −0.608546 0.793518i \(-0.708247\pi\)
0.991480 + 0.130258i \(0.0415804\pi\)
\(788\) 0 0
\(789\) −6.41421 + 11.1097i −0.228352 + 0.395517i
\(790\) 0 0
\(791\) 12.9706 0.461180
\(792\) 0 0
\(793\) 11.4142 + 19.7700i 0.405331 + 0.702053i
\(794\) 0 0
\(795\) −0.414214 0.717439i −0.0146906 0.0254449i
\(796\) 0 0
\(797\) 0.343146 + 0.594346i 0.0121548 + 0.0210528i 0.872039 0.489437i \(-0.162798\pi\)
−0.859884 + 0.510489i \(0.829464\pi\)
\(798\) 0 0
\(799\) 2.00000 3.46410i 0.0707549 0.122551i
\(800\) 0 0
\(801\) 8.94975 + 15.5014i 0.316224 + 0.547716i
\(802\) 0 0
\(803\) −2.70711 + 4.68885i −0.0955317 + 0.165466i
\(804\) 0 0
\(805\) −1.77460 −0.0625465
\(806\) 0 0
\(807\) −19.7990 −0.696957
\(808\) 0 0
\(809\) 8.46447 14.6609i 0.297595 0.515449i −0.677990 0.735071i \(-0.737149\pi\)
0.975585 + 0.219621i \(0.0704822\pi\)
\(810\) 0 0
\(811\) 9.50000 + 16.4545i 0.333590 + 0.577795i 0.983213 0.182462i \(-0.0584065\pi\)
−0.649623 + 0.760257i \(0.725073\pi\)
\(812\) 0 0
\(813\) −14.2279 + 24.6435i −0.498995 + 0.864285i
\(814\) 0 0
\(815\) 1.36396 + 2.36245i 0.0477775 + 0.0827530i
\(816\) 0 0
\(817\) −10.5000 18.1865i −0.367348 0.636266i
\(818\) 0 0
\(819\) 0.757359 + 1.31178i 0.0264643 + 0.0458375i
\(820\) 0 0
\(821\) −37.7990 −1.31919 −0.659597 0.751620i \(-0.729273\pi\)
−0.659597 + 0.751620i \(0.729273\pi\)
\(822\) 0 0
\(823\) −17.2426 + 29.8651i −0.601041 + 1.04103i 0.391623 + 0.920126i \(0.371914\pi\)
−0.992664 + 0.120907i \(0.961420\pi\)
\(824\) 0 0
\(825\) 3.29289 5.70346i 0.114644 0.198569i
\(826\) 0 0
\(827\) −21.3640 37.0035i −0.742898 1.28674i −0.951171 0.308666i \(-0.900118\pi\)
0.208273 0.978071i \(-0.433216\pi\)
\(828\) 0 0
\(829\) 14.9411 0.518927 0.259463 0.965753i \(-0.416454\pi\)
0.259463 + 0.965753i \(0.416454\pi\)
\(830\) 0 0
\(831\) −5.67157 + 9.82345i −0.196745 + 0.340772i
\(832\) 0 0
\(833\) −43.1127 −1.49377
\(834\) 0 0
\(835\) 6.97056 0.241226
\(836\) 0 0
\(837\) −2.00000 + 5.19615i −0.0691301 + 0.179605i
\(838\) 0 0
\(839\) −7.11270 −0.245558 −0.122779 0.992434i \(-0.539181\pi\)
−0.122779 + 0.992434i \(0.539181\pi\)
\(840\) 0 0
\(841\) −17.3431 −0.598040
\(842\) 0 0
\(843\) 10.0208 17.3566i 0.345135 0.597792i
\(844\) 0 0
\(845\) 5.65685 0.194602
\(846\) 0 0
\(847\) −3.72792 6.45695i −0.128093 0.221863i
\(848\) 0 0
\(849\) 7.74264 13.4106i 0.265727 0.460252i
\(850\) 0 0
\(851\) 1.82843 3.16693i 0.0626777 0.108561i
\(852\) 0 0
\(853\) 9.62742 0.329636 0.164818 0.986324i \(-0.447296\pi\)
0.164818 + 0.986324i \(0.447296\pi\)
\(854\) 0 0
\(855\) 1.12132 + 1.94218i 0.0383483 + 0.0664213i
\(856\) 0 0
\(857\) 6.34315 + 10.9867i 0.216678 + 0.375297i 0.953790 0.300473i \(-0.0971446\pi\)
−0.737113 + 0.675770i \(0.763811\pi\)
\(858\) 0 0
\(859\) 22.8137 + 39.5145i 0.778394 + 1.34822i 0.932867 + 0.360220i \(0.117299\pi\)
−0.154474 + 0.987997i \(0.549368\pi\)
\(860\) 0 0
\(861\) −1.75736 + 3.04384i −0.0598906 + 0.103734i
\(862\) 0 0
