Properties

Label 275.3.f.c.232.8
Level $275$
Weight $3$
Character 275.232
Analytic conductor $7.493$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(232,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.232"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 232.8
Character \(\chi\) \(=\) 275.232
Dual form 275.3.f.c.243.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.925034 + 0.925034i) q^{2} +(3.86940 - 3.86940i) q^{3} -2.28862i q^{4} +7.15866 q^{6} +(2.48674 + 2.48674i) q^{7} +(5.81719 - 5.81719i) q^{8} -20.9446i q^{9} -3.31662 q^{11} +(-8.85561 - 8.85561i) q^{12} +(-11.1429 + 11.1429i) q^{13} +4.60065i q^{14} +1.60771 q^{16} +(1.87959 + 1.87959i) q^{17} +(19.3745 - 19.3745i) q^{18} +32.2173i q^{19} +19.2444 q^{21} +(-3.06799 - 3.06799i) q^{22} +(10.9067 - 10.9067i) q^{23} -45.0181i q^{24} -20.6151 q^{26} +(-46.2184 - 46.2184i) q^{27} +(5.69122 - 5.69122i) q^{28} +15.8039i q^{29} +56.3876 q^{31} +(-21.7816 - 21.7816i) q^{32} +(-12.8334 + 12.8334i) q^{33} +3.47738i q^{34} -47.9343 q^{36} +(-43.0478 - 43.0478i) q^{37} +(-29.8021 + 29.8021i) q^{38} +86.2325i q^{39} +41.8566 q^{41} +(17.8018 + 17.8018i) q^{42} +(3.70228 - 3.70228i) q^{43} +7.59051i q^{44} +20.1781 q^{46} +(27.8097 + 27.8097i) q^{47} +(6.22088 - 6.22088i) q^{48} -36.6322i q^{49} +14.5458 q^{51} +(25.5018 + 25.5018i) q^{52} +(14.7508 - 14.7508i) q^{53} -85.5073i q^{54} +28.9317 q^{56} +(124.662 + 124.662i) q^{57} +(-14.6191 + 14.6191i) q^{58} +102.568i q^{59} -34.3345 q^{61} +(52.1605 + 52.1605i) q^{62} +(52.0838 - 52.0838i) q^{63} -46.7283i q^{64} -23.7426 q^{66} +(6.48045 + 6.48045i) q^{67} +(4.30168 - 4.30168i) q^{68} -84.4048i q^{69} -20.3765 q^{71} +(-121.839 - 121.839i) q^{72} +(-44.6499 + 44.6499i) q^{73} -79.6413i q^{74} +73.7332 q^{76} +(-8.24760 - 8.24760i) q^{77} +(-79.7680 + 79.7680i) q^{78} -28.9929i q^{79} -169.174 q^{81} +(38.7188 + 38.7188i) q^{82} +(-99.4392 + 99.4392i) q^{83} -44.0433i q^{84} +6.84948 q^{86} +(61.1515 + 61.1515i) q^{87} +(-19.2934 + 19.2934i) q^{88} +143.090i q^{89} -55.4189 q^{91} +(-24.9613 - 24.9613i) q^{92} +(218.186 - 218.186i) q^{93} +51.4498i q^{94} -168.564 q^{96} +(4.67226 + 4.67226i) q^{97} +(33.8860 - 33.8860i) q^{98} +69.4653i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 128 q^{16} - 88 q^{21} + 96 q^{26} + 360 q^{31} + 176 q^{36} - 152 q^{41} + 56 q^{46} - 512 q^{51} - 1048 q^{56} + 784 q^{61} - 440 q^{66} + 728 q^{71} + 1704 q^{76} - 568 q^{81} - 328 q^{86}+ \cdots + 1568 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.925034 + 0.925034i 0.462517 + 0.462517i 0.899480 0.436963i \(-0.143946\pi\)
−0.436963 + 0.899480i \(0.643946\pi\)
\(3\) 3.86940 3.86940i 1.28980 1.28980i 0.354896 0.934906i \(-0.384516\pi\)
0.934906 0.354896i \(-0.115484\pi\)
\(4\) 2.28862i 0.572156i
\(5\) 0 0
\(6\) 7.15866 1.19311
\(7\) 2.48674 + 2.48674i 0.355249 + 0.355249i 0.862058 0.506809i \(-0.169175\pi\)
−0.506809 + 0.862058i \(0.669175\pi\)
\(8\) 5.81719 5.81719i 0.727149 0.727149i
\(9\) 20.9446i 2.32718i
\(10\) 0 0
\(11\) −3.31662 −0.301511
\(12\) −8.85561 8.85561i −0.737968 0.737968i
\(13\) −11.1429 + 11.1429i −0.857143 + 0.857143i −0.991001 0.133858i \(-0.957264\pi\)
0.133858 + 0.991001i \(0.457264\pi\)
