Properties

Label 275.3.f.c.232.9
Level $275$
Weight $3$
Character 275.232
Analytic conductor $7.493$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(232,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.232"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 232.9
Character \(\chi\) \(=\) 275.232
Dual form 275.3.f.c.243.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.02070 + 1.02070i) q^{2} +(-0.314710 + 0.314710i) q^{3} -1.91636i q^{4} -0.642447 q^{6} +(-6.75035 - 6.75035i) q^{7} +(6.03880 - 6.03880i) q^{8} +8.80192i q^{9} -3.31662 q^{11} +(0.603097 + 0.603097i) q^{12} +(16.4951 - 16.4951i) q^{13} -13.7801i q^{14} +4.66213 q^{16} +(-17.2945 - 17.2945i) q^{17} +(-8.98408 + 8.98408i) q^{18} -28.5631i q^{19} +4.24881 q^{21} +(-3.38527 - 3.38527i) q^{22} +(5.89670 - 5.89670i) q^{23} +3.80095i q^{24} +33.6731 q^{26} +(-5.60244 - 5.60244i) q^{27} +(-12.9361 + 12.9361i) q^{28} +43.9338i q^{29} +36.3584 q^{31} +(-19.3966 - 19.3966i) q^{32} +(1.04378 - 1.04378i) q^{33} -35.3049i q^{34} +16.8676 q^{36} +(21.6303 + 21.6303i) q^{37} +(29.1542 - 29.1542i) q^{38} +10.3824i q^{39} -34.5897 q^{41} +(4.33674 + 4.33674i) q^{42} +(6.04730 - 6.04730i) q^{43} +6.35584i q^{44} +12.0375 q^{46} +(-12.0604 - 12.0604i) q^{47} +(-1.46722 + 1.46722i) q^{48} +42.1345i q^{49} +10.8855 q^{51} +(-31.6106 - 31.6106i) q^{52} +(-40.1140 + 40.1140i) q^{53} -11.4368i q^{54} -81.5281 q^{56} +(8.98910 + 8.98910i) q^{57} +(-44.8431 + 44.8431i) q^{58} +15.3852i q^{59} +116.136 q^{61} +(37.1108 + 37.1108i) q^{62} +(59.4160 - 59.4160i) q^{63} -58.2446i q^{64} +2.13075 q^{66} +(39.2934 + 39.2934i) q^{67} +(-33.1425 + 33.1425i) q^{68} +3.71150i q^{69} -53.8611 q^{71} +(53.1530 + 53.1530i) q^{72} +(-20.3789 + 20.3789i) q^{73} +44.1559i q^{74} -54.7372 q^{76} +(22.3884 + 22.3884i) q^{77} +(-10.5973 + 10.5973i) q^{78} -0.0339654i q^{79} -75.6909 q^{81} +(-35.3056 - 35.3056i) q^{82} +(10.5848 - 10.5848i) q^{83} -8.14224i q^{84} +12.3449 q^{86} +(-13.8264 - 13.8264i) q^{87} +(-20.0284 + 20.0284i) q^{88} +89.4830i q^{89} -222.696 q^{91} +(-11.3002 - 11.3002i) q^{92} +(-11.4423 + 11.4423i) q^{93} -24.6200i q^{94} +12.2086 q^{96} +(23.9332 + 23.9332i) q^{97} +(-43.0065 + 43.0065i) q^{98} -29.1926i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 128 q^{16} - 88 q^{21} + 96 q^{26} + 360 q^{31} + 176 q^{36} - 152 q^{41} + 56 q^{46} - 512 q^{51} - 1048 q^{56} + 784 q^{61} - 440 q^{66} + 728 q^{71} + 1704 q^{76} - 568 q^{81} - 328 q^{86}+ \cdots + 1568 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02070 + 1.02070i 0.510348 + 0.510348i 0.914633 0.404285i \(-0.132480\pi\)
−0.404285 + 0.914633i \(0.632480\pi\)
\(3\) −0.314710 + 0.314710i −0.104903 + 0.104903i −0.757610 0.652707i \(-0.773633\pi\)
0.652707 + 0.757610i \(0.273633\pi\)
\(4\) 1.91636i 0.479090i
\(5\) 0 0
\(6\) −0.642447 −0.107074
\(7\) −6.75035 6.75035i −0.964336 0.964336i 0.0350498 0.999386i \(-0.488841\pi\)
−0.999386 + 0.0350498i \(0.988841\pi\)
\(8\) 6.03880 6.03880i 0.754851 0.754851i
\(9\) 8.80192i 0.977991i
\(10\) 0 0
\(11\) −3.31662 −0.301511
\(12\) 0.603097 + 0.603097i 0.0502581 + 0.0502581i
\(13\) 16.4951 16.4951i 1.26886 1.26886i 0.322178 0.946679i \(-0.395585\pi\)
0.946679 0.322178i \(-0.104415\pi\)
\(14\) 13.7801i 0.984294i
\(15\) 0 0
\(16\) 4.66213 0.291383
\(17\) −17.2945 17.2945i −1.01732 1.01732i −0.999847 0.0174773i \(-0.994437\pi\)
−0.0174773 0.999847i \(-0.505563\pi\)
\(18\) −8.98408 + 8.98408i −0.499116 + 0.499116i
\(19\) 28.5631i 1.50332i −0.659550 0.751661i \(-0.729253\pi\)
0.659550 0.751661i \(-0.270747\pi\)
\(20\) 0 0
\(21\) 4.24881 0.202324
\(22\) −3.38527 3.38527i −0.153876 0.153876i
\(23\) 5.89670 5.89670i 0.256378 0.256378i −0.567201 0.823579i \(-0.691974\pi\)
0.823579 + 0.567201i \(0.191974\pi\)
\(24\) 3.80095i 0.158373i
\(25\) 0 0
\(26\) 33.6731 1.29512
\(27\) −5.60244 5.60244i −0.207498 0.207498i
\(28\) −12.9361 + 12.9361i −0.462003 + 0.462003i
\(29\) 43.9338i 1.51496i 0.652859 + 0.757479i \(0.273569\pi\)
−0.652859 + 0.757479i \(0.726431\pi\)
\(30\) 0 0
\(31\) 36.3584 1.17285 0.586425 0.810003i \(-0.300535\pi\)
0.586425 + 0.810003i \(0.300535\pi\)
\(32\) −19.3966 19.3966i −0.606144 0.606144i
\(33\) 1.04378 1.04378i 0.0316296 0.0316296i
\(34\) 35.3049i 1.03838i
\(35\) 0 0
\(36\) 16.8676 0.468545
\(37\) 21.6303 + 21.6303i 0.584602 + 0.584602i 0.936165 0.351562i \(-0.114349\pi\)
−0.351562 + 0.936165i \(0.614349\pi\)
\(38\) 29.1542 29.1542i 0.767217 0.767217i
\(39\) 10.3824i 0.266215i
\(40\) 0 0
\(41\) −34.5897 −0.843651 −0.421826 0.906677i \(-0.638611\pi\)
−0.421826 + 0.906677i \(0.638611\pi\)
\(42\) 4.33674 + 4.33674i 0.103256 + 0.103256i
\(43\) 6.04730 6.04730i 0.140635 0.140635i −0.633284 0.773919i \(-0.718294\pi\)
0.773919 + 0.633284i \(0.218294\pi\)
\(44\) 6.35584i 0.144451i
\(45\) 0 0
\(46\) 12.0375 0.261684
\(47\) −12.0604 12.0604i −0.256604 0.256604i 0.567068 0.823671i \(-0.308078\pi\)
−0.823671 + 0.567068i \(0.808078\pi\)
\(48\) −1.46722 + 1.46722i −0.0305671 + 0.0305671i
\(49\) 42.1345i 0.859887i
\(50\) 0 0
\(51\) 10.8855 0.213442
\(52\) −31.6106 31.6106i −0.607896 0.607896i
\(53\) −40.1140 + 40.1140i −0.756869 + 0.756869i −0.975751 0.218882i \(-0.929759\pi\)
0.218882 + 0.975751i \(0.429759\pi\)
\(54\) 11.4368i 0.211792i
\(55\) 0 0
\(56\) −81.5281 −1.45586
\(57\) 8.98910 + 8.98910i 0.157703 + 0.157703i
\(58\) −44.8431 + 44.8431i −0.773156 + 0.773156i
\(59\) 15.3852i 0.260766i 0.991464 + 0.130383i \(0.0416207\pi\)
−0.991464 + 0.130383i \(0.958379\pi\)
\(60\) 0 0
\(61\) 116.136 1.90387 0.951936 0.306297i \(-0.0990902\pi\)
0.951936 + 0.306297i \(0.0990902\pi\)
\(62\) 37.1108 + 37.1108i 0.598562 + 0.598562i
\(63\) 59.4160 59.4160i 0.943111 0.943111i
\(64\) 58.2446i 0.910072i
\(65\) 0 0
\(66\) 2.13075 0.0322842
\(67\) 39.2934 + 39.2934i 0.586469 + 0.586469i 0.936673 0.350205i \(-0.113888\pi\)
−0.350205 + 0.936673i \(0.613888\pi\)
\(68\) −33.1425 + 33.1425i −0.487390 + 0.487390i
\(69\) 3.71150i 0.0537899i