\(863\) −6.94975 12.0373i −0.236572 0.409755i 0.723156 0.690684i \(-0.242691\pi\)
−0.959728 + 0.280929i \(0.909357\pi\)
\(864\) 0 0
\(865\) 2.72792 4.72490i 0.0927521 0.160651i
\(866\) 0 0
\(867\) 29.6274 1.00620
\(868\) 0 0
\(869\) −22.1421 −0.751121
\(870\) 0 0
\(871\) −13.2426 + 22.9369i −0.448710 + 0.777188i
\(872\) 0 0
\(873\) 5.74264 + 9.94655i 0.194359 + 0.336640i
\(874\) 0 0
\(875\) 2.34315 4.05845i 0.0792128 0.137201i
\(876\) 0 0
\(877\) 14.7426 + 25.5350i 0.497824 + 0.862256i 0.999997 0.00251127i \(-0.000799362\pi\)
−0.502173 + 0.864767i \(0.667466\pi\)
\(878\) 0 0
\(879\) −6.41421 11.1097i −0.216346 0.374722i
\(880\) 0 0
\(881\) −0.313708 0.543359i −0.0105691 0.0183062i 0.860692 0.509125i \(-0.170031\pi\)
−0.871262 + 0.490819i \(0.836698\pi\)
\(882\) 0 0
\(883\) 36.9411 1.24317 0.621584 0.783348i \(-0.286489\pi\)
0.621584 + 0.783348i \(0.286489\pi\)
\(884\) 0 0
\(885\) 2.48528 4.30463i 0.0835418 0.144699i
\(886\) 0 0
\(887\) 8.12132 14.0665i 0.272687 0.472308i −0.696862 0.717205i \(-0.745421\pi\)
0.969549 + 0.244897i \(0.0787542\pi\)
\(888\) 0 0
\(889\) −2.21320 3.83338i −0.0742285 0.128567i
\(890\) 0 0
\(891\) 1.41421 0.0473779
\(892\) 0 0
\(893\) 1.12132 1.94218i 0.0375236 0.0649927i
\(894\) 0 0
\(895\) −8.05887 −0.269378
\(896\) 0 0
\(897\) −6.68629 −0.223249
\(898\) 0 0
\(899\) 6.82843 17.7408i 0.227741 0.591688i
\(900\) 0 0
\(901\) −9.65685 −0.321716
\(902\) 0 0
\(903\) −4.54416 −0.151220
\(904\) 0 0
\(905\) 0.150758 0.261120i 0.00501135 0.00867992i
\(906\) 0 0
\(907\) 25.5147 0.847202 0.423601 0.905849i \(-0.360766\pi\)
0.423601 + 0.905849i \(0.360766\pi\)
\(908\) 0 0
\(909\) 7.70711 + 13.3491i 0.255629 + 0.442762i
\(910\) 0 0
\(911\) −14.8284 + 25.6836i −0.491288 + 0.850935i −0.999950 0.0100310i \(-0.996807\pi\)
0.508662 + 0.860966i \(0.330140\pi\)
\(912\) 0 0
\(913\) −5.24264 + 9.08052i −0.173506 + 0.300521i
\(914\) 0 0
\(915\) 7.31371 0.241784
\(916\) 0 0
\(917\) 6.72792 + 11.6531i 0.222176 + 0.384819i
\(918\) 0 0
\(919\) −14.7426 25.5350i −0.486315 0.842322i 0.513561 0.858053i \(-0.328326\pi\)
−0.999876 + 0.0157308i \(0.994993\pi\)
\(920\) 0 0
\(921\) 3.84315 + 6.65652i 0.126636 + 0.219340i
\(922\) 0 0
\(923\) 5.48528 9.50079i 0.180550 0.312722i
\(924\) 0 0
\(925\) 2.32843 + 4.03295i 0.0765582 + 0.132603i
\(926\) 0 0
\(927\) 8.15685 14.1281i 0.267906 0.464027i
\(928\) 0 0
\(929\) −0.343146 −0.0112582 −0.00562912 0.999984i \(-0.501792\pi\)
−0.00562912 + 0.999984i \(0.501792\pi\)
\(930\) 0 0
\(931\) −24.1716 −0.792191
\(932\) 0 0
\(933\) −9.94975 + 17.2335i −0.325740 + 0.564198i
\(934\) 0 0
\(935\) 2.82843 + 4.89898i 0.0924995 + 0.160214i
\(936\) 0 0
\(937\) 11.7426 20.3389i 0.383615 0.664441i −0.607961 0.793967i \(-0.708012\pi\)
0.991576 + 0.129526i \(0.0413455\pi\)
\(938\) 0 0
\(939\) 2.84315 + 4.92447i 0.0927826 + 0.160704i
\(940\) 0 0
\(941\) −13.0711 22.6398i −0.426105 0.738035i 0.570418 0.821354i \(-0.306781\pi\)