\(14\) 4.60065i 0.328618i
\(15\) 0 0
\(16\) 1.60771 0.100482
\(17\) 1.87959 + 1.87959i 0.110564 + 0.110564i 0.760225 0.649660i \(-0.225089\pi\)
−0.649660 + 0.760225i \(0.725089\pi\)
\(18\) 19.3745 19.3745i 1.07636 1.07636i
\(19\) 32.2173i 1.69565i 0.530280 + 0.847823i \(0.322087\pi\)
−0.530280 + 0.847823i \(0.677913\pi\)
\(20\) 0 0
\(21\) 19.2444 0.916402
\(22\) −3.06799 3.06799i −0.139454 0.139454i
\(23\) 10.9067 10.9067i 0.474204 0.474204i −0.429068 0.903272i \(-0.641158\pi\)
0.903272 + 0.429068i \(0.141158\pi\)
\(24\) 45.0181i 1.87576i
\(25\) 0 0
\(26\) −20.6151 −0.792887
\(27\) −46.2184 46.2184i −1.71179 1.71179i
\(28\) 5.69122 5.69122i 0.203258 0.203258i
\(29\) 15.8039i 0.544961i 0.962161 + 0.272480i \(0.0878440\pi\)
−0.962161 + 0.272480i \(0.912156\pi\)
\(30\) 0 0
\(31\) 56.3876 1.81896 0.909478 0.415753i \(-0.136482\pi\)
0.909478 + 0.415753i \(0.136482\pi\)
\(32\) −21.7816 21.7816i −0.680674 0.680674i
\(33\) −12.8334 + 12.8334i −0.388890 + 0.388890i
\(34\) 3.47738i 0.102276i
\(35\) 0 0
\(36\) −47.9343 −1.33151
\(37\) −43.0478 43.0478i −1.16345 1.16345i −0.983714 0.179739i \(-0.942475\pi\)
−0.179739 0.983714i \(-0.557525\pi\)
\(38\) −29.8021 + 29.8021i −0.784265 + 0.784265i
\(39\) 86.2325i 2.21109i
\(40\) 0 0
\(41\) 41.8566 1.02089 0.510447 0.859909i \(-0.329480\pi\)
0.510447 + 0.859909i \(0.329480\pi\)
\(42\) 17.8018 + 17.8018i 0.423852 + 0.423852i
\(43\) 3.70228 3.70228i 0.0860996 0.0860996i −0.662745 0.748845i \(-0.730609\pi\)
0.748845 + 0.662745i \(0.230609\pi\)
\(44\) 7.59051i 0.172511i
\(45\) 0 0
\(46\) 20.1781 0.438655
\(47\) 27.8097 + 27.8097i 0.591695 + 0.591695i 0.938089 0.346394i \(-0.112594\pi\)
−0.346394 + 0.938089i \(0.612594\pi\)
\(48\) 6.22088 6.22088i 0.129602 0.129602i
\(49\) 36.6322i 0.747596i
\(50\) 0 0
\(51\) 14.5458 0.285212
\(52\) 25.5018 + 25.5018i 0.490419 + 0.490419i
\(53\) 14.7508 14.7508i 0.278317 0.278317i −0.554120 0.832437i \(-0.686945\pi\)
0.832437 + 0.554120i \(0.186945\pi\)
\(54\) 85.5073i 1.58347i
\(55\) 0 0
\(56\) 28.9317 0.516638
\(57\) 124.662 + 124.662i 2.18705 + 2.18705i
\(58\) −14.6191 + 14.6191i −0.252054 + 0.252054i
\(59\) 102.568i 1.73845i 0.494419 + 0.869224i \(0.335381\pi\)
−0.494419 + 0.869224i \(0.664619\pi\)
\(60\) 0 0
\(61\) −34.3345 −0.562860 −0.281430 0.959582i \(-0.590809\pi\)
−0.281430 + 0.959582i \(0.590809\pi\)
\(62\) 52.1605 + 52.1605i 0.841298 + 0.841298i
\(63\) 52.0838 52.0838i 0.826727 0.826727i
\(64\) 46.7283i 0.730129i
\(65\) 0 0
\(66\) −23.7426 −0.359736
\(67\) 6.48045 + 6.48045i 0.0967231 + 0.0967231i 0.753813 0.657090i \(-0.228213\pi\)
−0.657090 + 0.753813i \(0.728213\pi\)
\(68\) 4.30168 4.30168i 0.0632601 0.0632601i
\(69\) 84.4048i 1.22326i
\(70\) 0 0
\(71\) −20.3765 −0.286993 −0.143497 0.989651i \(-0.545835\pi\)
−0.143497 + 0.989651i \(0.545835\pi\)
\(72\) −121.839 121.839i −1.69220 1.69220i
\(73\) −44.6499 + 44.6499i −0.611643 + 0.611643i −0.943374 0.331731i \(-0.892367\pi\)
0.331731 + 0.943374i \(0.392367\pi\)
\(74\) 79.6413i 1.07623i
\(75\) 0 0
\(76\) 73.7332 0.970173
\(77\) −8.24760 8.24760i −0.107112 0.107112i
\(78\) −79.7680 + 79.7680i −1.02267 + 1.02267i
\(79\) 28.9929i 0.366998i −0.983020 0.183499i \(-0.941258\pi\)
