Properties

Label 275.3.f.c.243.12
Level $275$
Weight $3$
Character 275.243
Analytic conductor $7.493$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(232,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.232"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 243.12
Character \(\chi\) \(=\) 275.243
Dual form 275.3.f.c.232.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.61911 - 2.61911i) q^{2} +(-3.50488 - 3.50488i) q^{3} -9.71948i q^{4} -18.3593 q^{6} +(6.89960 - 6.89960i) q^{7} +(-14.9800 - 14.9800i) q^{8} +15.5684i q^{9} +3.31662 q^{11} +(-34.0656 + 34.0656i) q^{12} +(3.74323 + 3.74323i) q^{13} -36.1416i q^{14} -39.5904 q^{16} +(8.33513 - 8.33513i) q^{17} +(40.7753 + 40.7753i) q^{18} +24.9955i q^{19} -48.3645 q^{21} +(8.68661 - 8.68661i) q^{22} +(26.1029 + 26.1029i) q^{23} +105.006i q^{24} +19.6078 q^{26} +(23.0213 - 23.0213i) q^{27} +(-67.0605 - 67.0605i) q^{28} -31.2821i q^{29} -2.56038 q^{31} +(-43.7718 + 43.7718i) q^{32} +(-11.6244 - 11.6244i) q^{33} -43.6613i q^{34} +151.316 q^{36} +(7.48687 - 7.48687i) q^{37} +(65.4659 + 65.4659i) q^{38} -26.2391i q^{39} -27.3750 q^{41} +(-126.672 + 126.672i) q^{42} +(-33.0693 - 33.0693i) q^{43} -32.2359i q^{44} +136.733 q^{46} +(-17.6292 + 17.6292i) q^{47} +(138.760 + 138.760i) q^{48} -46.2090i q^{49} -58.4273 q^{51} +(36.3822 - 36.3822i) q^{52} +(-47.0174 - 47.0174i) q^{53} -120.591i q^{54} -206.711 q^{56} +(87.6061 - 87.6061i) q^{57} +(-81.9312 - 81.9312i) q^{58} +44.3951i q^{59} +0.515535 q^{61} +(-6.70593 + 6.70593i) q^{62} +(107.416 + 107.416i) q^{63} +70.9247i q^{64} -60.8910 q^{66} +(-5.39673 + 5.39673i) q^{67} +(-81.0132 - 81.0132i) q^{68} -182.975i q^{69} +75.9918 q^{71} +(233.213 - 233.213i) q^{72} +(-21.1155 - 21.1155i) q^{73} -39.2179i q^{74} +242.943 q^{76} +(22.8834 - 22.8834i) q^{77} +(-68.7232 - 68.7232i) q^{78} +80.1381i q^{79} -21.2587 q^{81} +(-71.6982 + 71.6982i) q^{82} +(79.3669 + 79.3669i) q^{83} +470.078i q^{84} -173.224 q^{86} +(-109.640 + 109.640i) q^{87} +(-49.6829 - 49.6829i) q^{88} +104.142i q^{89} +51.6535 q^{91} +(253.707 - 253.707i) q^{92} +(8.97384 + 8.97384i) q^{93} +92.3456i q^{94} +306.830 q^{96} +(103.728 - 103.728i) q^{97} +(-121.027 - 121.027i) q^{98} +51.6344i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 128 q^{16} - 88 q^{21} + 96 q^{26} + 360 q^{31} + 176 q^{36} - 152 q^{41} + 56 q^{46} - 512 q^{51} - 1048 q^{56} + 784 q^{61} - 440 q^{66} + 728 q^{71} + 1704 q^{76} - 568 q^{81} - 328 q^{86}+ \cdots + 1568 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.61911 2.61911i 1.30956 1.30956i 0.387820 0.921735i \(-0.373228\pi\)
0.921735 0.387820i \(-0.126772\pi\)
\(3\) −3.50488 3.50488i −1.16829 1.16829i −0.982610 0.185684i \(-0.940550\pi\)
−0.185684 0.982610i \(-0.559450\pi\)
\(4\) 9.71948i 2.42987i
\(5\) 0 0
\(6\) −18.3593 −3.05989
\(7\) 6.89960 6.89960i 0.985657 0.985657i −0.0142412 0.999899i \(-0.504533\pi\)
0.999899 + 0.0142412i \(0.00453327\pi\)
\(8\) −14.9800 14.9800i −1.87249 1.87249i
\(9\) 15.5684i 1.72982i
\(10\) 0 0
\(11\) 3.31662 0.301511
\(12\) −34.0656 + 34.0656i −2.83880 + 2.83880i
\(13\) 3.74323 + 3.74323i 0.287940 + 0.287940i 0.836265 0.548325i \(-0.184734\pi\)
−0.548325 + 0.836265i \(0.684734\pi\)
\(14\) 36.1416i 2.58155i
\(15\) 0 0
\(16\) −39.5904 −2.47440
\(17\) 8.33513 8.33513i 0.490302 0.490302i −0.418099 0.908401i \(-0.637304\pi\)
0.908401 + 0.418099i \(0.137304\pi\)
\(18\) 40.7753 + 40.7753i 2.26529 + 2.26529i
\(19\) 24.9955i 1.31555i 0.753214 + 0.657776i \(0.228502\pi\)
−0.753214 + 0.657776i \(0.771498\pi\)
\(20\) 0 0
\(21\) −48.3645 −2.30307
\(22\) 8.68661 8.68661i 0.394846 0.394846i
\(23\) 26.1029 + 26.1029i 1.13491 + 1.13491i 0.989349 + 0.145561i \(0.0464987\pi\)
0.145561 + 0.989349i \(0.453501\pi\)
\(24\) 105.006i 4.37524i
\(25\) 0 0
\(26\) 19.6078 0.754148
\(27\) 23.0213 23.0213i 0.852642 0.852642i
\(28\) −67.0605 67.0605i −2.39502 2.39502i
\(29\) 31.2821i 1.07869i −0.842084 0.539346i \(-0.818671\pi\)
0.842084 0.539346i \(-0.181329\pi\)
\(30\) 0 0
\(31\) −2.56038 −0.0825930 −0.0412965 0.999147i \(-0.513149\pi\)
−0.0412965 + 0.999147i \(0.513149\pi\)
\(32\) −43.7718 + 43.7718i −1.36787 + 1.36787i
\(33\) −11.6244 11.6244i −0.352254 0.352254i
\(34\) 43.6613i 1.28416i
\(35\) 0 0
\(36\) 151.316 4.20323
\(37\) 7.48687 7.48687i 0.202348 0.202348i −0.598657 0.801005i \(-0.704299\pi\)
0.801005 + 0.598657i \(0.204299\pi\)
\(38\) 65.4659 + 65.4659i 1.72279 + 1.72279i
\(39\) 26.2391i 0.672798i
\(40\) 0 0
\(41\) −27.3750 −0.667684 −0.333842 0.942629i \(-0.608345\pi\)
−0.333842 + 0.942629i \(0.608345\pi\)
\(42\) −126.672 + 126.672i −3.01600 + 3.01600i
\(43\) −33.0693 33.0693i −0.769053 0.769053i 0.208887 0.977940i \(-0.433016\pi\)
−0.977940 + 0.208887i \(0.933016\pi\)
\(44\) 32.2359i 0.732633i
\(45\) 0 0
\(46\) 136.733 2.97246
\(47\) −17.6292 + 17.6292i −0.375089 + 0.375089i −0.869327 0.494238i \(-0.835447\pi\)
0.494238 + 0.869327i \(0.335447\pi\)
\(48\) 138.760 + 138.760i 2.89082 + 2.89082i
\(49\) 46.2090i 0.943041i
\(50\) 0 0
\(51\) −58.4273 −1.14563
\(52\) 36.3822 36.3822i 0.699658 0.699658i
\(53\) −47.0174 47.0174i −0.887121 0.887121i 0.107125 0.994246i \(-0.465836\pi\)
−0.994246 + 0.107125i \(0.965836\pi\)
\(54\) 120.591i 2.23316i
\(55\) 0 0
\(56\) −206.711 −3.69128
\(57\) 87.6061 87.6061i 1.53695 1.53695i
\(58\) −81.9312 81.9312i −1.41261 1.41261i
\(59\) 44.3951i 0.752460i 0.926526 + 0.376230i \(0.122780\pi\)
−0.926526 + 0.376230i \(0.877220\pi\)
\(60\) 0 0
\(61\) 0.515535 0.00845139 0.00422570 0.999991i \(-0.498655\pi\)
0.00422570 + 0.999991i \(0.498655\pi\)
\(62\) −6.70593 + 6.70593i −0.108160 + 0.108160i
\(63\) 107.416 + 107.416i 1.70501 + 1.70501i
\(64\) 70.9247i 1.10820i
\(65\) 0 0
\(66\) −60.8910 −0.922591
\(67\) −5.39673 + 5.39673i −0.0805482 + 0.0805482i −0.746233 0.665685i \(-0.768140\pi\)
0.665685 + 0.746233i \(0.268140\pi\)
\(68\) −81.0132 81.0132i −1.19137 1.19137i