\(70\) 0 0
\(71\) −53.8611 −0.758608 −0.379304 0.925272i \(-0.623836\pi\)
−0.379304 + 0.925272i \(0.623836\pi\)
\(72\) 53.1530 + 53.1530i 0.738237 + 0.738237i
\(73\) −20.3789 + 20.3789i −0.279164 + 0.279164i −0.832775 0.553611i \(-0.813249\pi\)
0.553611 + 0.832775i \(0.313249\pi\)
\(74\) 44.1559i 0.596701i
\(75\) 0 0
\(76\) −54.7372 −0.720226
\(77\) 22.3884 + 22.3884i 0.290758 + 0.290758i
\(78\) −10.5973 + 10.5973i −0.135862 + 0.135862i
\(79\) 0.0339654i 0.000429942i −1.00000 0.000214971i \(-0.999932\pi\)
1.00000 0.000214971i \(-6.84274e-5\pi\)
\(80\) 0 0
\(81\) −75.6909 −0.934456
\(82\) −35.3056 35.3056i −0.430556 0.430556i
\(83\) 10.5848 10.5848i 0.127528 0.127528i −0.640462 0.767990i \(-0.721257\pi\)
0.767990 + 0.640462i \(0.221257\pi\)
\(84\) 8.14224i 0.0969314i
\(85\) 0 0
\(86\) 12.3449 0.143546
\(87\) −13.8264 13.8264i −0.158924 0.158924i
\(88\) −20.0284 + 20.0284i −0.227596 + 0.227596i
\(89\) 89.4830i 1.00543i 0.864453 + 0.502713i \(0.167665\pi\)
−0.864453 + 0.502713i \(0.832335\pi\)
\(90\) 0 0
\(91\) −222.696 −2.44721
\(92\) −11.3002 11.3002i −0.122828 0.122828i
\(93\) −11.4423 + 11.4423i −0.123036 + 0.123036i
\(94\) 24.6200i 0.261914i
\(95\) 0 0
\(96\) 12.2086 0.127173
\(97\) 23.9332 + 23.9332i 0.246734 + 0.246734i 0.819629 0.572895i \(-0.194180\pi\)
−0.572895 + 0.819629i \(0.694180\pi\)
\(98\) −43.0065 + 43.0065i −0.438842 + 0.438842i
\(99\) 29.1926i 0.294875i
\(100\) 0 0
\(101\) −54.3047 −0.537670 −0.268835 0.963186i \(-0.586639\pi\)
−0.268835 + 0.963186i \(0.586639\pi\)
\(102\) 11.1108 + 11.1108i 0.108929 + 0.108929i
\(103\) 63.9888 63.9888i 0.621250 0.621250i −0.324601 0.945851i \(-0.605230\pi\)
0.945851 + 0.324601i \(0.105230\pi\)
\(104\) 199.222i 1.91560i
\(105\) 0 0
\(106\) −81.8885 −0.772533
\(107\) 42.1620 + 42.1620i 0.394037 + 0.394037i 0.876124 0.482087i \(-0.160121\pi\)
−0.482087 + 0.876124i \(0.660121\pi\)
\(108\) −10.7363 + 10.7363i −0.0994101 + 0.0994101i
\(109\) 71.8370i 0.659055i −0.944146 0.329527i \(-0.893111\pi\)
0.944146 0.329527i \(-0.106889\pi\)
\(110\) 0 0
\(111\) −13.6145 −0.122654
\(112\) −31.4710 31.4710i −0.280991 0.280991i
\(113\) 133.254 133.254i 1.17924 1.17924i 0.199302 0.979938i \(-0.436132\pi\)
0.979938 0.199302i \(-0.0638676\pi\)
\(114\) 18.3503i 0.160967i
\(115\) 0 0
\(116\) 84.1929 0.725801
\(117\) 145.189 + 145.189i 1.24093 + 1.24093i
\(118\) −15.7036 + 15.7036i −0.133082 + 0.133082i
\(119\) 233.488i 1.96208i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) 118.540 + 118.540i 0.971637 + 0.971637i
\(123\) 10.8857 10.8857i 0.0885019 0.0885019i
\(124\) 69.6757i 0.561901i
\(125\) 0 0
\(126\) 121.291 0.962630
\(127\) −114.645 114.645i −0.902717 0.902717i 0.0929536 0.995670i \(-0.470369\pi\)
−0.995670 + 0.0929536i \(0.970369\pi\)
\(128\) −18.1364 + 18.1364i −0.141690 + 0.141690i
\(129\) 3.80629i 0.0295061i
\(130\) 0 0
\(131\) 246.196 1.87936 0.939679 0.342059i \(-0.111124\pi\)
0.939679 + 0.342059i \(0.111124\pi\)
\(132\) −2.00025 2.00025i −0.0151534 0.0151534i
\(133\) −192.811 + 192.811i −1.44971 + 1.44971i
\(134\) 80.2133i 0.598606i
\(135\) 0 0
\(136\) −208.876 −1.53586
\(137\) −32.0054 32.0054i −0.233616 0.233616i 0.580584 0.814200i \(-0.302824\pi\)
−0.814200 + 0.580584i \(0.802824\pi\)
\(138\) −3.78831 + 3.78831i −0.0274516 + 0.0274516i
\(139\) 26.8398i 0.193092i 0.995329 + 0.0965460i \(0.0307795\pi\)
−0.995329 + 0.0965460i \(0.969221\pi\)
\(140\) 0 0
\(141\) 7.59104 0.0538372
\(142\) −54.9759 54.9759i −0.387154 0.387154i
\(143\) −54.7082 + 54.7082i −0.382575 + 0.382575i
\(144\) 41.0357i 0.284970i
\(145\) 0 0
\(146\) −41.6014 −0.284941
\(147\) −13.2601 13.2601i −0.0902050 0.0902050i
\(148\) 41.4514 41.4514i 0.280077 0.280077i
\(149\) 134.889i 0.905298i 0.891689 + 0.452649i \(0.149521\pi\)
−0.891689 + 0.452649i \(0.850479\pi\)
\(150\) 0 0
\(151\) 197.235 1.30619 0.653096 0.757275i \(-0.273470\pi\)
0.653096 + 0.757275i \(0.273470\pi\)
\(152\) −172.487 172.487i −1.13478 1.13478i
\(153\) 152.225 152.225i 0.994934 0.994934i
\(154\) 45.7035i 0.296776i
\(155\) 0 0
\(156\) 19.8964 0.127541
\(157\) 88.0904 + 88.0904i 0.561085 + 0.561085i 0.929616 0.368530i \(-0.120139\pi\)
−0.368530 + 0.929616i \(0.620139\pi\)
\(158\) 0.0346684 0.0346684i 0.000219420 0.000219420i
\(159\) 25.2486i 0.158796i
\(160\) 0 0
\(161\) −79.6096 −0.494469
\(162\) −77.2575 77.2575i −0.476898 0.476898i
\(163\) −36.8377 + 36.8377i −0.225998 + 0.225998i −0.811019 0.585020i \(-0.801087\pi\)
0.585020 + 0.811019i \(0.301087\pi\)
\(164\) 66.2863i 0.404185i
\(165\) 0 0
\(166\) 21.6077 0.130167
\(167\) 11.6573 + 11.6573i 0.0698042 + 0.0698042i 0.741147 0.671343i \(-0.234282\pi\)
−0.671343 + 0.741147i \(0.734282\pi\)
\(168\) 25.6577 25.6577i 0.152724 0.152724i
\(169\) 375.180i 2.22000i
\(170\) 0 0
\(171\) 251.410 1.47023
\(172\) −11.5888 11.5888i −0.0673767 0.0673767i
\(173\) 60.0469 60.0469i 0.347092 0.347092i −0.511933 0.859025i \(-0.671070\pi\)
0.859025 + 0.511933i \(0.171070\pi\)
\(174\) 28.2251i 0.162213i
\(175\) 0 0
\(176\) −15.4625 −0.0878554
\(177\) −4.84188 4.84188i −0.0273553 0.0273553i
\(178\) −91.3349 + 91.3349i −0.513118 + 0.513118i
\(179\) 185.195i 1.03461i −0.855801 0.517305i \(-0.826935\pi\)
0.855801 0.517305i \(-0.173065\pi\)
\(180\) 0 0
\(181\) 76.9684 0.425240 0.212620 0.977135i \(-0.431800\pi\)
0.212620 + 0.977135i \(0.431800\pi\)
\(182\) −227.305 227.305i −1.24893 1.24893i
\(183\) −36.5492 + 36.5492i −0.199723 + 0.199723i
\(184\) 71.2180i 0.387054i
\(185\) 0 0
\(186\) −23.3583 −0.125582
\(187\) 57.3594 + 57.3594i 0.306735 + 0.306735i
\(188\) −23.1120 + 23.1120i −0.122936 + 0.122936i
\(189\) 75.6369i 0.400195i
\(190\) 0 0
\(191\) 132.807 0.695327 0.347663 0.937619i \(-0.386975\pi\)
0.347663 + 0.937619i \(0.386975\pi\)
\(192\) 18.3302 + 18.3302i 0.0954696 + 0.0954696i
\(193\) −55.9014 + 55.9014i −0.289645 + 0.289645i −0.836940 0.547295i \(-0.815658\pi\)
0.547295 + 0.836940i \(0.315658\pi\)
\(194\) 48.8571i 0.251841i
\(195\) 0 0
\(196\) 80.7448 0.411963