−0.996523 + 0.0833195i \(0.973448\pi\)
\(942\) 0 0
\(943\) −7.75736 13.4361i −0.252614 0.437541i
\(944\) 0 0
\(945\) 0.485281 0.0157862
\(946\) 0 0
\(947\) −17.3848 + 30.1113i −0.564929 + 0.978486i 0.432127 + 0.901813i \(0.357763\pi\)
−0.997056 + 0.0766735i \(0.975570\pi\)
\(948\) 0 0
\(949\) −3.50000 + 6.06218i −0.113615 + 0.196787i
\(950\) 0 0
\(951\) 11.1213 + 19.2627i 0.360634 + 0.624636i
\(952\) 0 0
\(953\) 11.8995 0.385462 0.192731 0.981252i \(-0.438265\pi\)
0.192731 + 0.981252i \(0.438265\pi\)
\(954\) 0 0
\(955\) 0.899495 1.55797i 0.0291070 0.0504148i
\(956\) 0 0
\(957\) −4.82843 −0.156081
\(958\) 0 0
\(959\) 12.7696 0.412350
\(960\) 0 0
\(961\) −23.0000 20.7846i −0.741935 0.670471i
\(962\) 0 0
\(963\) −3.89949 −0.125659
\(964\) 0 0
\(965\) −8.18377 −0.263445
\(966\) 0 0
\(967\) −5.97056 + 10.3413i −0.192000 + 0.332554i −0.945913 0.324420i \(-0.894831\pi\)
0.753913 + 0.656975i \(0.228164\pi\)
\(968\) 0 0
\(969\) 26.1421 0.839806
\(970\) 0 0
\(971\) 19.9706 + 34.5900i 0.640886 + 1.11005i 0.985235 + 0.171205i \(0.0547662\pi\)
−0.344350 + 0.938842i \(0.611901\pi\)
\(972\) 0 0
\(973\) −5.79899 + 10.0441i −0.185907 + 0.322001i
\(974\) 0 0
\(975\) 4.25736 7.37396i 0.136345 0.236156i
\(976\) 0 0
\(977\) 12.0000 0.383914 0.191957 0.981403i \(-0.438517\pi\)
0.191957 + 0.981403i \(0.438517\pi\)
\(978\) 0 0
\(979\) 12.6569 + 21.9223i 0.404515 + 0.700640i
\(980\) 0 0
\(981\) −4.74264 8.21449i −0.151421 0.262269i
\(982\) 0 0
\(983\) −29.0416 50.3016i −0.926284 1.60437i −0.789483 0.613773i \(-0.789651\pi\)
−0.136801 0.990598i \(-0.543682\pi\)
\(984\) 0 0
\(985\) 0.828427 1.43488i 0.0263959 0.0457190i
\(986\) 0 0
\(987\) −0.242641 0.420266i −0.00772334 0.0133772i
\(988\) 0 0
\(989\) 10.0294 17.3715i 0.318918 0.552381i
\(990\) 0 0
\(991\) −45.1421 −1.43399 −0.716994 0.697080i \(-0.754482\pi\)
−0.716994 + 0.697080i \(0.754482\pi\)
\(992\) 0 0
\(993\) −3.00000 −0.0952021
\(994\) 0 0
\(995\) 3.55635 6.15978i 0.112744 0.195278i
\(996\) 0 0
\(997\) 9.51472 + 16.4800i 0.301334 + 0.521926i 0.976438 0.215796i \(-0.0692347\pi\)
−0.675104 + 0.737722i \(0.735901\pi\)
\(998\) 0 0
\(999\) −0.500000 + 0.866025i −0.0158193 + 0.0273998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1488.2.q.g.625.1 4
4.3 odd 2 93.2.e.a.67.2 yes 4
12.11 even 2 279.2.h.b.253.1 4
31.25 even 3 inner 1488.2.q.g.769.1 4
124.67 odd 6 2883.2.a.b.1.2 2
124.87 odd 6 93.2.e.a.25.2 4
124.119 even 6 2883.2.a.c.1.2 2
372.119 odd 6 8649.2.a.i.1.1 2
372.191 even 6 8649.2.a.h.1.1 2
372.335 even 6 279.2.h.b.118.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.2.e.a.25.2 4 124.87 odd 6
93.2.e.a.67.2 yes 4 4.3 odd 2
279.2.h.b.118.1 4 372.335 even 6
279.2.h.b.253.1 4 12.11 even 2
1488.2.q.g.625.1 4 1.1 even 1 trivial
1488.2.q.g.769.1 4 31.25 even 3 inner
2883.2.a.b.1.2 2 124.67 odd 6
2883.2.a.c.1.2 2 124.119 even 6
8649.2.a.h.1.1 2 372.191 even 6
8649.2.a.i.1.1 2 372.119 odd 6