\(69\) 182.975i 2.65182i
\(70\) 0 0
\(71\) 75.9918 1.07031 0.535154 0.844755i \(-0.320254\pi\)
0.535154 + 0.844755i \(0.320254\pi\)
\(72\) 233.213 233.213i 3.23907 3.23907i
\(73\) −21.1155 21.1155i −0.289253 0.289253i 0.547532 0.836785i \(-0.315568\pi\)
−0.836785 + 0.547532i \(0.815568\pi\)
\(74\) 39.2179i 0.529971i
\(75\) 0 0
\(76\) 242.943 3.19662
\(77\) 22.8834 22.8834i 0.297187 0.297187i
\(78\) −68.7232 68.7232i −0.881066 0.881066i
\(79\) 80.1381i 1.01441i 0.861826 + 0.507203i \(0.169321\pi\)
−0.861826 + 0.507203i \(0.830679\pi\)
\(80\) 0 0
\(81\) −21.2587 −0.262453
\(82\) −71.6982 + 71.6982i −0.874368 + 0.874368i
\(83\) 79.3669 + 79.3669i 0.956228 + 0.956228i 0.999081 0.0428532i \(-0.0136448\pi\)
−0.0428532 + 0.999081i \(0.513645\pi\)
\(84\) 470.078i 5.59617i
\(85\) 0 0
\(86\) −173.224 −2.01424
\(87\) −109.640 + 109.640i −1.26023 + 1.26023i
\(88\) −49.6829 49.6829i −0.564578 0.564578i
\(89\) 104.142i 1.17014i 0.810983 + 0.585070i \(0.198933\pi\)
−0.810983 + 0.585070i \(0.801067\pi\)
\(90\) 0 0
\(91\) 51.6535 0.567621
\(92\) 253.707 253.707i 2.75768 2.75768i
\(93\) 8.97384 + 8.97384i 0.0964929 + 0.0964929i
\(94\) 92.3456i 0.982401i
\(95\) 0 0
\(96\) 306.830 3.19614
\(97\) 103.728 103.728i 1.06937 1.06937i 0.0719575 0.997408i \(-0.477075\pi\)
0.997408 0.0719575i \(-0.0229246\pi\)
\(98\) −121.027 121.027i −1.23496 1.23496i
\(99\) 51.6344i 0.521560i
\(100\) 0 0
\(101\) −89.2137 −0.883304 −0.441652 0.897186i \(-0.645607\pi\)
−0.441652 + 0.897186i \(0.645607\pi\)
\(102\) −153.028 + 153.028i −1.50027 + 1.50027i
\(103\) −63.6584 63.6584i −0.618043 0.618043i 0.326986 0.945029i \(-0.393967\pi\)
−0.945029 + 0.326986i \(0.893967\pi\)
\(104\) 112.147i 1.07833i
\(105\) 0 0
\(106\) −246.288 −2.32347
\(107\) 76.6723 76.6723i 0.716563 0.716563i −0.251337 0.967900i \(-0.580870\pi\)
0.967900 + 0.251337i \(0.0808701\pi\)
\(108\) −223.755 223.755i −2.07181 2.07181i
\(109\) 116.933i 1.07278i 0.843969 + 0.536392i \(0.180213\pi\)
−0.843969 + 0.536392i \(0.819787\pi\)
\(110\) 0 0
\(111\) −52.4812 −0.472803
\(112\) −273.158 + 273.158i −2.43891 + 2.43891i
\(113\) 68.9982 + 68.9982i 0.610604 + 0.610604i 0.943103 0.332500i \(-0.107892\pi\)
−0.332500 + 0.943103i \(0.607892\pi\)
\(114\) 458.900i 4.02544i
\(115\) 0 0
\(116\) −304.046 −2.62108
\(117\) −58.2759 + 58.2759i −0.498085 + 0.498085i
\(118\) 116.276 + 116.276i 0.985387 + 0.985387i
\(119\) 115.018i 0.966540i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) 1.35024 1.35024i 0.0110676 0.0110676i
\(123\) 95.9462 + 95.9462i 0.780050 + 0.780050i
\(124\) 24.8856i 0.200690i
\(125\) 0 0
\(126\) 562.666 4.46561
\(127\) −103.423 + 103.423i −0.814356 + 0.814356i −0.985284 0.170928i \(-0.945323\pi\)
0.170928 + 0.985284i \(0.445323\pi\)
\(128\) 10.6726 + 10.6726i 0.0833797 + 0.0833797i
\(129\) 231.808i 1.79696i
\(130\) 0 0
\(131\) 106.139 0.810221 0.405110 0.914268i \(-0.367233\pi\)
0.405110 + 0.914268i \(0.367233\pi\)
\(132\) −112.983 + 112.983i −0.855931 + 0.855931i
\(133\) 172.459 + 172.459i 1.29668 + 1.29668i
\(134\) 28.2692i 0.210965i
\(135\) 0 0
\(136\) −249.720 −1.83618
\(137\) 91.0791 91.0791i 0.664811 0.664811i −0.291699 0.956510i \(-0.594221\pi\)
0.956510 + 0.291699i \(0.0942206\pi\)
\(138\) −479.233 479.233i −3.47270 3.47270i
\(139\) 86.3737i 0.621394i 0.950509 + 0.310697i \(0.100562\pi\)
−0.950509 + 0.310697i \(0.899438\pi\)
\(140\) 0 0
\(141\) 123.576 0.876429
\(142\) 199.031 199.031i 1.40163 1.40163i
\(143\) 12.4149 + 12.4149i 0.0868173 + 0.0868173i
\(144\) 616.358i 4.28026i
\(145\) 0 0
\(146\) −110.608 −0.757586
\(147\) −161.957 + 161.957i −1.10175 + 1.10175i
\(148\) −72.7685 72.7685i −0.491679 0.491679i
\(149\) 34.0435i 0.228480i −0.993453 0.114240i \(-0.963557\pi\)
0.993453 0.114240i \(-0.0364433\pi\)
\(150\) 0 0
\(151\) 189.253 1.25333 0.626666 0.779288i \(-0.284419\pi\)
0.626666 + 0.779288i \(0.284419\pi\)
\(152\) 374.431 374.431i 2.46336 2.46336i
\(153\) 129.764 + 129.764i 0.848133 + 0.848133i
\(154\) 119.868i 0.778365i
\(155\) 0 0
\(156\) −255.031 −1.63481
\(157\) 1.71034 1.71034i 0.0108939 0.0108939i −0.701639 0.712533i \(-0.747548\pi\)
0.712533 + 0.701639i \(0.247548\pi\)
\(158\) 209.891 + 209.891i 1.32842 + 1.32842i
\(159\) 329.581i 2.07283i
\(160\) 0 0
\(161\) 360.200 2.23727
\(162\) −55.6789 + 55.6789i −0.343697 + 0.343697i
\(163\) −178.008 178.008i −1.09207 1.09207i −0.995307 0.0967643i \(-0.969151\pi\)
−0.0967643 0.995307i \(-0.530849\pi\)
\(164\) 266.071i 1.62238i
\(165\) 0 0
\(166\) 415.742 2.50447
\(167\) −21.9696 + 21.9696i −0.131554 + 0.131554i −0.769818 0.638264i \(-0.779653\pi\)
0.638264 + 0.769818i \(0.279653\pi\)
\(168\) 724.499 + 724.499i 4.31249 + 4.31249i
\(169\) 140.977i 0.834181i
\(170\) 0 0
\(171\) −389.139 −2.27566
\(172\) −321.416 + 321.416i −1.86870 + 1.86870i
\(173\) 176.125 + 176.125i 1.01806 + 1.01806i 0.999834 + 0.0182302i \(0.00580318\pi\)
0.0182302 + 0.999834i \(0.494197\pi\)
\(174\) 574.318i 3.30068i
\(175\) 0 0
\(176\) −131.306 −0.746059
\(177\) 155.600 155.600i 0.879093 0.879093i
\(178\) 272.761 + 272.761i 1.53236 + 1.53236i
\(179\) 218.626i 1.22137i −0.791872 0.610687i \(-0.790893\pi\)
0.791872 0.610687i \(-0.209107\pi\)
\(180\) 0 0
\(181\) −244.373 −1.35013 −0.675063 0.737760i \(-0.735884\pi\)
−0.675063 + 0.737760i \(0.735884\pi\)
\(182\) 135.286 135.286i 0.743332 0.743332i
\(183\) −1.80689 1.80689i −0.00987371 0.00987371i
\(184\) 782.041i 4.25023i
\(185\) 0 0
\(186\) 47.0069 0.252725
\(187\) 27.6445 27.6445i 0.147832 0.147832i
\(188\) 171.347 + 171.347i 0.911418 + 0.911418i
\(189\) 317.676i 1.68083i
\(190\) 0 0
\(191\) 349.751 1.83116 0.915578 0.402140i \(-0.131734\pi\)
0.915578 + 0.402140i \(0.131734\pi\)
\(192\) 248.583 248.583i 1.29470 1.29470i
\(193\) −117.795 117.795i −0.610335 0.610335i 0.332698 0.943033i \(-0.392041\pi\)
−0.943033 + 0.332698i \(0.892041\pi\)
\(194\) 543.352i 2.80079i
\(195\) 0 0