\(197\) −80.7047 80.7047i −0.409669 0.409669i 0.471954 0.881623i \(-0.343549\pi\)
−0.881623 + 0.471954i \(0.843549\pi\)
\(198\) 29.7968 29.7968i 0.150489 0.150489i
\(199\) 110.887i 0.557221i 0.960404 + 0.278610i \(0.0898738\pi\)
−0.960404 + 0.278610i \(0.910126\pi\)
\(200\) 0 0
\(201\) −24.7321 −0.123045
\(202\) −55.4286 55.4286i −0.274399 0.274399i
\(203\) 296.569 296.569i 1.46093 1.46093i
\(204\) 20.8606i 0.102258i
\(205\) 0 0
\(206\) 130.626 0.634108
\(207\) 51.9022 + 51.9022i 0.250735 + 0.250735i
\(208\) 76.9025 76.9025i 0.369724 0.369724i
\(209\) 94.7331i 0.453268i
\(210\) 0 0
\(211\) 302.264 1.43253 0.716266 0.697827i \(-0.245850\pi\)
0.716266 + 0.697827i \(0.245850\pi\)
\(212\) 76.8729 + 76.8729i 0.362608 + 0.362608i
\(213\) 16.9506 16.9506i 0.0795805 0.0795805i
\(214\) 86.0691i 0.402192i
\(215\) 0 0
\(216\) −67.6641 −0.313260
\(217\) −245.432 245.432i −1.13102 1.13102i
\(218\) 73.3237 73.3237i 0.336347 0.336347i
\(219\) 12.8269i 0.0585704i
\(220\) 0 0
\(221\) −570.551 −2.58168
\(222\) −13.8963 13.8963i −0.0625960 0.0625960i
\(223\) −91.6277 + 91.6277i −0.410887 + 0.410887i −0.882047 0.471161i \(-0.843835\pi\)
0.471161 + 0.882047i \(0.343835\pi\)
\(224\) 261.868i 1.16905i
\(225\) 0 0
\(226\) 272.024 1.20365
\(227\) 74.4106 + 74.4106i 0.327800 + 0.327800i 0.851749 0.523949i \(-0.175542\pi\)
−0.523949 + 0.851749i \(0.675542\pi\)
\(228\) 17.2263 17.2263i 0.0755541 0.0755541i
\(229\) 248.036i 1.08313i −0.840660 0.541563i \(-0.817833\pi\)
0.840660 0.541563i \(-0.182167\pi\)
\(230\) 0 0
\(231\) −14.0917 −0.0610030
\(232\) 265.308 + 265.308i 1.14357 + 1.14357i
\(233\) 34.7612 34.7612i 0.149189 0.149189i −0.628566 0.777756i \(-0.716358\pi\)
0.777756 + 0.628566i \(0.216358\pi\)
\(234\) 296.387i 1.26661i
\(235\) 0 0
\(236\) 29.4836 0.124930
\(237\) 0.0106893 + 0.0106893i 4.51024e−5 + 4.51024e-5i
\(238\) −238.320 + 238.320i −1.00135 + 1.00135i
\(239\) 288.165i 1.20571i −0.797851 0.602855i \(-0.794030\pi\)
0.797851 0.602855i \(-0.205970\pi\)
\(240\) 0 0
\(241\) 47.2232 0.195947 0.0979735 0.995189i \(-0.468764\pi\)
0.0979735 + 0.995189i \(0.468764\pi\)
\(242\) 11.2277 + 11.2277i 0.0463953 + 0.0463953i
\(243\) 74.2427 74.2427i 0.305525 0.305525i
\(244\) 222.559i 0.912125i
\(245\) 0 0
\(246\) 22.2220 0.0903335
\(247\) −471.152 471.152i −1.90750 1.90750i
\(248\) 219.561 219.561i 0.885327 0.885327i
\(249\) 6.66229i 0.0267562i
\(250\) 0 0
\(251\) 243.921 0.971795 0.485897 0.874016i \(-0.338493\pi\)
0.485897 + 0.874016i \(0.338493\pi\)
\(252\) −113.862 113.862i −0.451835 0.451835i
\(253\) −19.5571 + 19.5571i −0.0773009 + 0.0773009i
\(254\) 234.035i 0.921400i
\(255\) 0 0
\(256\) −270.002 −1.05469
\(257\) 200.441 + 200.441i 0.779925 + 0.779925i 0.979818 0.199893i \(-0.0640593\pi\)
−0.199893 + 0.979818i \(0.564059\pi\)
\(258\) −3.88507 + 3.88507i −0.0150584 + 0.0150584i
\(259\) 292.024i 1.12751i
\(260\) 0 0
\(261\) −386.702 −1.48162
\(262\) 251.291 + 251.291i 0.959126 + 0.959126i
\(263\) 31.8630 31.8630i 0.121152 0.121152i −0.643931 0.765083i \(-0.722698\pi\)
0.765083 + 0.643931i \(0.222698\pi\)
\(264\) 12.6063i 0.0477512i
\(265\) 0 0
\(266\) −393.603 −1.47971
\(267\) −28.1612 28.1612i −0.105473 0.105473i
\(268\) 75.3003 75.3003i 0.280971 0.280971i
\(269\) 140.105i 0.520838i 0.965496 + 0.260419i \(0.0838607\pi\)
−0.965496 + 0.260419i \(0.916139\pi\)
\(270\) 0 0
\(271\) −418.468 −1.54416 −0.772081 0.635524i \(-0.780784\pi\)
−0.772081 + 0.635524i \(0.780784\pi\)
\(272\) −80.6293 80.6293i −0.296431 0.296431i
\(273\) 70.0847 70.0847i 0.256720 0.256720i
\(274\) 65.3357i 0.238451i
\(275\) 0 0
\(276\) 7.11257 0.0257702
\(277\) 151.640 + 151.640i 0.547436 + 0.547436i 0.925698 0.378263i \(-0.123478\pi\)
−0.378263 + 0.925698i \(0.623478\pi\)
\(278\) −27.3953 + 27.3953i −0.0985441 + 0.0985441i
\(279\) 320.023i 1.14704i
\(280\) 0 0
\(281\) 158.386 0.563651 0.281825 0.959466i \(-0.409060\pi\)
0.281825 + 0.959466i \(0.409060\pi\)
\(282\) 7.74815 + 7.74815i 0.0274757 + 0.0274757i
\(283\) −5.72303 + 5.72303i −0.0202227 + 0.0202227i −0.717146 0.696923i \(-0.754552\pi\)
0.696923 + 0.717146i \(0.254552\pi\)
\(284\) 103.217i 0.363441i
\(285\) 0 0
\(286\) −111.681 −0.390493
\(287\) 233.493 + 233.493i 0.813563 + 0.813563i
\(288\) 170.727 170.727i 0.592803 0.592803i
\(289\) 309.201i 1.06990i
\(290\) 0 0
\(291\) −15.0640 −0.0517665
\(292\) 39.0534 + 39.0534i 0.133744 + 0.133744i
\(293\) −385.663 + 385.663i −1.31626 + 1.31626i −0.399540 + 0.916716i \(0.630830\pi\)
−0.916716 + 0.399540i \(0.869170\pi\)
\(294\) 27.0691i 0.0920719i
\(295\) 0 0
\(296\) 261.242 0.882575
\(297\) 18.5812 + 18.5812i 0.0625630 + 0.0625630i
\(298\) −137.681 + 137.681i −0.462017 + 0.462017i
\(299\) 194.534i 0.650615i
\(300\) 0 0
\(301\) −81.6428 −0.271239
\(302\) 201.317 + 201.317i 0.666612 + 0.666612i
\(303\) 17.0902 17.0902i 0.0564034 0.0564034i
\(304\) 133.165i 0.438043i
\(305\) 0 0
\(306\) 310.751 1.01553
\(307\) −98.5870 98.5870i −0.321130 0.321130i 0.528070 0.849201i \(-0.322916\pi\)
−0.849201 + 0.528070i \(0.822916\pi\)
\(308\) 42.9042 42.9042i 0.139299 0.139299i
\(309\) 40.2758i 0.130342i
\(310\) 0 0
\(311\) 156.521 0.503282 0.251641 0.967821i \(-0.419030\pi\)
0.251641 + 0.967821i \(0.419030\pi\)
\(312\) 62.6971 + 62.6971i 0.200952 + 0.200952i
\(313\) −290.660 + 290.660i −0.928625 + 0.928625i −0.997617 0.0689921i \(-0.978022\pi\)
0.0689921 + 0.997617i \(0.478022\pi\)
\(314\) 179.827i 0.572698i
\(315\) 0 0
\(316\) −0.0650900 −0.000205981
\(317\) 31.1725 + 31.1725i 0.0983359 + 0.0983359i 0.754563 0.656227i \(-0.227849\pi\)
−0.656227 + 0.754563i \(0.727849\pi\)
\(318\) 25.7711 25.7711i 0.0810413 0.0810413i
\(319\) 145.712i 0.456777i
\(320\) 0 0
\(321\) −26.5376 −0.0826716
\(322\) −81.2572 81.2572i −0.252351 0.252351i
\(323\) −493.985 + 493.985i −1.52937 + 1.52937i
\(324\) 145.051i 0.447688i
\(325\) 0 0
\(326\) −75.2002 −0.230676
\(327\) 22.6078 + 22.6078i 0.0691371 + 0.0691371i
\(328\) −208.880 + 208.880i −0.636831 + 0.636831i
\(329\) 162.824i 0.494904i
\(330\) 0 0
\(331\) −504.338 −1.52368 −0.761841 0.647765i \(-0.775704\pi\)
−0.761841 + 0.647765i \(0.775704\pi\)
\(332\) −20.2843 20.2843i −0.0610972 0.0610972i
\(333\) −190.388 + 190.388i −0.571736 + 0.571736i
\(334\) 23.7971i 0.0712489i
\(335\) 0 0
\(336\) 19.8085 0.0589539
\(337\) 352.350 + 352.350i 1.04555 + 1.04555i 0.998912 + 0.0466376i \(0.0148506\pi\)
0.0466376 + 0.998912i \(0.485149\pi\)
\(338\) 382.944 382.944i 1.13297 1.13297i
\(339\) 83.8729i 0.247413i
\(340\) 0 0
\(341\) −120.587 −0.353628
\(342\) 256.613 + 256.613i 0.750331 + 0.750331i
\(343\) −46.3448 + 46.3448i −0.135116 + 0.135116i
\(344\) 73.0369i 0.212317i
\(345\) 0 0
\(346\) 122.579 0.354276
\(347\) −475.747 475.747i −1.37103 1.37103i −0.858923 0.512105i \(-0.828866\pi\)
−0.512105 0.858923i \(-0.671134\pi\)
\(348\) −26.4964 + 26.4964i −0.0761390 + 0.0761390i
\(349\) 131.927i 0.378014i 0.981976 + 0.189007i \(0.0605270\pi\)
−0.981976 + 0.189007i \(0.939473\pi\)
\(350\) 0 0
\(351\) −184.826 −0.526570
\(352\) 64.3312 + 64.3312i 0.182759 + 0.182759i
\(353\) −186.502 + 186.502i −0.528334 + 0.528334i −0.920075 0.391741i \(-0.871873\pi\)
0.391741 + 0.920075i \(0.371873\pi\)
\(354\) 9.88418i 0.0279214i
\(355\) 0 0
\(356\) 171.482 0.481690
\(357\) −73.4811 73.4811i −0.205829 0.205829i
\(358\) 189.028 189.028i 0.528011 0.528011i
\(359\) 426.565i 1.18820i 0.804390 + 0.594101i \(0.202492\pi\)
−0.804390 + 0.594101i \(0.797508\pi\)
\(360\) 0 0
\(361\) −454.851 −1.25997
\(362\) 78.5613 + 78.5613i 0.217020 + 0.217020i
\(363\) −3.46181 + 3.46181i −0.00953667 + 0.00953667i
\(364\) 426.765i 1.17243i
\(365\) 0 0
\(366\) −74.6113 −0.203856
\(367\) −314.261 314.261i −0.856297 0.856297i 0.134603 0.990900i \(-0.457024\pi\)
−0.990900 + 0.134603i \(0.957024\pi\)
\(368\) 27.4912 27.4912i 0.0747043 0.0747043i
\(369\) 304.456i 0.825083i
\(370\) 0 0
\(371\) 541.568 1.45975
\(372\) 21.9276 + 21.9276i 0.0589453 + 0.0589453i
\(373\) 37.7552 37.7552i 0.101220 0.101220i −0.654683 0.755903i \(-0.727198\pi\)
0.755903 + 0.654683i \(0.227198\pi\)
\(374\) 117.093i 0.313083i
\(375\) 0 0
\(376\) −145.660 −0.387395
\(377\) 724.694 + 724.694i 1.92227 + 1.92227i
\(378\) −77.2023 + 77.2023i −0.204239 + 0.204239i
\(379\) 362.907i 0.957539i −0.877941 0.478770i \(-0.841083\pi\)
0.877941 0.478770i \(-0.158917\pi\)
\(380\) 0 0
\(381\) 72.1599 0.189396
\(382\) 135.556 + 135.556i 0.354859 + 0.354859i
\(383\) 128.471 128.471i 0.335435 0.335435i −0.519211 0.854646i \(-0.673774\pi\)
0.854646 + 0.519211i \(0.173774\pi\)
\(384\) 11.4154i 0.0297276i
\(385\) 0 0
\(386\) −114.117 −0.295639
\(387\) 53.2278 + 53.2278i 0.137540 + 0.137540i
\(388\) 45.8646 45.8646i 0.118208 0.118208i
\(389\) 471.776i 1.21279i −0.795163 0.606396i \(-0.792615\pi\)
0.795163 0.606396i \(-0.207385\pi\)
\(390\) 0 0
\(391\) −203.961 −0.521640
\(392\) 254.442 + 254.442i 0.649086 + 0.649086i
\(393\) −77.4803 + 77.4803i −0.197151 + 0.197151i
\(394\) 164.750i 0.418147i
\(395\) 0 0
\(396\) −55.9436 −0.141272
\(397\) −55.2146 55.2146i −0.139080 0.139080i 0.634139 0.773219i \(-0.281355\pi\)
−0.773219 + 0.634139i \(0.781355\pi\)
\(398\) −113.182 + 113.182i −0.284376 + 0.284376i
\(399\) 121.359i 0.304158i
\(400\) 0 0
\(401\) 537.053 1.33928 0.669642 0.742684i \(-0.266447\pi\)
0.669642 + 0.742684i \(0.266447\pi\)
\(402\) −25.2439 25.2439i −0.0627958 0.0627958i
\(403\) 599.736 599.736i 1.48818 1.48818i
\(404\) 104.067i 0.257592i
\(405\) 0 0
\(406\) 605.413 1.49116
\(407\) −71.7396 71.7396i −0.176264 0.176264i
\(408\) 65.7355 65.7355i 0.161116 0.161116i
\(409\) 184.546i 0.451213i 0.974218 + 0.225607i \(0.0724364\pi\)
−0.974218 + 0.225607i \(0.927564\pi\)
\(410\) 0 0
\(411\) 20.1449 0.0490143
\(412\) −122.625 122.625i −0.297635 0.297635i
\(413\) 103.856 103.856i 0.251466 0.251466i
\(414\) 105.953i 0.255925i
\(415\) 0 0
\(416\) −639.899 −1.53822
\(417\) −8.44675 8.44675i −0.0202560 0.0202560i
\(418\) −96.6937 + 96.6937i −0.231325 + 0.231325i
\(419\) 230.898i 0.551070i −0.961291 0.275535i \(-0.911145\pi\)
0.961291 0.275535i \(-0.0888549\pi\)
\(420\) 0 0
\(421\) 309.379 0.734867 0.367433 0.930050i \(-0.380237\pi\)
0.367433 + 0.930050i \(0.380237\pi\)
\(422\) 308.520 + 308.520i 0.731090 + 0.731090i
\(423\) 106.154 106.154i 0.250956 0.250956i
\(424\) 484.482i 1.14265i
\(425\) 0 0
\(426\) 34.6029 0.0812275
\(427\) −783.960 783.960i −1.83597 1.83597i
\(428\) 80.7975 80.7975i 0.188779 0.188779i
\(429\) 34.4344i 0.0802668i
\(430\) 0 0
\(431\) 362.971 0.842161 0.421080 0.907023i \(-0.361651\pi\)
0.421080 + 0.907023i \(0.361651\pi\)
\(432\) −26.1193 26.1193i −0.0604614 0.0604614i
\(433\) −71.7028 + 71.7028i −0.165595 + 0.165595i −0.785040 0.619445i \(-0.787358\pi\)
0.619445 + 0.785040i \(0.287358\pi\)
\(434\) 501.022i 1.15443i
\(435\) 0 0
\(436\) −137.665 −0.315746
\(437\) −168.428 168.428i −0.385419 0.385419i
\(438\) 13.0924 13.0924i 0.0298913 0.0298913i
\(439\) 162.771i 0.370777i −0.982665 0.185388i \(-0.940646\pi\)
0.982665 0.185388i \(-0.0593543\pi\)
\(440\) 0 0
\(441\) −370.864 −0.840961
\(442\) −582.359 582.359i −1.31755 1.31755i
\(443\) −260.937 + 260.937i −0.589022 + 0.589022i −0.937367 0.348344i \(-0.886744\pi\)
0.348344 + 0.937367i \(0.386744\pi\)
\(444\) 26.0903i 0.0587620i
\(445\) 0 0
\(446\) −187.048 −0.419390
\(447\) −42.4510 42.4510i −0.0949688 0.0949688i
\(448\) −393.171 + 393.171i −0.877615 + 0.877615i
\(449\) 375.138i 0.835496i 0.908563 + 0.417748i \(0.137180\pi\)
−0.908563 + 0.417748i \(0.862820\pi\)
\(450\) 0 0
\(451\) 114.721 0.254370
\(452\) −255.363 255.363i −0.564962 0.564962i
\(453\) −62.0718 + 62.0718i −0.137024 + 0.137024i
\(454\) 151.901i 0.334584i
\(455\) 0 0
\(456\) 108.567 0.238085
\(457\) −202.644 202.644i −0.443423 0.443423i 0.449738 0.893161i \(-0.351517\pi\)
−0.893161 + 0.449738i \(0.851517\pi\)
\(458\) 253.169 253.169i 0.552771 0.552771i
\(459\) 193.783i 0.422185i
\(460\) 0 0
\(461\) −234.312 −0.508268 −0.254134 0.967169i \(-0.581791\pi\)