\(196\) −449.128 −2.29147
\(197\) −0.103007 + 0.103007i −0.000522877 + 0.000522877i −0.707368 0.706845i \(-0.750118\pi\)
0.706845 + 0.707368i \(0.250118\pi\)
\(198\) 135.236 + 135.236i 0.683011 + 0.683011i
\(199\) 336.943i 1.69318i 0.532246 + 0.846590i \(0.321348\pi\)
−0.532246 + 0.846590i \(0.678652\pi\)
\(200\) 0 0
\(201\) 37.8298 0.188208
\(202\) −233.661 + 233.661i −1.15674 + 1.15674i
\(203\) −215.834 215.834i −1.06322 1.06322i
\(204\) 567.883i 2.78374i
\(205\) 0 0
\(206\) −333.457 −1.61872
\(207\) −406.380 + 406.380i −1.96319 + 1.96319i
\(208\) −148.196 148.196i −0.712480 0.712480i
\(209\) 82.9006i 0.396654i
\(210\) 0 0
\(211\) −378.745 −1.79500 −0.897501 0.441013i \(-0.854619\pi\)
−0.897501 + 0.441013i \(0.854619\pi\)
\(212\) −456.985 + 456.985i −2.15559 + 2.15559i
\(213\) −266.342 266.342i −1.25043 1.25043i
\(214\) 401.626i 1.87676i
\(215\) 0 0
\(216\) −689.717 −3.19313
\(217\) −17.6656 + 17.6656i −0.0814084 + 0.0814084i
\(218\) 306.262 + 306.262i 1.40487 + 1.40487i
\(219\) 148.014i 0.675865i
\(220\) 0 0
\(221\) 62.4006 0.282356
\(222\) −137.454 + 137.454i −0.619162 + 0.619162i
\(223\) −149.378 149.378i −0.669856 0.669856i 0.287826 0.957683i \(-0.407067\pi\)
−0.957683 + 0.287826i \(0.907067\pi\)
\(224\) 604.016i 2.69650i
\(225\) 0 0
\(226\) 361.428 1.59924
\(227\) −116.922 + 116.922i −0.515073 + 0.515073i −0.916077 0.401003i \(-0.868662\pi\)
0.401003 + 0.916077i \(0.368662\pi\)
\(228\) −851.486 851.486i −3.73459 3.73459i
\(229\) 375.142i 1.63817i 0.573670 + 0.819087i \(0.305519\pi\)
−0.573670 + 0.819087i \(0.694481\pi\)
\(230\) 0 0
\(231\) −160.407 −0.694403
\(232\) −468.604 + 468.604i −2.01984 + 2.01984i
\(233\) −257.342 257.342i −1.10447 1.10447i −0.993864 0.110608i \(-0.964720\pi\)
−0.110608 0.993864i \(-0.535280\pi\)
\(234\) 305.262i 1.30454i
\(235\) 0 0
\(236\) 431.497 1.82838
\(237\) 280.874 280.874i 1.18512 1.18512i
\(238\) −301.245 301.245i −1.26574 1.26574i
\(239\) 109.604i 0.458595i −0.973356 0.229297i \(-0.926357\pi\)
0.973356 0.229297i \(-0.0736428\pi\)
\(240\) 0 0
\(241\) 105.255 0.436744 0.218372 0.975866i \(-0.429925\pi\)
0.218372 + 0.975866i \(0.429925\pi\)
\(242\) 28.8102 28.8102i 0.119050 0.119050i
\(243\) −132.683 132.683i −0.546020 0.546020i
\(244\) 5.01073i 0.0205358i
\(245\) 0 0
\(246\) 502.587 2.04304
\(247\) −93.5637 + 93.5637i −0.378800 + 0.378800i
\(248\) 38.3544 + 38.3544i 0.154655 + 0.154655i
\(249\) 556.343i 2.23431i
\(250\) 0 0
\(251\) 61.9229 0.246705 0.123352 0.992363i \(-0.460635\pi\)
0.123352 + 0.992363i \(0.460635\pi\)
\(252\) 1044.02 1044.02i 4.14295 4.14295i
\(253\) 86.5736 + 86.5736i 0.342188 + 0.342188i
\(254\) 541.753i 2.13289i
\(255\) 0 0
\(256\) −227.793 −0.889818
\(257\) −143.603 + 143.603i −0.558768 + 0.558768i −0.928957 0.370188i \(-0.879293\pi\)
0.370188 + 0.928957i \(0.379293\pi\)
\(258\) 607.130 + 607.130i 2.35322 + 2.35322i
\(259\) 103.313i 0.398891i
\(260\) 0 0
\(261\) 487.011 1.86594
\(262\) 277.989 277.989i 1.06103 1.06103i
\(263\) 94.1800 + 94.1800i 0.358099 + 0.358099i 0.863112 0.505013i \(-0.168512\pi\)
−0.505013 + 0.863112i \(0.668512\pi\)
\(264\) 348.265i 1.31919i
\(265\) 0 0
\(266\) 903.377 3.39616
\(267\) 365.007 365.007i 1.36707 1.36707i
\(268\) 52.4534 + 52.4534i 0.195722 + 0.195722i
\(269\) 69.9106i 0.259891i −0.991521 0.129945i \(-0.958520\pi\)
0.991521 0.129945i \(-0.0414802\pi\)
\(270\) 0 0
\(271\) −167.707 −0.618845 −0.309423 0.950925i \(-0.600136\pi\)
−0.309423 + 0.950925i \(0.600136\pi\)
\(272\) −329.991 + 329.991i −1.21320 + 1.21320i
\(273\) −181.039 181.039i −0.663148 0.663148i
\(274\) 477.093i 1.74121i
\(275\) 0 0
\(276\) −1778.42 −6.44357
\(277\) 49.9803 49.9803i 0.180434 0.180434i −0.611111 0.791545i \(-0.709277\pi\)
0.791545 + 0.611111i \(0.209277\pi\)
\(278\) 226.222 + 226.222i 0.813749 + 0.813749i
\(279\) 39.8610i 0.142871i
\(280\) 0 0
\(281\) 384.296 1.36760 0.683801 0.729669i \(-0.260326\pi\)
0.683801 + 0.729669i \(0.260326\pi\)
\(282\) 323.660 323.660i 1.14773 1.14773i
\(283\) 339.698 + 339.698i 1.20035 + 1.20035i 0.974061 + 0.226284i \(0.0726578\pi\)
0.226284 + 0.974061i \(0.427342\pi\)
\(284\) 738.601i 2.60071i
\(285\) 0 0
\(286\) 65.0319 0.227384
\(287\) −188.877 + 188.877i −0.658107 + 0.658107i
\(288\) −681.455 681.455i −2.36616 2.36616i
\(289\) 150.051i 0.519208i
\(290\) 0 0
\(291\) −727.111 −2.49866
\(292\) −205.231 + 205.231i −0.702848 + 0.702848i
\(293\) −363.407 363.407i −1.24030 1.24030i −0.959877 0.280420i \(-0.909526\pi\)
−0.280420 0.959877i \(-0.590474\pi\)
\(294\) 848.367i 2.88560i
\(295\) 0 0
\(296\) −224.306 −0.757790
\(297\) 76.3531 76.3531i 0.257081 0.257081i
\(298\) −89.1637 89.1637i −0.299207 0.299207i
\(299\) 195.418i 0.653573i
\(300\) 0 0
\(301\) −456.330 −1.51605
\(302\) 495.675 495.675i 1.64131 1.64131i
\(303\) 312.683 + 312.683i 1.03196 + 1.03196i
\(304\) 989.580i 3.25520i
\(305\) 0 0
\(306\) 679.735 2.22136
\(307\) −424.575 + 424.575i −1.38298 + 1.38298i −0.543705 + 0.839277i \(0.682979\pi\)
−0.839277 + 0.543705i \(0.817021\pi\)
\(308\) −222.415 222.415i −0.722126 0.722126i
\(309\) 446.230i 1.44411i
\(310\) 0 0
\(311\) 32.0702 0.103120 0.0515598 0.998670i \(-0.483581\pi\)
0.0515598 + 0.998670i \(0.483581\pi\)
\(312\) −393.061 + 393.061i −1.25981 + 1.25981i
\(313\) 33.8691 + 33.8691i 0.108208 + 0.108208i 0.759138 0.650930i \(-0.225621\pi\)
−0.650930 + 0.759138i \(0.725621\pi\)
\(314\) 8.95915i 0.0285323i
\(315\) 0 0
\(316\) 778.901 2.46488
\(317\) −64.3362 + 64.3362i −0.202953 + 0.202953i −0.801264 0.598311i \(-0.795839\pi\)
0.598311 + 0.801264i \(0.295839\pi\)
\(318\) 863.208 + 863.208i 2.71449 + 2.71449i
\(319\) 103.751i 0.325238i
\(320\) 0 0
\(321\) −537.454 −1.67431
\(322\) 943.403 943.403i 2.92982 2.92982i
\(323\) 208.341 + 208.341i 0.645017 + 0.645017i
\(324\) 206.624i 0.637727i
\(325\) 0 0
\(326\) −932.444 −2.86026
\(327\) 409.838 409.838i 1.25333 1.25333i
\(328\) 410.077 + 410.077i 1.25023 + 1.25023i