−0.254134 + 0.967169i \(0.581791\pi\)
\(462\) −14.3833 14.3833i −0.0311328 0.0311328i
\(463\) −438.590 + 438.590i −0.947279 + 0.947279i −0.998678 0.0513990i \(-0.983632\pi\)
0.0513990 + 0.998678i \(0.483632\pi\)
\(464\) 204.825i 0.441434i
\(465\) 0 0
\(466\) 70.9611 0.152277
\(467\) 355.965 + 355.965i 0.762238 + 0.762238i 0.976726 0.214489i \(-0.0688085\pi\)
−0.214489 + 0.976726i \(0.568809\pi\)
\(468\) 278.234 278.234i 0.594517 0.594517i
\(469\) 530.489i 1.13111i
\(470\) 0 0
\(471\) −55.4459 −0.117719
\(472\) 92.9083 + 92.9083i 0.196840 + 0.196840i
\(473\) −20.0566 + 20.0566i −0.0424030 + 0.0424030i
\(474\) 0.0218210i 4.60358e-5i
\(475\) 0 0
\(476\) 447.447 0.940015
\(477\) −353.080 353.080i −0.740211 0.740211i
\(478\) 294.128 294.128i 0.615331 0.615331i
\(479\) 497.329i 1.03827i −0.854694 0.519133i \(-0.826255\pi\)
0.854694 0.519133i \(-0.173745\pi\)
\(480\) 0 0
\(481\) 713.590 1.48355
\(482\) 48.2006 + 48.2006i 0.100001 + 0.100001i
\(483\) 25.0539 25.0539i 0.0518715 0.0518715i
\(484\) 21.0799i 0.0435536i
\(485\) 0 0
\(486\) 151.558 0.311849
\(487\) −384.072 384.072i −0.788648 0.788648i 0.192625 0.981273i \(-0.438300\pi\)
−0.981273 + 0.192625i \(0.938300\pi\)
\(488\) 701.324 701.324i 1.43714 1.43714i
\(489\) 23.1864i 0.0474160i
\(490\) 0 0
\(491\) −579.880 −1.18102 −0.590509 0.807031i \(-0.701073\pi\)
−0.590509 + 0.807031i \(0.701073\pi\)
\(492\) −20.8610 20.8610i −0.0424003 0.0424003i
\(493\) 759.814 759.814i 1.54120 1.54120i
\(494\) 961.807i 1.94698i
\(495\) 0 0
\(496\) 169.507 0.341749
\(497\) 363.582 + 363.582i 0.731553 + 0.731553i
\(498\) −6.80017 + 6.80017i −0.0136550 + 0.0136550i
\(499\) 488.110i 0.978175i 0.872235 + 0.489088i \(0.162670\pi\)
−0.872235 + 0.489088i \(0.837330\pi\)
\(500\) 0 0
\(501\) −7.33734 −0.0146454
\(502\) 248.969 + 248.969i 0.495954 + 0.495954i
\(503\) 168.826 168.826i 0.335637 0.335637i −0.519085 0.854723i \(-0.673727\pi\)
0.854723 + 0.519085i \(0.173727\pi\)
\(504\) 717.603i 1.42382i
\(505\) 0 0
\(506\) −39.9238 −0.0789008
\(507\) 118.073 + 118.073i 0.232885 + 0.232885i
\(508\) −219.701 + 219.701i −0.432482 + 0.432482i
\(509\) 290.669i 0.571058i −0.958370 0.285529i \(-0.907831\pi\)
0.958370 0.285529i \(-0.0921693\pi\)
\(510\) 0 0
\(511\) 275.130 0.538415
\(512\) −203.044 203.044i −0.396571 0.396571i
\(513\) −160.023 + 160.023i −0.311936 + 0.311936i
\(514\) 409.178i 0.796067i
\(515\) 0 0
\(516\) 7.29422 0.0141361
\(517\) 39.9997 + 39.9997i 0.0773689 + 0.0773689i
\(518\) 298.068 298.068i 0.575421 0.575421i
\(519\) 37.7948i 0.0728223i
\(520\) 0 0
\(521\) −742.193 −1.42456 −0.712278 0.701898i \(-0.752336\pi\)
−0.712278 + 0.701898i \(0.752336\pi\)
\(522\) −394.705 394.705i −0.756140 0.756140i
\(523\) 494.178 494.178i 0.944891 0.944891i −0.0536681 0.998559i \(-0.517091\pi\)
0.998559 + 0.0536681i \(0.0170913\pi\)
\(524\) 471.799i 0.900381i
\(525\) 0 0
\(526\) 65.0450 0.123660
\(527\) −628.800 628.800i −1.19317 1.19317i
\(528\) 4.86622 4.86622i 0.00921632 0.00921632i
\(529\) 459.458i 0.868540i
\(530\) 0 0
\(531\) −135.419 −0.255027
\(532\) 369.495 + 369.495i 0.694539 + 0.694539i
\(533\) −570.562 + 570.562i −1.07047 + 1.07047i
\(534\) 57.4880i 0.107656i
\(535\) 0 0
\(536\) 474.570 0.885393
\(537\) 58.2828 + 58.2828i 0.108534 + 0.108534i
\(538\) −143.005 + 143.005i −0.265809 + 0.265809i
\(539\) 139.744i 0.259266i
\(540\) 0 0
\(541\) −391.118 −0.722955 −0.361477 0.932381i \(-0.617728\pi\)
−0.361477 + 0.932381i \(0.617728\pi\)
\(542\) −427.129 427.129i −0.788060 0.788060i
\(543\) −24.2227 + 24.2227i −0.0446091 + 0.0446091i
\(544\) 670.910i 1.23329i
\(545\) 0 0
\(546\) 143.070 0.262034
\(547\) 210.940 + 210.940i 0.385630 + 0.385630i 0.873126 0.487495i \(-0.162089\pi\)
−0.487495 + 0.873126i \(0.662089\pi\)
\(548\) −61.3339 + 61.3339i −0.111923 + 0.111923i
\(549\) 1022.22i 1.86197i
\(550\) 0 0
\(551\) 1254.89 2.27747
\(552\) 22.4130 + 22.4130i 0.0406033 + 0.0406033i
\(553\) −0.229279 + 0.229279i −0.000414609 + 0.000414609i
\(554\) 309.556i 0.558766i
\(555\) 0 0
\(556\) 51.4347 0.0925084
\(557\) −556.826 556.826i −0.999687 0.999687i 0.000313081 1.00000i \(-0.499900\pi\)
−1.00000 0.000313081i \(0.999900\pi\)
\(558\) −326.646 + 326.646i −0.585388 + 0.585388i
\(559\) 199.502i 0.356891i
\(560\) 0 0
\(561\) −36.1032 −0.0643550
\(562\) 161.664 + 161.664i 0.287658 + 0.287658i
\(563\) 540.463 540.463i 0.959969 0.959969i −0.0392598 0.999229i \(-0.512500\pi\)
0.999229 + 0.0392598i \(0.0125000\pi\)
\(564\) 14.5472i 0.0257928i
\(565\) 0 0
\(566\) −11.6829 −0.0206413
\(567\) 510.940 + 510.940i 0.901129 + 0.901129i
\(568\) −325.257 + 325.257i −0.572635 + 0.572635i
\(569\) 115.520i 0.203022i 0.994834 + 0.101511i \(0.0323678\pi\)
−0.994834 + 0.101511i \(0.967632\pi\)
\(570\) 0 0
\(571\) 445.704 0.780567 0.390284 0.920695i \(-0.372377\pi\)
0.390284 + 0.920695i \(0.372377\pi\)
\(572\) 104.841 + 104.841i 0.183288 + 0.183288i
\(573\) −41.7958 + 41.7958i −0.0729421 + 0.0729421i
\(574\) 476.650i 0.830401i
\(575\) 0 0
\(576\) 512.664 0.890042
\(577\) 175.919 + 175.919i 0.304885 + 0.304885i 0.842922 0.538037i \(-0.180834\pi\)
−0.538037 + 0.842922i \(0.680834\pi\)
\(578\) −315.600 + 315.600i −0.546021 + 0.546021i
\(579\) 35.1855i 0.0607694i
\(580\) 0 0
\(581\) −142.902 −0.245959
\(582\) −15.3758 15.3758i −0.0264189 0.0264189i
\(583\) 133.043 133.043i 0.228205 0.228205i
\(584\) 246.129i 0.421454i
\(585\) 0 0
\(586\) −787.289 −1.34350
\(587\) −200.703 200.703i −0.341913 0.341913i 0.515173 0.857086i \(-0.327728\pi\)
−0.857086 + 0.515173i \(0.827728\pi\)
\(588\) −25.4112 + 25.4112i −0.0432163 + 0.0432163i
\(589\) 1038.51i 1.76317i
\(590\) 0 0
\(591\) 50.7972 0.0859512
\(592\) 100.843 + 100.843i 0.170343 + 0.170343i
\(593\) −455.216 + 455.216i −0.767650 + 0.767650i −0.977692 0.210043i \(-0.932640\pi\)
0.210043 + 0.977692i \(0.432640\pi\)
\(594\) 37.9315i 0.0638578i
\(595\) 0 0
\(596\) 258.496 0.433719
\(597\) −34.8972 34.8972i −0.0584543 0.0584543i
\(598\) 198.560 198.560i 0.332040 0.332040i