\(329\) 243.269i 0.739419i
\(330\) 0 0
\(331\) 294.825 0.890711 0.445356 0.895354i \(-0.353077\pi\)
0.445356 + 0.895354i \(0.353077\pi\)
\(332\) 771.405 771.405i 2.32351 2.32351i
\(333\) 116.558 + 116.558i 0.350025 + 0.350025i
\(334\) 115.082i 0.344555i
\(335\) 0 0
\(336\) 1914.77 5.69872
\(337\) 54.3054 54.3054i 0.161143 0.161143i −0.621930 0.783073i \(-0.713651\pi\)
0.783073 + 0.621930i \(0.213651\pi\)
\(338\) −369.233 369.233i −1.09241 1.09241i
\(339\) 483.661i 1.42673i
\(340\) 0 0
\(341\) −8.49183 −0.0249027
\(342\) −1019.20 + 1019.20i −2.98011 + 2.98011i
\(343\) 19.2567 + 19.2567i 0.0561421 + 0.0561421i
\(344\) 990.753i 2.88010i
\(345\) 0 0
\(346\) 922.582 2.66642
\(347\) 57.3163 57.3163i 0.165177 0.165177i −0.619679 0.784855i \(-0.712737\pi\)
0.784855 + 0.619679i \(0.212737\pi\)
\(348\) 1065.64 + 1065.64i 3.06219 + 3.06219i
\(349\) 389.915i 1.11724i −0.829425 0.558618i \(-0.811332\pi\)
0.829425 0.558618i \(-0.188668\pi\)
\(350\) 0 0
\(351\) 172.348 0.491020
\(352\) −145.175 + 145.175i −0.412428 + 0.412428i
\(353\) 58.1497 + 58.1497i 0.164730 + 0.164730i 0.784658 0.619928i \(-0.212838\pi\)
−0.619928 + 0.784658i \(0.712838\pi\)
\(354\) 815.065i 2.30244i
\(355\) 0 0
\(356\) 1012.21 2.84329
\(357\) −403.125 + 403.125i −1.12920 + 1.12920i
\(358\) −572.606 572.606i −1.59946 1.59946i
\(359\) 67.8984i 0.189132i −0.995519 0.0945660i \(-0.969854\pi\)
0.995519 0.0945660i \(-0.0301464\pi\)
\(360\) 0 0
\(361\) −263.774 −0.730675
\(362\) −640.039 + 640.039i −1.76806 + 1.76806i
\(363\) −38.5537 38.5537i −0.106208 0.106208i
\(364\) 502.046i 1.37925i
\(365\) 0 0
\(366\) −9.46488 −0.0258603
\(367\) 269.376 269.376i 0.733994 0.733994i −0.237414 0.971409i \(-0.576300\pi\)
0.971409 + 0.237414i \(0.0762998\pi\)
\(368\) −1033.43 1033.43i −2.80822 2.80822i
\(369\) 426.184i 1.15497i
\(370\) 0 0
\(371\) −648.803 −1.74879
\(372\) 87.2210 87.2210i 0.234465 0.234465i
\(373\) −216.865 216.865i −0.581406 0.581406i 0.353883 0.935290i \(-0.384861\pi\)
−0.935290 + 0.353883i \(0.884861\pi\)
\(374\) 144.808i 0.387187i
\(375\) 0 0
\(376\) 528.169 1.40471
\(377\) 117.096 117.096i 0.310599 0.310599i
\(378\) −832.029 832.029i −2.20113 2.20113i
\(379\) 18.5329i 0.0488994i −0.999701 0.0244497i \(-0.992217\pi\)
0.999701 0.0244497i \(-0.00778336\pi\)
\(380\) 0 0
\(381\) 724.971 1.90281
\(382\) 916.036 916.036i 2.39800 2.39800i
\(383\) 450.630 + 450.630i 1.17658 + 1.17658i 0.980610 + 0.195970i \(0.0627856\pi\)
0.195970 + 0.980610i \(0.437214\pi\)
\(384\) 74.8123i 0.194824i
\(385\) 0 0
\(386\) −617.034 −1.59853
\(387\) 514.835 514.835i 1.33032 1.33032i
\(388\) −1008.19 1008.19i −2.59842 2.59842i
\(389\) 29.1385i 0.0749063i −0.999298 0.0374531i \(-0.988076\pi\)
0.999298 0.0374531i \(-0.0119245\pi\)
\(390\) 0 0
\(391\) 435.143 1.11290
\(392\) −692.209 + 692.209i −1.76584 + 1.76584i
\(393\) −372.004 372.004i −0.946575 0.946575i
\(394\) 0.539573i 0.00136947i
\(395\) 0 0
\(396\) 501.860 1.26732
\(397\) −11.9239 + 11.9239i −0.0300349 + 0.0300349i −0.721965 0.691930i \(-0.756761\pi\)
0.691930 + 0.721965i \(0.256761\pi\)
\(398\) 882.490 + 882.490i 2.21731 + 2.21731i
\(399\) 1208.89i 3.02981i
\(400\) 0 0
\(401\) 473.602 1.18105 0.590526 0.807018i \(-0.298920\pi\)
0.590526 + 0.807018i \(0.298920\pi\)
\(402\) 99.0803 99.0803i 0.246468 0.246468i
\(403\) −9.58409 9.58409i −0.0237819 0.0237819i
\(404\) 867.111i 2.14631i
\(405\) 0 0
\(406\) −1130.59 −2.78469
\(407\) 24.8311 24.8311i 0.0610102 0.0610102i
\(408\) 875.238 + 875.238i 2.14519 + 2.14519i
\(409\) 555.961i 1.35932i −0.733528 0.679659i \(-0.762128\pi\)
0.733528 0.679659i \(-0.237872\pi\)
\(410\) 0 0
\(411\) −638.443 −1.55339
\(412\) −618.727 + 618.727i −1.50176 + 1.50176i
\(413\) 306.309 + 306.309i 0.741667 + 0.741667i
\(414\) 2128.71i 5.14181i
\(415\) 0 0
\(416\) −327.695 −0.787729
\(417\) 302.729 302.729i 0.725970 0.725970i
\(418\) 217.126 + 217.126i 0.519440 + 0.519440i
\(419\) 539.043i 1.28650i −0.765656 0.643250i \(-0.777586\pi\)
0.765656 0.643250i \(-0.222414\pi\)
\(420\) 0 0
\(421\) 191.827 0.455645 0.227823 0.973703i \(-0.426839\pi\)
0.227823 + 0.973703i \(0.426839\pi\)
\(422\) −991.976 + 991.976i −2.35065 + 2.35065i
\(423\) −274.458 274.458i −0.648836 0.648836i
\(424\) 1408.64i 3.32226i
\(425\) 0 0
\(426\) −1395.16 −3.27502
\(427\) 3.55699 3.55699i 0.00833018 0.00833018i
\(428\) −745.215 745.215i −1.74116 1.74116i
\(429\) 87.0253i 0.202856i
\(430\) 0 0
\(431\) 188.577 0.437533 0.218766 0.975777i \(-0.429797\pi\)
0.218766 + 0.975777i \(0.429797\pi\)
\(432\) −911.423 + 911.423i −2.10978 + 2.10978i
\(433\) −50.5654 50.5654i −0.116779 0.116779i 0.646302 0.763081i \(-0.276315\pi\)
−0.763081 + 0.646302i \(0.776315\pi\)
\(434\) 92.5365i 0.213218i
\(435\) 0 0
\(436\) 1136.53 2.60673
\(437\) −652.455 + 652.455i −1.49303 + 1.49303i
\(438\) 387.666 + 387.666i 0.885083 + 0.885083i
\(439\) 430.188i 0.979927i −0.871743 0.489964i \(-0.837010\pi\)
0.871743 0.489964i \(-0.162990\pi\)
\(440\) 0 0
\(441\) 719.399 1.63129
\(442\) 163.434 163.434i 0.369760 0.369760i
\(443\) 95.3705 + 95.3705i 0.215283 + 0.215283i 0.806507 0.591224i \(-0.201355\pi\)
−0.591224 + 0.806507i \(0.701355\pi\)
\(444\) 510.090i 1.14885i
\(445\) 0 0
\(446\) −782.475 −1.75443
\(447\) −119.318 + 119.318i −0.266932 + 0.266932i
\(448\) 489.352 + 489.352i 1.09230 + 1.09230i
\(449\) 551.659i 1.22864i 0.789057 + 0.614320i \(0.210569\pi\)
−0.789057 + 0.614320i \(0.789431\pi\)
\(450\) 0 0
\(451\) −90.7927 −0.201314
\(452\) 670.627 670.627i 1.48369 1.48369i
\(453\) −663.310 663.310i −1.46426 1.46426i
\(454\) 612.461i 1.34903i
\(455\) 0 0
\(456\) −2624.67 −5.75586
\(457\) 228.779 228.779i 0.500610 0.500610i −0.411018 0.911627i \(-0.634827\pi\)
0.911627 + 0.411018i \(0.134827\pi\)
\(458\) 982.538 + 982.538i 2.14528 + 2.14528i
\(459\) 383.772i 0.836104i
\(460\) 0 0
\(461\) 15.5314 0.0336906 0.0168453 0.999858i \(-0.494638\pi\)
0.0168453 + 0.999858i \(0.494638\pi\)
\(462\) −420.124 + 420.124i −0.909359 + 0.909359i
\(463\) 464.253 + 464.253i 1.00271 + 1.00271i 0.999996 + 0.00270954i \(0.000862474\pi\)
0.00270954 + 0.999996i \(0.499138\pi\)
\(464\) 1238.47i 2.66911i
\(465\) 0 0
\(466\) −1348.01 −2.89274
\(467\) −152.863 + 152.863i −0.327330 + 0.327330i −0.851570 0.524241i \(-0.824349\pi\)
0.524241 + 0.851570i \(0.324349\pi\)
\(468\) 566.412 + 566.412i 1.21028 + 1.21028i
\(469\) 74.4705i 0.158786i
\(470\) 0 0
\(471\) −11.9891 −0.0254545
\(472\) 665.037 665.037i 1.40898 1.40898i
\(473\) −109.678 109.678i −0.231878 0.231878i
\(474\) 1471.28i 3.10397i
\(475\) 0 0
\(476\) −1117.92 −2.34857
\(477\) 731.984 731.984i 1.53456 1.53456i
\(478\) −287.065 287.065i −0.600555 0.600555i
\(479\) 161.273i 0.336686i −0.985728 0.168343i \(-0.946158\pi\)
0.985728 0.168343i \(-0.0538416\pi\)
\(480\) 0 0
\(481\) 56.0501 0.116528
\(482\) 275.675 275.675i 0.571941 0.571941i
\(483\) −1262.46 1262.46i −2.61378 2.61378i
\(484\) 106.914i 0.220897i
\(485\) 0 0
\(486\) −695.022 −1.43009
\(487\) −634.318 + 634.318i −1.30250 + 1.30250i −0.375800 + 0.926701i \(0.622632\pi\)
−0.926701 + 0.375800i \(0.877368\pi\)
\(488\) −7.72269 7.72269i −0.0158252 0.0158252i
\(489\) 1247.79i 2.55172i
\(490\) 0 0
\(491\) −8.03136 −0.0163572 −0.00817858 0.999967i \(-0.502603\pi\)
−0.00817858 + 0.999967i \(0.502603\pi\)
\(492\) 932.547 932.547i 1.89542 1.89542i
\(493\) −260.740 260.740i −0.528885 0.528885i
\(494\) 490.107i 0.992120i
\(495\) 0 0
\(496\) 101.367 0.204368
\(497\) 524.313 524.313i 1.05496 1.05496i
\(498\) −1457.12 1457.12i −2.92595 2.92595i
\(499\) 812.378i 1.62801i 0.580856 + 0.814006i \(0.302718\pi\)
−0.580856 + 0.814006i \(0.697282\pi\)
\(500\) 0 0
\(501\) 154.001 0.307388
\(502\) 162.183 162.183i 0.323074 0.323074i
\(503\) 493.267 + 493.267i 0.980650 + 0.980650i 0.999816 0.0191662i \(-0.00610116\pi\)
−0.0191662 + 0.999816i \(0.506101\pi\)
\(504\) 3218.16i 6.38524i
\(505\) 0 0
\(506\) 453.492 0.896229
\(507\) −494.106 + 494.106i −0.974568 + 0.974568i
\(508\) 1005.22 + 1005.22i 1.97878 + 1.97878i
\(509\) 269.355i 0.529184i −0.964360 0.264592i \(-0.914763\pi\)
0.964360 0.264592i \(-0.0852373\pi\)
\(510\) 0 0
\(511\) −291.377 −0.570209
\(512\) −639.307 + 639.307i −1.24865 + 1.24865i
\(513\) 575.429 + 575.429i 1.12169 + 1.12169i
\(514\) 752.227i 1.46348i
\(515\) 0 0
\(516\) 2253.05 4.36638
\(517\) −58.4694 + 58.4694i −0.113094 + 0.113094i
\(518\) −270.588 270.588i −0.522370 0.522370i
\(519\) 1234.59i 2.37879i
\(520\) 0 0
\(521\) −122.573 −0.235265 −0.117633 0.993057i \(-0.537531\pi\)
−0.117633 + 0.993057i \(0.537531\pi\)
\(522\) 1275.54 1275.54i 2.44355 2.44355i
\(523\) −13.3025 13.3025i −0.0254349 0.0254349i 0.694275 0.719710i \(-0.255725\pi\)
−0.719710 + 0.694275i \(0.755725\pi\)
\(524\) 1031.61i 1.96873i
\(525\) 0 0
\(526\) 493.336 0.937901
\(527\) −21.3411 + 21.3411i −0.0404955 + 0.0404955i
\(528\) 460.213 + 460.213i 0.871616 + 0.871616i
\(529\) 833.726i 1.57604i
\(530\) 0 0
\(531\) −691.159 −1.30162
\(532\) 1676.21 1676.21i 3.15077 3.15077i
\(533\) −102.471 102.471i −0.192253 0.192253i
\(534\) 1911.99i 3.58050i
\(535\) 0 0
\(536\) 161.685 0.301652
\(537\) −766.258 + 766.258i −1.42692 + 1.42692i
\(538\) −183.104 183.104i −0.340341 0.340341i
\(539\) 153.258i 0.284338i
\(540\) 0 0
\(541\) −282.495 −0.522171 −0.261086 0.965316i \(-0.584081\pi\)
−0.261086 + 0.965316i \(0.584081\pi\)
\(542\) −439.243 + 439.243i −0.810412 + 0.810412i
\(543\) 856.497 + 856.497i 1.57734 + 1.57734i
\(544\) 729.687i 1.34134i
\(545\) 0 0
\(546\) −948.325 −1.73686
\(547\) −615.503 + 615.503i −1.12523 + 1.12523i −0.134292 + 0.990942i \(0.542876\pi\)
−0.990942 + 0.134292i \(0.957124\pi\)
\(548\) −885.242 885.242i −1.61540 1.61540i
\(549\) 8.02604i 0.0146194i
\(550\) 0 0
\(551\) 781.910 1.41907
\(552\) −2740.96 + 2740.96i −4.96551 + 4.96551i
\(553\) 552.921 + 552.921i 0.999857 + 0.999857i
\(554\) 261.808i 0.472577i
\(555\) 0 0
\(556\) 839.508 1.50991
\(557\) −274.816 + 274.816i −0.493386 + 0.493386i −0.909371 0.415985i \(-0.863437\pi\)
0.415985 + 0.909371i \(0.363437\pi\)
\(558\) −104.400 104.400i −0.187097 0.187097i
\(559\) 247.572i 0.442883i
\(560\) 0 0
\(561\) −193.781 −0.345421
\(562\) 1006.51 1006.51i 1.79095 1.79095i
\(563\) 49.6753 + 49.6753i 0.0882331 + 0.0882331i 0.749846 0.661613i \(-0.230128\pi\)
−0.661613 + 0.749846i \(0.730128\pi\)
\(564\) 1201.10i 2.12961i
\(565\) 0 0
\(566\) 1779.41 3.14384
\(567\) −146.677 + 146.677i −0.258689 + 0.258689i
\(568\) −1138.35 1138.35i −2.00414 2.00414i
\(569\) 121.110i 0.212847i 0.994321 + 0.106423i \(0.0339399\pi\)
−0.994321 + 0.106423i \(0.966060\pi\)
\(570\) 0 0
\(571\) −446.350 −0.781699 −0.390849 0.920455i \(-0.627819\pi\)
−0.390849 + 0.920455i \(0.627819\pi\)
\(572\) 120.666 120.666i 0.210955 0.210955i
\(573\) −1225.83 1225.83i −2.13933 2.13933i
\(574\) 989.378i 1.72366i
\(575\) 0 0
\(576\) −1104.18 −1.91698
\(577\) −484.478 + 484.478i −0.839650 + 0.839650i −0.988813 0.149162i \(-0.952342\pi\)
0.149162 + 0.988813i \(0.452342\pi\)
\(578\) 393.000 + 393.000i 0.679932 + 0.679932i
\(579\) 825.712i 1.42610i
\(580\) 0 0
\(581\) 1095.20 1.88503
\(582\) −1904.38 + 1904.38i −3.27214 + 3.27214i
\(583\) −155.939 155.939i −0.267477 0.267477i
\(584\) 632.618i 1.08325i
\(585\) 0 0
\(586\) −1903.61 −3.24848
\(587\) 702.982 702.982i 1.19758 1.19758i 0.222696 0.974888i \(-0.428514\pi\)
0.974888 0.222696i \(-0.0714857\pi\)
\(588\) 1574.14 + 1574.14i 2.67711 + 2.67711i
\(589\) 63.9980i 0.108655i
\(590\) 0 0
\(591\) 0.722053 0.00122175
\(592\) −296.408 + 296.408i −0.500689 + 0.500689i
\(593\) 487.169 + 487.169i 0.821533 + 0.821533i 0.986328 0.164795i \(-0.0526962\pi\)
−0.164795 + 0.986328i \(0.552696\pi\)
\(594\) 399.955i 0.673324i
\(595\) 0 0
\(596\) −330.885 −0.555176
\(597\) 1180.94 1180.94i 1.97813 1.97813i
\(598\) 511.822 + 511.822i 0.855890 + 0.855890i