\(599\) 816.330i 1.36282i 0.731901 + 0.681411i \(0.238633\pi\)
−0.731901 + 0.681411i \(0.761367\pi\)
\(600\) 0 0
\(601\) 322.902 0.537274 0.268637 0.963241i \(-0.413427\pi\)
0.268637 + 0.963241i \(0.413427\pi\)
\(602\) −83.3325 83.3325i −0.138426 0.138426i
\(603\) −345.857 + 345.857i −0.573561 + 0.573561i
\(604\) 377.973i 0.625783i
\(605\) 0 0
\(606\) 34.8879 0.0575708
\(607\) 587.627 + 587.627i 0.968084 + 0.968084i 0.999506 0.0314218i \(-0.0100035\pi\)
−0.0314218 + 0.999506i \(0.510004\pi\)
\(608\) −554.027 + 554.027i −0.911229 + 0.911229i
\(609\) 186.666i 0.306513i
\(610\) 0 0
\(611\) −397.875 −0.651187
\(612\) −291.717 291.717i −0.476663 0.476663i
\(613\) −373.206 + 373.206i −0.608819 + 0.608819i −0.942637 0.333818i \(-0.891663\pi\)
0.333818 + 0.942637i \(0.391663\pi\)
\(614\) 201.255i 0.327776i
\(615\) 0 0
\(616\) 270.398 0.438958
\(617\) 71.7013 + 71.7013i 0.116210 + 0.116210i 0.762820 0.646611i \(-0.223814\pi\)
−0.646611 + 0.762820i \(0.723814\pi\)
\(618\) −41.1094 + 41.1094i −0.0665200 + 0.0665200i
\(619\) 45.4335i 0.0733983i 0.999326 + 0.0366991i \(0.0116843\pi\)
−0.999326 + 0.0366991i \(0.988316\pi\)
\(620\) 0 0
\(621\) −66.0718 −0.106396
\(622\) 159.760 + 159.760i 0.256849 + 0.256849i
\(623\) 604.042 604.042i 0.969569 0.969569i
\(624\) 48.4040i 0.0775705i
\(625\) 0 0
\(626\) −593.350 −0.947844
\(627\) −29.8135 29.8135i −0.0475494 0.0475494i
\(628\) 168.813 168.813i 0.268810 0.268810i
\(629\) 748.171i 1.18946i
\(630\) 0 0
\(631\) 536.778 0.850678 0.425339 0.905034i \(-0.360155\pi\)
0.425339 + 0.905034i \(0.360155\pi\)
\(632\) −0.205111 0.205111i −0.000324542 0.000324542i
\(633\) −95.1256 + 95.1256i −0.150277 + 0.150277i
\(634\) 63.6353i 0.100371i
\(635\) 0 0
\(636\) −48.3854 −0.0760776
\(637\) 695.014 + 695.014i 1.09107 + 1.09107i
\(638\) 148.728 148.728i 0.233115 0.233115i
\(639\) 474.081i 0.741911i
\(640\) 0 0
\(641\) 241.341 0.376508 0.188254 0.982120i \(-0.439717\pi\)
0.188254 + 0.982120i \(0.439717\pi\)
\(642\) −27.0868 27.0868i −0.0421913 0.0421913i
\(643\) 276.993 276.993i 0.430783 0.430783i −0.458112 0.888895i \(-0.651474\pi\)
0.888895 + 0.458112i \(0.151474\pi\)
\(644\) 152.560i 0.236895i
\(645\) 0 0
\(646\) −1008.42 −1.56102
\(647\) 695.834 + 695.834i 1.07548 + 1.07548i 0.996909 + 0.0785682i \(0.0250348\pi\)
0.0785682 + 0.996909i \(0.474965\pi\)
\(648\) −457.083 + 457.083i −0.705375 + 0.705375i
\(649\) 51.0270i 0.0786240i
\(650\) 0 0
\(651\) 154.480 0.237296
\(652\) 70.5943 + 70.5943i 0.108273 + 0.108273i
\(653\) −520.242 + 520.242i −0.796695 + 0.796695i −0.982573 0.185878i \(-0.940487\pi\)
0.185878 + 0.982573i \(0.440487\pi\)
\(654\) 46.1514i 0.0705679i
\(655\) 0 0
\(656\) −161.262 −0.245826
\(657\) −179.374 179.374i −0.273019 0.273019i
\(658\) −166.193 + 166.193i −0.252573 + 0.252573i
\(659\) 702.435i 1.06591i 0.846143 + 0.532955i \(0.178919\pi\)
−0.846143 + 0.532955i \(0.821081\pi\)
\(660\) 0 0
\(661\) −101.789 −0.153993 −0.0769966 0.997031i \(-0.524533\pi\)
−0.0769966 + 0.997031i \(0.524533\pi\)
\(662\) −514.776 514.776i −0.777608 0.777608i
\(663\) 179.558 179.558i 0.270827 0.270827i
\(664\) 127.839i 0.192529i
\(665\) 0 0
\(666\) −388.657 −0.583568
\(667\) 259.064 + 259.064i 0.388402 + 0.388402i
\(668\) 22.3396 22.3396i 0.0334425 0.0334425i
\(669\) 57.6723i 0.0862068i
\(670\) 0 0
\(671\) −385.180 −0.574039
\(672\) −82.4124 82.4124i −0.122637 0.122637i
\(673\) 840.475 840.475i 1.24885 1.24885i 0.292619 0.956229i \(-0.405473\pi\)
0.956229 0.292619i \(-0.0945267\pi\)
\(674\) 719.285i 1.06719i
\(675\) 0 0
\(676\) −718.979 −1.06358
\(677\) 373.040 + 373.040i 0.551019 + 0.551019i 0.926735 0.375716i \(-0.122603\pi\)
−0.375716 + 0.926735i \(0.622603\pi\)
\(678\) −85.6087 + 85.6087i −0.126267 + 0.126267i
\(679\) 323.115i 0.475869i
\(680\) 0 0
\(681\) −46.8355 −0.0687747
\(682\) −123.083 123.083i −0.180473 0.180473i
\(683\) −465.186 + 465.186i −0.681093 + 0.681093i −0.960246 0.279154i \(-0.909946\pi\)
0.279154 + 0.960246i \(0.409946\pi\)
\(684\) 481.792i 0.704374i
\(685\) 0 0
\(686\) −94.6078 −0.137912
\(687\) 78.0593 + 78.0593i 0.113623 + 0.113623i
\(688\) 28.1933 28.1933i 0.0409787 0.0409787i
\(689\) 1323.37i 1.92072i
\(690\) 0 0
\(691\) 370.066 0.535551 0.267775 0.963481i \(-0.413712\pi\)
0.267775 + 0.963481i \(0.413712\pi\)
\(692\) −115.071 115.071i −0.166288 0.166288i
\(693\) −197.061 + 197.061i −0.284359 + 0.284359i
\(694\) 971.186i 1.39940i
\(695\) 0 0
\(696\) −166.990 −0.239928
\(697\) 598.212 + 598.212i 0.858267 + 0.858267i
\(698\) −134.657 + 134.657i −0.192919 + 0.192919i
\(699\) 21.8794i 0.0313010i
\(700\) 0 0
\(701\) −757.792 −1.08102 −0.540508 0.841339i \(-0.681768\pi\)
−0.540508 + 0.841339i \(0.681768\pi\)
\(702\) −188.651 188.651i −0.268734 0.268734i
\(703\) 617.828 617.828i 0.878845 0.878845i
\(704\) 193.175i 0.274397i
\(705\) 0 0
\(706\) −380.724 −0.539269
\(707\) 366.576 + 366.576i 0.518495 + 0.518495i
\(708\) −9.27878 + 9.27878i −0.0131056 + 0.0131056i
\(709\) 498.939i 0.703723i 0.936052 + 0.351861i \(0.114451\pi\)
−0.936052 + 0.351861i \(0.885549\pi\)
\(710\) 0 0
\(711\) 0.298961 0.000420479
\(712\) 540.370 + 540.370i 0.758947 + 0.758947i
\(713\) 214.394 214.394i 0.300693 0.300693i
\(714\) 150.004i 0.210089i
\(715\) 0 0
\(716\) −354.900 −0.495671
\(717\) 90.6883 + 90.6883i 0.126483 + 0.126483i
\(718\) −435.393 + 435.393i −0.606397 + 0.606397i
\(719\) 1161.66i 1.61566i −0.589416 0.807830i \(-0.700642\pi\)
0.589416 0.807830i \(-0.299358\pi\)
\(720\) 0 0
\(721\) −863.893 −1.19819
\(722\) −464.264 464.264i −0.643026 0.643026i
\(723\) −14.8616 + 14.8616i −0.0205555 + 0.0205555i
\(724\) 147.499i 0.203728i
\(725\) 0 0
\(726\) −7.06691 −0.00973404
\(727\) −1008.36 1008.36i −1.38702 1.38702i −0.831517 0.555499i \(-0.812527\pi\)
−0.555499 0.831517i \(-0.687473\pi\)
\(728\) −1344.82 + 1344.82i −1.84728 + 1.84728i
\(729\) 634.489i 0.870355i
\(730\) 0 0
\(731\) −209.170 −0.286143
\(732\) 70.0414 + 70.0414i 0.0956850 + 0.0956850i