\(599\) 448.859i 0.749347i 0.927157 + 0.374673i \(0.122245\pi\)
−0.927157 + 0.374673i \(0.877755\pi\)
\(600\) 0 0
\(601\) −46.2237 −0.0769113 −0.0384556 0.999260i \(-0.512244\pi\)
−0.0384556 + 0.999260i \(0.512244\pi\)
\(602\) −1195.18 + 1195.18i −1.98535 + 1.98535i
\(603\) −84.0182 84.0182i −0.139334 0.139334i
\(604\) 1839.44i 3.04543i
\(605\) 0 0
\(606\) 1637.90 2.70281
\(607\) −388.855 + 388.855i −0.640618 + 0.640618i −0.950707 0.310089i \(-0.899641\pi\)
0.310089 + 0.950707i \(0.399641\pi\)
\(608\) −1094.10 1094.10i −1.79950 1.79950i
\(609\) 1512.94i 2.48431i
\(610\) 0 0
\(611\) −131.980 −0.216007
\(612\) 1261.24 1261.24i 2.06085 2.06085i
\(613\) −488.824 488.824i −0.797430 0.797430i 0.185260 0.982690i \(-0.440687\pi\)
−0.982690 + 0.185260i \(0.940687\pi\)
\(614\) 2224.02i 3.62218i
\(615\) 0 0
\(616\) −685.584 −1.11296
\(617\) −476.985 + 476.985i −0.773071 + 0.773071i −0.978642 0.205571i \(-0.934095\pi\)
0.205571 + 0.978642i \(0.434095\pi\)
\(618\) 1168.73 + 1168.73i 1.89114 + 1.89114i
\(619\) 377.724i 0.610217i 0.952318 + 0.305108i \(0.0986927\pi\)
−0.952318 + 0.305108i \(0.901307\pi\)
\(620\) 0 0
\(621\) 1201.85 1.93534
\(622\) 83.9954 83.9954i 0.135041 0.135041i
\(623\) 718.541 + 718.541i 1.15336 + 1.15336i
\(624\) 1038.82i 1.66477i
\(625\) 0 0
\(626\) 177.414 0.283409
\(627\) 290.557 290.557i 0.463408 0.463408i
\(628\) −16.6236 16.6236i −0.0264708 0.0264708i
\(629\) 124.808i 0.198423i
\(630\) 0 0
\(631\) −404.178 −0.640536 −0.320268 0.947327i \(-0.603773\pi\)
−0.320268 + 0.947327i \(0.603773\pi\)
\(632\) 1200.47 1200.47i 1.89947 1.89947i
\(633\) 1327.46 + 1327.46i 2.09709 + 2.09709i
\(634\) 337.007i 0.531557i
\(635\) 0 0
\(636\) 3203.35 5.03672
\(637\) 172.971 172.971i 0.271540 0.271540i
\(638\) −271.735 271.735i −0.425917 0.425917i
\(639\) 1183.07i 1.85144i
\(640\) 0 0
\(641\) −811.838 −1.26652 −0.633259 0.773940i \(-0.718283\pi\)
−0.633259 + 0.773940i \(0.718283\pi\)
\(642\) −1407.65 + 1407.65i −2.19260 + 2.19260i
\(643\) −412.116 412.116i −0.640927 0.640927i 0.309857 0.950783i \(-0.399719\pi\)
−0.950783 + 0.309857i \(0.899719\pi\)
\(644\) 3500.95i 5.43626i
\(645\) 0 0
\(646\) 1091.33 1.68937
\(647\) 539.084 539.084i 0.833205 0.833205i −0.154749 0.987954i \(-0.549457\pi\)
0.987954 + 0.154749i \(0.0494567\pi\)
\(648\) 318.454 + 318.454i 0.491442 + 0.491442i
\(649\) 147.242i 0.226875i
\(650\) 0 0
\(651\) 123.832 0.190218
\(652\) −1730.14 + 1730.14i −2.65359 + 2.65359i
\(653\) −266.585 266.585i −0.408247 0.408247i 0.472880 0.881127i \(-0.343215\pi\)
−0.881127 + 0.472880i \(0.843215\pi\)
\(654\) 2146.82i 3.28260i
\(655\) 0 0
\(656\) 1083.79 1.65212
\(657\) 328.733 328.733i 0.500355 0.500355i
\(658\) 637.148 + 637.148i 0.968310 + 0.968310i
\(659\) 219.013i 0.332342i 0.986097 + 0.166171i \(0.0531403\pi\)
−0.986097 + 0.166171i \(0.946860\pi\)
\(660\) 0 0
\(661\) −988.567 −1.49556 −0.747781 0.663945i \(-0.768881\pi\)
−0.747781 + 0.663945i \(0.768881\pi\)
\(662\) 772.180 772.180i 1.16644 1.16644i
\(663\) −218.707 218.707i −0.329874 0.329874i
\(664\) 2377.83i 3.58106i
\(665\) 0 0
\(666\) 610.558 0.916754
\(667\) 816.554 816.554i 1.22422 1.22422i
\(668\) 213.533 + 213.533i 0.319660 + 0.319660i
\(669\) 1047.10i 1.56518i
\(670\) 0 0
\(671\) 1.70984 0.00254819
\(672\) 2117.00 2117.00i 3.15030 3.15030i
\(673\) −59.4777 59.4777i −0.0883770 0.0883770i 0.661536 0.749913i \(-0.269905\pi\)
−0.749913 + 0.661536i \(0.769905\pi\)
\(674\) 284.463i 0.422053i
\(675\) 0 0
\(676\) −1370.22 −2.02695
\(677\) 34.1769 34.1769i 0.0504829 0.0504829i −0.681415 0.731898i \(-0.738635\pi\)
0.731898 + 0.681415i \(0.238635\pi\)
\(678\) −1266.76 1266.76i −1.86838 1.86838i
\(679\) 1431.37i 2.10806i
\(680\) 0 0
\(681\) 819.592 1.20351
\(682\) −22.2410 + 22.2410i −0.0326115 + 0.0326115i
\(683\) −562.268 562.268i −0.823233 0.823233i 0.163337 0.986570i \(-0.447774\pi\)
−0.986570 + 0.163337i \(0.947774\pi\)
\(684\) 3782.23i 5.52957i
\(685\) 0 0
\(686\) 100.871 0.147042
\(687\) 1314.83 1314.83i 1.91387 1.91387i
\(688\) 1309.23 + 1309.23i 1.90294 + 1.90294i
\(689\) 351.994i 0.510876i
\(690\) 0 0
\(691\) 94.1456 0.136245 0.0681227 0.997677i \(-0.478299\pi\)
0.0681227 + 0.997677i \(0.478299\pi\)
\(692\) 1711.84 1711.84i 2.47376 2.47376i
\(693\) 356.257 + 356.257i 0.514079 + 0.514079i
\(694\) 300.235i 0.432616i
\(695\) 0 0
\(696\) 3284.80 4.71954
\(697\) −228.174 + 228.174i −0.327367 + 0.327367i
\(698\) −1021.23 1021.23i −1.46308 1.46308i
\(699\) 1803.91i 2.58070i
\(700\) 0 0
\(701\) 212.516 0.303161 0.151580 0.988445i \(-0.451564\pi\)
0.151580 + 0.988445i \(0.451564\pi\)
\(702\) 451.399 451.399i 0.643018 0.643018i
\(703\) 187.138 + 187.138i 0.266199 + 0.266199i
\(704\) 235.231i 0.334135i
\(705\) 0 0
\(706\) 304.601 0.431446
\(707\) −615.539 + 615.539i −0.870635 + 0.870635i
\(708\) −1512.35 1512.35i −2.13608 2.13608i
\(709\) 440.572i 0.621399i 0.950508 + 0.310700i \(0.100563\pi\)
−0.950508 + 0.310700i \(0.899437\pi\)
\(710\) 0 0
\(711\) −1247.62 −1.75474
\(712\) 1560.05 1560.05i 2.19108 2.19108i
\(713\) −66.8335 66.8335i −0.0937357 0.0937357i
\(714\) 2111.66i 2.95750i
\(715\) 0 0
\(716\) −2124.93 −2.96778
\(717\) −384.149 + 384.149i −0.535773 + 0.535773i
\(718\) −177.833 177.833i −0.247679 0.247679i
\(719\) 787.071i 1.09467i 0.836912 + 0.547337i \(0.184358\pi\)
−0.836912 + 0.547337i \(0.815642\pi\)
\(720\) 0 0
\(721\) −878.435 −1.21836
\(722\) −690.852 + 690.852i −0.956859 + 0.956859i
\(723\) −368.907 368.907i −0.510245 0.510245i
\(724\) 2375.18i 3.28063i
\(725\) 0 0
\(726\) −201.953 −0.278172
\(727\) −883.293 + 883.293i −1.21498 + 1.21498i −0.245616 + 0.969367i \(0.578990\pi\)
−0.969367 + 0.245616i \(0.921010\pi\)
\(728\) −773.768 773.768i −1.06287 1.06287i
\(729\) 1121.40i 1.53828i
\(730\) 0 0
\(731\) −551.274 −0.754137
\(732\) −17.5620 + 17.5620i −0.0239918 + 0.0239918i
\(733\) 351.167 + 351.167i 0.479082 + 0.479082i 0.904838 0.425756i \(-0.139992\pi\)