\(733\) 74.9699 74.9699i 0.102278 0.102278i −0.654116 0.756394i \(-0.726959\pi\)
0.756394 + 0.654116i \(0.226959\pi\)
\(734\) 641.530i 0.874019i
\(735\) 0 0
\(736\) −228.752 −0.310804
\(737\) −130.321 130.321i −0.176827 0.176827i
\(738\) 310.757 310.757i 0.421080 0.421080i
\(739\) 1094.78i 1.48144i 0.671815 + 0.740719i \(0.265515\pi\)
−0.671815 + 0.740719i \(0.734485\pi\)
\(740\) 0 0
\(741\) 296.553 0.400206
\(742\) 552.776 + 552.776i 0.744981 + 0.744981i
\(743\) −929.063 + 929.063i −1.25042 + 1.25042i −0.294891 + 0.955531i \(0.595283\pi\)
−0.955531 + 0.294891i \(0.904717\pi\)
\(744\) 138.196i 0.185747i
\(745\) 0 0
\(746\) 77.0732 0.103315
\(747\) 93.1665 + 93.1665i 0.124721 + 0.124721i
\(748\) 109.921 109.921i 0.146954 0.146954i
\(749\) 569.216i 0.759968i
\(750\) 0 0
\(751\) 1375.81 1.83198 0.915988 0.401205i \(-0.131409\pi\)
0.915988 + 0.401205i \(0.131409\pi\)
\(752\) −56.2271 56.2271i −0.0747700 0.0747700i
\(753\) −76.7642 + 76.7642i −0.101945 + 0.101945i
\(754\) 1479.39i 1.96205i
\(755\) 0 0
\(756\) 144.947 0.191729
\(757\) 317.073 + 317.073i 0.418854 + 0.418854i 0.884809 0.465954i \(-0.154289\pi\)
−0.465954 + 0.884809i \(0.654289\pi\)
\(758\) 370.418 370.418i 0.488678 0.488678i
\(759\) 12.3097i 0.0162183i
\(760\) 0 0
\(761\) −683.671 −0.898385 −0.449192 0.893435i \(-0.648288\pi\)
−0.449192 + 0.893435i \(0.648288\pi\)
\(762\) 73.6533 + 73.6533i 0.0966579 + 0.0966579i
\(763\) −484.925 + 484.925i −0.635550 + 0.635550i
\(764\) 254.507i 0.333124i
\(765\) 0 0
\(766\) 262.261 0.342377
\(767\) 253.781 + 253.781i 0.330875 + 0.330875i
\(768\) 84.9723 84.9723i 0.110641 0.110641i
\(769\) 635.630i 0.826567i 0.910603 + 0.413283i \(0.135618\pi\)
−0.910603 + 0.413283i \(0.864382\pi\)
\(770\) 0 0
\(771\) −126.161 −0.163634
\(772\) 107.127 + 107.127i 0.138766 + 0.138766i
\(773\) 966.787 966.787i 1.25069 1.25069i 0.295286 0.955409i \(-0.404585\pi\)
0.955409 0.295286i \(-0.0954148\pi\)
\(774\) 108.659i 0.140386i
\(775\) 0 0
\(776\) 289.056 0.372495
\(777\) 91.9029 + 91.9029i 0.118279 + 0.118279i
\(778\) 481.540 481.540i 0.618946 0.618946i
\(779\) 987.989i 1.26828i
\(780\) 0 0
\(781\) 178.637 0.228729
\(782\) −208.182 208.182i −0.266218 0.266218i
\(783\) 246.137 246.137i 0.314351 0.314351i
\(784\) 196.436i 0.250557i
\(785\) 0 0
\(786\) −158.168 −0.201231
\(787\) −68.3007 68.3007i −0.0867861 0.0867861i 0.662381 0.749167i \(-0.269546\pi\)
−0.749167 + 0.662381i \(0.769546\pi\)
\(788\) −154.659 + 154.659i −0.196268 + 0.196268i
\(789\) 20.0552i 0.0254186i
\(790\) 0 0
\(791\) −1799.02 −2.27437
\(792\) −176.289 176.289i −0.222587 0.222587i
\(793\) 1915.68 1915.68i 2.41574 2.41574i
\(794\) 112.715i 0.141958i
\(795\) 0 0
\(796\) 212.499 0.266959
\(797\) 342.399 + 342.399i 0.429610 + 0.429610i 0.888495 0.458886i \(-0.151751\pi\)
−0.458886 + 0.888495i \(0.651751\pi\)
\(798\) 123.871 123.871i 0.155227 0.155227i
\(799\) 417.157i 0.522098i
\(800\) 0 0
\(801\) −787.622 −0.983298
\(802\) 548.168 + 548.168i 0.683501 + 0.683501i
\(803\) 67.5893 67.5893i 0.0841710 0.0841710i
\(804\) 47.3955i 0.0589496i
\(805\) 0 0
\(806\) 1224.30 1.51898
\(807\) −44.0926 44.0926i −0.0546376 0.0546376i
\(808\) −327.936 + 327.936i −0.405861 + 0.405861i
\(809\) 13.7222i 0.0169619i 0.999964 + 0.00848096i \(0.00269961\pi\)
−0.999964 + 0.00848096i \(0.997300\pi\)
\(810\) 0 0
\(811\) −1099.42 −1.35564 −0.677819 0.735229i \(-0.737075\pi\)
−0.677819 + 0.735229i \(0.737075\pi\)
\(812\) −568.332 568.332i −0.699916 0.699916i
\(813\) 131.696 131.696i 0.161988 0.161988i
\(814\) 146.449i 0.179912i
\(815\) 0 0
\(816\) 50.7497 0.0621933
\(817\) −172.730 172.730i −0.211419 0.211419i
\(818\) −188.366 + 188.366i −0.230276 + 0.230276i
\(819\) 1960.15i 2.39335i
\(820\) 0 0
\(821\) 1490.61 1.81560 0.907801 0.419401i \(-0.137760\pi\)
0.907801 + 0.419401i \(0.137760\pi\)
\(822\) 20.5618 + 20.5618i 0.0250143 + 0.0250143i
\(823\) −715.153 + 715.153i −0.868959 + 0.868959i −0.992357 0.123398i \(-0.960621\pi\)
0.123398 + 0.992357i \(0.460621\pi\)
\(824\) 772.831i 0.937902i
\(825\) 0 0
\(826\) 212.010 0.256671
\(827\) 50.7044 + 50.7044i 0.0613112 + 0.0613112i 0.737098 0.675786i \(-0.236196\pi\)
−0.675786 + 0.737098i \(0.736196\pi\)
\(828\) 99.4633 99.4633i 0.120125 0.120125i
\(829\) 581.423i 0.701355i −0.936496 0.350677i \(-0.885951\pi\)
0.936496 0.350677i \(-0.114049\pi\)
\(830\) 0 0
\(831\) −95.4451 −0.114856
\(832\) −960.753 960.753i −1.15475 1.15475i
\(833\) 728.695 728.695i 0.874784 0.874784i
\(834\) 17.2431i 0.0206752i
\(835\) 0 0
\(836\) 181.543 0.217156
\(837\) −203.696 203.696i −0.243364 0.243364i
\(838\) 235.677 235.677i 0.281237 0.281237i
\(839\) 154.873i 0.184592i −0.995732 0.0922961i \(-0.970579\pi\)
0.995732 0.0922961i \(-0.0294206\pi\)
\(840\) 0 0
\(841\) −1089.18 −1.29510
\(842\) 315.782 + 315.782i 0.375038 + 0.375038i
\(843\) −49.8456 + 49.8456i −0.0591289 + 0.0591289i
\(844\) 579.247i 0.686312i
\(845\) 0 0
\(846\) 216.703 0.256150
\(847\) −74.2539 74.2539i −0.0876669 0.0876669i
\(848\) −187.017 + 187.017i −0.220539 + 0.220539i
\(849\) 3.60219i 0.00424286i
\(850\) 0 0
\(851\) 255.095 0.299759
\(852\) −32.4835 32.4835i −0.0381262 0.0381262i
\(853\) −683.375 + 683.375i −0.801143 + 0.801143i −0.983274 0.182131i \(-0.941700\pi\)
0.182131 + 0.983274i \(0.441700\pi\)
\(854\) 1600.37i 1.87397i
\(855\) 0 0
\(856\) 509.216 0.594878
\(857\) 26.2520 + 26.2520i 0.0306324 + 0.0306324i 0.722257 0.691625i \(-0.243105\pi\)
−0.691625 + 0.722257i \(0.743105\pi\)
\(858\) 35.1471 35.1471i 0.0409640 0.0409640i
\(859\) 1173.28i 1.36587i 0.730481 + 0.682933i \(0.239296\pi\)
−0.730481 + 0.682933i \(0.760704\pi\)
\(860\) 0 0
\(861\) −146.965 −0.170691
\(862\) 370.483 + 370.483i 0.429795 + 0.429795i
\(863\) −310.953 + 310.953i −0.360316 + 0.360316i −0.863929 0.503613i \(-0.832004\pi\)
0.503613 + 0.863929i \(0.332004\pi\)
\(864\) 217.337i 0.251547i
\(865\) 0 0
\(866\) −146.374 −0.169023
\(867\) −97.3086 97.3086i −0.112236 0.112236i
\(868\) −470.335 + 470.335i −0.541861 + 0.541861i
\(869\) 0.112651i 0.000129632i
\(870\) 0 0
\(871\) 1296.30 1.48829
\(872\) −433.809 433.809i −0.497488 0.497488i
\(873\) −210.658 + 210.658i −0.241304 + 0.241304i
\(874\) 343.828i 0.393395i
\(875\) 0 0
\(876\) −24.5810 −0.0280605
\(877\) 381.058 + 381.058i 0.434502 + 0.434502i 0.890157 0.455654i \(-0.150595\pi\)
−0.455654 + 0.890157i \(0.650595\pi\)
\(878\) 166.140 166.140i 0.189225 0.189225i
\(879\) 242.744i 0.276159i
\(880\) 0 0
\(881\) 1023.66 1.16193 0.580967 0.813927i \(-0.302674\pi\)
0.580967 + 0.813927i \(0.302674\pi\)
\(882\) −378.539 378.539i −0.429183 0.429183i
\(883\) 517.278 517.278i 0.585819 0.585819i −0.350677 0.936496i \(-0.614049\pi\)
0.936496 + 0.350677i \(0.114049\pi\)
\(884\) 1093.38i 1.23686i
\(885\) 0 0
\(886\) −532.674 −0.601213
\(887\) −356.870 356.870i −0.402334 0.402334i 0.476721 0.879055i \(-0.341825\pi\)
−0.879055 + 0.476721i \(0.841825\pi\)
\(888\) −82.2156 + 82.2156i −0.0925851 + 0.0925851i
\(889\) 1547.79i 1.74104i
\(890\) 0 0
\(891\) 251.038 0.281749
\(892\) 175.592 + 175.592i 0.196852 + 0.196852i
\(893\) −344.482 + 344.482i −0.385758 + 0.385758i
\(894\) 86.6592i 0.0969343i
\(895\) 0 0
\(896\) 244.854 0.273274
\(897\) 61.2217 + 61.2217i 0.0682517 + 0.0682517i
\(898\) −382.902 + 382.902i −0.426394 + 0.426394i
\(899\) 1597.36i 1.77682i
\(900\) 0 0
\(901\) 1387.51 1.53996
\(902\) 117.095 + 117.095i 0.129817 + 0.129817i
\(903\) 25.6938 25.6938i 0.0284538 0.0284538i
\(904\) 1609.39i 1.78030i
\(905\) 0 0
\(906\) −126.713 −0.139860
\(907\) −1013.93 1013.93i −1.11789 1.11789i −0.992050 0.125840i \(-0.959837\pi\)
−0.125840 0.992050i \(-0.540163\pi\)
\(908\) 142.597 142.597i 0.157046 0.157046i
\(909\) 477.985i 0.525837i
\(910\) 0 0
\(911\) 875.724 0.961278 0.480639 0.876919i \(-0.340405\pi\)
0.480639 + 0.876919i \(0.340405\pi\)
\(912\) 41.9084 + 41.9084i 0.0459521 + 0.0459521i
\(913\) −35.1058 + 35.1058i −0.0384511 + 0.0384511i
\(914\) 413.676i 0.452600i
\(915\) 0 0
\(916\) −475.325 −0.518914
\(917\) −1661.91 1661.91i −1.81233 1.81233i
\(918\) −197.794 + 197.794i −0.215461 + 0.215461i
\(919\) 941.570i 1.02456i 0.858819 + 0.512280i \(0.171199\pi\)
−0.858819 + 0.512280i \(0.828801\pi\)
\(920\) 0 0
\(921\) 62.0526 0.0673753
\(922\) −239.161 239.161i −0.259394 0.259394i
\(923\) −888.447 + 888.447i −0.962565 + 0.962565i
\(924\) 27.0048i 0.0292259i
\(925\) 0 0
\(926\) −895.335 −0.966884
\(927\) 563.224 + 563.224i 0.607577 + 0.607577i
\(928\) 852.166 852.166i 0.918283 0.918283i
\(929\) 466.840i 0.502519i 0.967920 + 0.251259i \(0.0808447\pi\)
−0.967920 + 0.251259i \(0.919155\pi\)
\(930\) 0 0
\(931\) 1203.49 1.29269
\(932\) −66.6148 66.6148i −0.0714752 0.0714752i
\(933\) −49.2586 + 49.2586i −0.0527959 + 0.0527959i
\(934\) 726.664i 0.778013i
\(935\) 0 0
\(936\) 1753.53 1.87343
\(937\) −704.534 704.534i −0.751904 0.751904i 0.222930 0.974834i \(-0.428438\pi\)
−0.974834 + 0.222930i \(0.928438\pi\)
\(938\) 541.468 541.468i 0.577258 0.577258i
\(939\) 182.947i 0.194832i
\(940\) 0 0
\(941\) 786.311 0.835612 0.417806 0.908536i \(-0.362799\pi\)
0.417806 + 0.908536i \(0.362799\pi\)
\(942\) −56.5934 56.5934i −0.0600779 0.0600779i
\(943\) −203.965 + 203.965i −0.216294 + 0.216294i
\(944\) 71.7279i 0.0759830i
\(945\) 0 0
\(946\) −40.9434 −0.0432806
\(947\) −1325.60 1325.60i −1.39979 1.39979i −0.800641 0.599144i \(-0.795508\pi\)
−0.599144 0.800641i \(-0.704492\pi\)
\(948\) 0.0204845 0.0204845i 2.16081e−5 2.16081e-5i
\(949\) 672.307i 0.708438i
\(950\) 0 0
\(951\) −19.6206 −0.0206315
\(952\) 1409.99 + 1409.99i 1.48108 + 1.48108i
\(953\) 468.268 468.268i 0.491363 0.491363i −0.417373 0.908735i \(-0.637049\pi\)
0.908735 + 0.417373i \(0.137049\pi\)
\(954\) 720.776i 0.755530i
\(955\) 0 0
\(956\) −552.227 −0.577643
\(957\) 45.8570 + 45.8570i 0.0479175 + 0.0479175i
\(958\) 507.622 507.622i 0.529877 0.529877i
\(959\) 432.096i 0.450569i
\(960\) 0 0
\(961\) 360.930 0.375578
\(962\) 728.358 + 728.358i 0.757129 + 0.757129i
\(963\) −371.106 + 371.106i −0.385365 + 0.385365i
\(964\) 90.4966i 0.0938762i
\(965\) 0 0
\(966\) 51.1449 0.0529450
\(967\) 747.653 + 747.653i 0.773167 + 0.773167i 0.978659 0.205492i \(-0.0658794\pi\)
−0.205492 + 0.978659i \(0.565879\pi\)
\(968\) 66.4268 66.4268i 0.0686228 0.0686228i
\(969\) 310.924i 0.320871i
\(970\) 0 0
\(971\) −1367.72 −1.40857 −0.704286 0.709917i \(-0.748733\pi\)
−0.704286 + 0.709917i \(0.748733\pi\)
\(972\) −142.276 142.276i −0.146374 0.146374i
\(973\) 181.178 181.178i 0.186206 0.186206i
\(974\) 784.041i 0.804970i
\(975\) 0 0
\(976\) 541.442 0.554756
\(977\) 479.474 + 479.474i 0.490761 + 0.490761i 0.908546 0.417785i \(-0.137193\pi\)
−0.417785 + 0.908546i \(0.637193\pi\)
\(978\) 23.6663 23.6663i 0.0241986 0.0241986i
\(979\) 296.781i 0.303148i
\(980\) 0 0
\(981\) 632.303 0.644549
\(982\) −591.881 591.881i −0.602730 0.602730i
\(983\) 1087.00 1087.00i 1.10580 1.10580i 0.112102 0.993697i \(-0.464242\pi\)
0.993697 0.112102i \(-0.0357584\pi\)
\(984\) 131.474i 0.133611i
\(985\) 0 0
\(986\) 1551.08 1.57310
\(987\) −51.2422 51.2422i −0.0519171 0.0519171i
\(988\) −902.897 + 902.897i −0.913864 + 0.913864i
\(989\) 71.3182i 0.0721114i
\(990\) 0 0
\(991\) 515.451 0.520132 0.260066 0.965591i \(-0.416256\pi\)
0.260066 + 0.965591i \(0.416256\pi\)
\(992\) −705.228 705.228i −0.710916 0.710916i
\(993\) 158.720 158.720i 0.159839 0.159839i
\(994\) 742.213i 0.746693i
\(995\) 0 0
\(996\) 12.7673 0.0128186
\(997\) −121.706 121.706i −0.122072 0.122072i 0.643432 0.765504i \(-0.277510\pi\)
−0.765504 + 0.643432i \(0.777510\pi\)
\(998\) −498.212 + 498.212i −0.499210 + 0.499210i
\(999\) 242.365i 0.242608i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.f.c.232.9 yes 24
5.2 odd 4 inner 275.3.f.c.243.4 yes 24
5.3 odd 4 inner 275.3.f.c.243.9 yes 24
5.4 even 2 inner 275.3.f.c.232.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.f.c.232.4 24 5.4 even 2 inner
275.3.f.c.232.9 yes 24 1.1 even 1 trivial
275.3.f.c.243.4 yes 24 5.2 odd 4 inner
275.3.f.c.243.9 yes 24 5.3 odd 4 inner