−0.425756 + 0.904838i \(0.639992\pi\)
\(734\) 1411.05i 1.92241i
\(735\) 0 0
\(736\) −2285.14 −3.10481
\(737\) −17.8989 + 17.8989i −0.0242862 + 0.0242862i
\(738\) −1116.22 1116.22i −1.51250 1.51250i
\(739\) 315.768i 0.427291i −0.976911 0.213646i \(-0.931466\pi\)
0.976911 0.213646i \(-0.0685338\pi\)
\(740\) 0 0
\(741\) 655.859 0.885100
\(742\) −1699.29 + 1699.29i −2.29014 + 2.29014i
\(743\) −499.908 499.908i −0.672824 0.672824i 0.285542 0.958366i \(-0.407826\pi\)
−0.958366 + 0.285542i \(0.907826\pi\)
\(744\) 268.855i 0.361365i
\(745\) 0 0
\(746\) −1135.98 −1.52277
\(747\) −1235.61 + 1235.61i −1.65410 + 1.65410i
\(748\) −268.690 268.690i −0.359212 0.359212i
\(749\) 1058.02i 1.41257i
\(750\) 0 0
\(751\) 50.9789 0.0678813 0.0339407 0.999424i \(-0.489194\pi\)
0.0339407 + 0.999424i \(0.489194\pi\)
\(752\) 697.947 697.947i 0.928121 0.928121i
\(753\) −217.032 217.032i −0.288224 0.288224i
\(754\) 613.374i 0.813494i
\(755\) 0 0
\(756\) −3087.65 −4.08419
\(757\) −765.183 + 765.183i −1.01081 + 1.01081i −0.0108684 + 0.999941i \(0.503460\pi\)
−0.999941 + 0.0108684i \(0.996540\pi\)
\(758\) −48.5397 48.5397i −0.0640365 0.0640365i
\(759\) 606.860i 0.799553i
\(760\) 0 0
\(761\) −92.9924 −0.122198 −0.0610988 0.998132i \(-0.519460\pi\)
−0.0610988 + 0.998132i \(0.519460\pi\)
\(762\) 1898.78 1898.78i 2.49184 2.49184i
\(763\) 806.794 + 806.794i 1.05740 + 1.05740i
\(764\) 3399.40i 4.44947i
\(765\) 0 0
\(766\) 2360.50 3.08159
\(767\) −166.181 + 166.181i −0.216664 + 0.216664i
\(768\) 798.389 + 798.389i 1.03957 + 1.03957i
\(769\) 1381.20i 1.79610i −0.439892 0.898051i \(-0.644983\pi\)
0.439892 0.898051i \(-0.355017\pi\)
\(770\) 0 0
\(771\) 1006.63 1.30561
\(772\) −1144.90 + 1144.90i −1.48303 + 1.48303i
\(773\) 240.787 + 240.787i 0.311497 + 0.311497i 0.845489 0.533993i \(-0.179309\pi\)
−0.533993 + 0.845489i \(0.679309\pi\)
\(774\) 2696.82i 3.48426i
\(775\) 0 0
\(776\) −3107.69 −4.00476
\(777\) −362.099 + 362.099i −0.466022 + 0.466022i
\(778\) −76.3171 76.3171i −0.0980939 0.0980939i
\(779\) 684.252i 0.878372i
\(780\) 0 0
\(781\) 252.036 0.322710
\(782\) 1139.69 1139.69i 1.45740 1.45740i
\(783\) −720.155 720.155i −0.919738 0.919738i
\(784\) 1829.43i 2.33346i
\(785\) 0 0
\(786\) −1948.64 −2.47919
\(787\) 122.762 122.762i 0.155988 0.155988i −0.624798 0.780786i \(-0.714819\pi\)
0.780786 + 0.624798i \(0.214819\pi\)
\(788\) 1.00117 + 1.00117i 0.00127052 + 0.00127052i
\(789\) 660.179i 0.836729i
\(790\) 0 0
\(791\) 952.121 1.20369
\(792\) 773.481 773.481i 0.976618 0.976618i
\(793\) 1.92976 + 1.92976i 0.00243350 + 0.00243350i
\(794\) 62.4598i 0.0786647i
\(795\) 0 0
\(796\) 3274.91 4.11421
\(797\) 174.178 174.178i 0.218543 0.218543i −0.589341 0.807884i \(-0.700613\pi\)
0.807884 + 0.589341i \(0.200613\pi\)
\(798\) −3166.23 3166.23i −3.96771 3.96771i
\(799\) 293.883i 0.367814i
\(800\) 0 0
\(801\) −1621.33 −2.02413
\(802\) 1240.42 1240.42i 1.54665 1.54665i
\(803\) −70.0321 70.0321i −0.0872131 0.0872131i
\(804\) 367.686i 0.457320i
\(805\) 0 0
\(806\) −50.2036 −0.0622874
\(807\) −245.028 + 245.028i −0.303629 + 0.303629i
\(808\) 1336.42 + 1336.42i 1.65398 + 1.65398i
\(809\) 272.806i 0.337213i 0.985683 + 0.168607i \(0.0539268\pi\)
−0.985683 + 0.168607i \(0.946073\pi\)
\(810\) 0 0
\(811\) −764.856 −0.943102 −0.471551 0.881839i \(-0.656306\pi\)
−0.471551 + 0.881839i \(0.656306\pi\)
\(812\) −2097.79 + 2097.79i −2.58349 + 2.58349i
\(813\) 587.793 + 587.793i 0.722992 + 0.722992i
\(814\) 130.071i 0.159792i
\(815\) 0 0
\(816\) 2313.16 2.83475
\(817\) 826.583 826.583i 1.01173 1.01173i
\(818\) −1456.12 1456.12i −1.78010 1.78010i
\(819\) 804.161i 0.981882i
\(820\) 0 0
\(821\) 376.669 0.458793 0.229396 0.973333i \(-0.426325\pi\)
0.229396 + 0.973333i \(0.426325\pi\)
\(822\) −1672.15 + 1672.15i −2.03425 + 2.03425i
\(823\) 159.477 + 159.477i 0.193775 + 0.193775i 0.797325 0.603550i \(-0.206248\pi\)
−0.603550 + 0.797325i \(0.706248\pi\)
\(824\) 1907.20i 2.31456i
\(825\) 0 0
\(826\) 1604.51 1.94251
\(827\) 612.569 612.569i 0.740713 0.740713i −0.232003 0.972715i \(-0.574528\pi\)
0.972715 + 0.232003i \(0.0745278\pi\)
\(828\) 3949.80 + 3949.80i 4.77029 + 4.77029i
\(829\) 767.065i 0.925289i −0.886544 0.462645i \(-0.846901\pi\)
0.886544 0.462645i \(-0.153099\pi\)
\(830\) 0 0
\(831\) −350.350 −0.421600
\(832\) −265.487 + 265.487i −0.319095 + 0.319095i
\(833\) −385.158 385.158i −0.462375 0.462375i
\(834\) 1585.76i 1.90140i
\(835\) 0 0
\(836\) 805.751 0.963817
\(837\) −58.9434 + 58.9434i −0.0704223 + 0.0704223i
\(838\) −1411.81 1411.81i −1.68474 1.68474i
\(839\) 599.820i 0.714922i −0.933928 0.357461i \(-0.883642\pi\)
0.933928 0.357461i \(-0.116358\pi\)
\(840\) 0 0
\(841\) −137.568 −0.163577
\(842\) 502.415 502.415i 0.596693 0.596693i
\(843\) −1346.91 1346.91i −1.59776 1.59776i
\(844\) 3681.21i 4.36162i
\(845\) 0 0
\(846\) −1437.67 −1.69937
\(847\) 75.8956 75.8956i 0.0896052 0.0896052i
\(848\) 1861.44 + 1861.44i 2.19509 + 2.19509i
\(849\) 2381.20i 2.80471i
\(850\) 0 0
\(851\) 390.859 0.459293
\(852\) −2588.71 + 2588.71i −3.03839 + 3.03839i
\(853\) −608.322 608.322i −0.713156 0.713156i 0.254038 0.967194i \(-0.418241\pi\)
−0.967194 + 0.254038i \(0.918241\pi\)
\(854\) 18.6323i 0.0218177i
\(855\) 0 0
\(856\) −2297.09 −2.68352
\(857\) 157.546 157.546i 0.183834 0.183834i −0.609190 0.793024i \(-0.708505\pi\)
0.793024 + 0.609190i \(0.208505\pi\)
\(858\) −227.929 227.929i −0.265651 0.265651i
\(859\) 1249.31i 1.45438i 0.686435 + 0.727191i \(0.259174\pi\)
−0.686435 + 0.727191i \(0.740826\pi\)
\(860\) 0 0
\(861\) 1323.98 1.53772
\(862\) 493.903 493.903i 0.572973 0.572973i
\(863\) 487.037 + 487.037i 0.564354 + 0.564354i 0.930541 0.366187i \(-0.119337\pi\)
−0.366187 + 0.930541i \(0.619337\pi\)
\(864\) 2015.37i 2.33260i
\(865\) 0 0
\(866\) −264.873 −0.305857
\(867\) 525.911 525.911i 0.606587 0.606587i
\(868\) 171.701 + 171.701i 0.197812 + 0.197812i
\(869\) 265.788i 0.305855i
\(870\) 0 0
\(871\) −40.4023 −0.0463862
\(872\) 1751.66 1751.66i 2.00878 2.00878i
\(873\) 1614.88 + 1614.88i 1.84981 + 1.84981i
\(874\) 3417.70i 3.91042i
\(875\) 0 0
\(876\) 1438.62 1.64226
\(877\) 623.403 623.403i 0.710836 0.710836i −0.255874 0.966710i \(-0.582363\pi\)
0.966710 + 0.255874i \(0.0823632\pi\)
\(878\) −1126.71 1126.71i −1.28327 1.28327i
\(879\) 2547.40i 2.89806i
\(880\) 0 0
\(881\) −454.861 −0.516301 −0.258151 0.966105i \(-0.583113\pi\)
−0.258151 + 0.966105i \(0.583113\pi\)
\(882\) 1884.18 1884.18i 2.13626 2.13626i
\(883\) 1004.76 + 1004.76i 1.13789 + 1.13789i 0.988828 + 0.149060i \(0.0476249\pi\)
0.149060 + 0.988828i \(0.452375\pi\)
\(884\) 606.501i 0.686087i
\(885\) 0 0
\(886\) 499.572 0.563851
\(887\) −541.833 + 541.833i −0.610861 + 0.610861i −0.943170 0.332310i \(-0.892172\pi\)
0.332310 + 0.943170i \(0.392172\pi\)
\(888\) 786.165 + 786.165i 0.885321 + 0.885321i
\(889\) 1427.16i 1.60535i
\(890\) 0 0
\(891\) −70.5072 −0.0791326
\(892\) −1451.88 + 1451.88i −1.62766 + 1.62766i
\(893\) −440.650 440.650i −0.493449 0.493449i
\(894\) 625.016i 0.699123i
\(895\) 0 0
\(896\) 147.273 0.164368
\(897\) 684.918 684.918i 0.763565 0.763565i
\(898\) 1444.86 + 1444.86i 1.60897 + 1.60897i
\(899\) 80.0941i 0.0890924i
\(900\) 0 0
\(901\) −783.793 −0.869914
\(902\) −237.796 + 237.796i −0.263632 + 0.263632i
\(903\) 1599.38 + 1599.38i 1.77119 + 1.77119i
\(904\) 2067.18i 2.28670i
\(905\) 0 0
\(906\) −3474.56 −3.83506
\(907\) −1233.67 + 1233.67i −1.36016 + 1.36016i −0.486454 + 0.873706i \(0.661710\pi\)
−0.873706 + 0.486454i \(0.838290\pi\)
\(908\) 1136.42 + 1136.42i 1.25156 + 1.25156i
\(909\) 1388.91i 1.52796i
\(910\) 0 0
\(911\) 1576.82 1.73087 0.865434 0.501024i \(-0.167043\pi\)
0.865434 + 0.501024i \(0.167043\pi\)
\(912\) −3468.36 + 3468.36i −3.80303 + 3.80303i
\(913\) 263.230 + 263.230i 0.288314 + 0.288314i
\(914\) 1198.39i 1.31115i
\(915\) 0 0
\(916\) 3646.18 3.98055
\(917\) 732.316 732.316i 0.798600 0.798600i
\(918\) −1005.14 1005.14i −1.09492 1.09492i
\(919\) 288.943i 0.314410i −0.987566 0.157205i \(-0.949752\pi\)
0.987566 0.157205i \(-0.0502483\pi\)
\(920\) 0 0
\(921\) 2976.17 3.23146
\(922\) 40.6784 40.6784i 0.0441197 0.0441197i
\(923\) 284.455 + 284.455i 0.308185 + 0.308185i
\(924\) 1559.07i 1.68731i
\(925\) 0 0
\(926\) 2431.86 2.62620
\(927\) 991.058 991.058i 1.06910 1.06910i
\(928\) 1369.27 + 1369.27i 1.47551 + 1.47551i
\(929\) 264.227i 0.284421i −0.989836 0.142211i \(-0.954579\pi\)
0.989836 0.142211i \(-0.0454210\pi\)
\(930\) 0 0
\(931\) 1155.02 1.24062
\(932\) −2501.23 + 2501.23i −2.68372 + 2.68372i
\(933\) −112.402 112.402i −0.120474 0.120474i
\(934\) 800.730i 0.857313i
\(935\) 0 0
\(936\) 1745.94 1.86532
\(937\) 372.874 372.874i 0.397944 0.397944i −0.479563 0.877507i \(-0.659205\pi\)
0.877507 + 0.479563i \(0.159205\pi\)
\(938\) 195.047 + 195.047i 0.207939 + 0.207939i
\(939\) 237.415i 0.252838i
\(940\) 0 0
\(941\) −1180.10 −1.25409 −0.627047 0.778981i \(-0.715737\pi\)
−0.627047 + 0.778981i \(0.715737\pi\)
\(942\) −31.4008 + 31.4008i −0.0333341 + 0.0333341i
\(943\) −714.568 714.568i −0.757761 0.757761i
\(944\) 1757.62i 1.86188i
\(945\) 0 0
\(946\) −574.520 −0.607315
\(947\) 101.650 101.650i 0.107339 0.107339i −0.651398 0.758737i \(-0.725817\pi\)
0.758737 + 0.651398i \(0.225817\pi\)
\(948\) −2729.95 2729.95i −2.87970 2.87970i
\(949\) 158.080i 0.166575i
\(950\) 0 0
\(951\) 450.981 0.474218
\(952\) −1722.97 + 1722.97i −1.80984 + 1.80984i
\(953\) −892.133 892.133i −0.936131 0.936131i 0.0619483 0.998079i \(-0.480269\pi\)
−0.998079 + 0.0619483i \(0.980269\pi\)
\(954\) 3834.30i 4.01918i
\(955\) 0 0
\(956\) −1065.30 −1.11433
\(957\) −363.634 + 363.634i −0.379973 + 0.379973i
\(958\) −422.391 422.391i −0.440909 0.440909i
\(959\) 1256.82i 1.31055i
\(960\) 0 0
\(961\) −954.444 −0.993178
\(962\) 146.801 146.801i 0.152600 0.152600i
\(963\) 1193.66 + 1193.66i 1.23952 + 1.23952i
\(964\) 1023.03i 1.06123i
\(965\) 0 0
\(966\) −6613.03 −6.84578
\(967\) 19.5447 19.5447i 0.0202117 0.0202117i −0.696929 0.717140i \(-0.745451\pi\)
0.717140 + 0.696929i \(0.245451\pi\)
\(968\) −164.779 164.779i −0.170227 0.170227i
\(969\) 1460.42i 1.50714i
\(970\) 0 0
\(971\) −954.386 −0.982890 −0.491445 0.870909i \(-0.663531\pi\)
−0.491445 + 0.870909i \(0.663531\pi\)
\(972\) −1289.61 + 1289.61i −1.32676 + 1.32676i
\(973\) 595.944 + 595.944i 0.612481 + 0.612481i
\(974\) 3322.70i 3.41139i
\(975\) 0 0
\(976\) −20.4102 −0.0209121
\(977\) 579.740 579.740i 0.593388 0.593388i −0.345157 0.938545i \(-0.612174\pi\)
0.938545 + 0.345157i \(0.112174\pi\)
\(978\) 3268.10 + 3268.10i 3.34162 + 3.34162i
\(979\) 345.401i 0.352810i
\(980\) 0 0
\(981\) −1820.46 −1.85572
\(982\) −21.0350 + 21.0350i −0.0214206 + 0.0214206i
\(983\) 515.818 + 515.818i 0.524738 + 0.524738i 0.918999 0.394260i \(-0.128999\pi\)
−0.394260 + 0.918999i \(0.628999\pi\)
\(984\) 2874.54i 2.92128i
\(985\) 0 0
\(986\) −1365.82 −1.38521
\(987\) 852.628 852.628i 0.863858 0.863858i
\(988\) 909.391 + 909.391i 0.920436 + 0.920436i
\(989\) 1726.41i 1.74561i
\(990\) 0 0
\(991\) −1588.85 −1.60328 −0.801639 0.597809i \(-0.796038\pi\)
−0.801639 + 0.597809i \(0.796038\pi\)
\(992\) 112.073 112.073i 0.112976 0.112976i
\(993\) −1033.33 1033.33i −1.04061 1.04061i
\(994\) 2746.47i 2.76305i
\(995\) 0 0
\(996\) −5407.37 −5.42908
\(997\) −330.956 + 330.956i −0.331951 + 0.331951i −0.853327 0.521376i \(-0.825419\pi\)
0.521376 + 0.853327i \(0.325419\pi\)
\(998\) 2127.71 + 2127.71i 2.13197 + 2.13197i
\(999\) 344.715i 0.345061i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.f.c.243.12 yes 24
5.2 odd 4 inner 275.3.f.c.232.12 yes 24
5.3 odd 4 inner 275.3.f.c.232.1 24
5.4 even 2 inner 275.3.f.c.243.1 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.f.c.232.1 24 5.3 odd 4 inner
275.3.f.c.232.12 yes 24 5.2 odd 4 inner
275.3.f.c.243.1 yes 24 5.4 even 2 inner
275.3.f.c.243.12 yes 24 1.1 even 1 trivial