0.983020 0.183499i \(-0.0587425\pi\)
\(80\) 0 0
\(81\) −169.174 −2.08857
\(82\) 38.7188 + 38.7188i 0.472181 + 0.472181i
\(83\) −99.4392 + 99.4392i −1.19806 + 1.19806i −0.223317 + 0.974746i \(0.571689\pi\)
−0.974746 + 0.223317i \(0.928311\pi\)
\(84\) 44.0433i 0.524325i
\(85\) 0 0
\(86\) 6.84948 0.0796451
\(87\) 61.1515 + 61.1515i 0.702891 + 0.702891i
\(88\) −19.2934 + 19.2934i −0.219244 + 0.219244i
\(89\) 143.090i 1.60775i 0.594799 + 0.803874i \(0.297232\pi\)
−0.594799 + 0.803874i \(0.702768\pi\)
\(90\) 0 0
\(91\) −55.4189 −0.608999
\(92\) −24.9613 24.9613i −0.271318 0.271318i
\(93\) 218.186 218.186i 2.34609 2.34609i
\(94\) 51.4498i 0.547338i
\(95\) 0 0
\(96\) −168.564 −1.75587
\(97\) 4.67226 + 4.67226i 0.0481676 + 0.0481676i 0.730780 0.682613i \(-0.239156\pi\)
−0.682613 + 0.730780i \(0.739156\pi\)
\(98\) 33.8860 33.8860i 0.345776 0.345776i
\(99\) 69.4653i 0.701670i
\(100\) 0 0
\(101\) 61.2970 0.606901 0.303450 0.952847i \(-0.401861\pi\)
0.303450 + 0.952847i \(0.401861\pi\)
\(102\) 13.4554 + 13.4554i 0.131916 + 0.131916i
\(103\) −2.50303 + 2.50303i −0.0243013 + 0.0243013i −0.719153 0.694852i \(-0.755470\pi\)
0.694852 + 0.719153i \(0.255470\pi\)
\(104\) 129.640i 1.24654i
\(105\) 0 0
\(106\) 27.2900 0.257453
\(107\) −113.682 113.682i −1.06245 1.06245i −0.997915 0.0645372i \(-0.979443\pi\)
−0.0645372 0.997915i \(-0.520557\pi\)
\(108\) −105.777 + 105.777i −0.979413 + 0.979413i
\(109\) 79.9776i 0.733740i −0.930272 0.366870i \(-0.880429\pi\)
0.930272 0.366870i \(-0.119571\pi\)
\(110\) 0 0
\(111\) −333.139 −3.00125
\(112\) 3.99796 + 3.99796i 0.0356961 + 0.0356961i
\(113\) −52.3355 + 52.3355i −0.463146 + 0.463146i −0.899685 0.436539i \(-0.856204\pi\)
0.436539 + 0.899685i \(0.356204\pi\)
\(114\) 230.633i 2.02309i
\(115\) 0 0
\(116\) 36.1691 0.311802
\(117\) 233.383 + 233.383i 1.99472 + 1.99472i
\(118\) −94.8793 + 94.8793i −0.804062 + 0.804062i
\(119\) 9.34814i 0.0785558i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) −31.7606 31.7606i −0.260333 0.260333i
\(123\) 161.960 161.960i 1.31675 1.31675i
\(124\) 129.050i 1.04073i
\(125\) 0 0
\(126\) 96.3586 0.764751
\(127\) −115.361 115.361i −0.908353 0.908353i 0.0877867 0.996139i \(-0.472021\pi\)
−0.996139 + 0.0877867i \(0.972021\pi\)
\(128\) −43.9011 + 43.9011i −0.342977 + 0.342977i
\(129\) 28.6513i 0.222103i
\(130\) 0 0
\(131\) −75.4069 −0.575625 −0.287812 0.957687i \(-0.592928\pi\)
−0.287812 + 0.957687i \(0.592928\pi\)
\(132\) 29.3707 + 29.3707i 0.222506 + 0.222506i
\(133\) −80.1161 + 80.1161i −0.602377 + 0.602377i
\(134\) 11.9893i 0.0894721i
\(135\) 0 0
\(136\) 21.8679 0.160794
\(137\) 8.03264 + 8.03264i 0.0586324 + 0.0586324i 0.735815 0.677183i \(-0.236799\pi\)
−0.677183 + 0.735815i \(0.736799\pi\)
\(138\) 78.0773 78.0773i 0.565777 0.565777i
\(139\) 154.718i 1.11308i −0.830821 0.556540i \(-0.812129\pi\)
0.830821 0.556540i \(-0.187871\pi\)
\(140\) 0 0
\(141\) 215.214 1.52634
\(142\) −18.8490 18.8490i −0.132739 0.132739i
\(143\) 36.9567 36.9567i 0.258438 0.258438i
\(144\) 33.6728i 0.233839i
\(145\) 0 0
\(146\) −82.6054 −0.565791
\(147\) −141.745 141.745i −0.964251 0.964251i
\(148\) −98.5202 + 98.5202i −0.665677 + 0.665677i
\(149\) 80.0369i 0.537160i 0.963257 + 0.268580i \(0.0865544\pi\)
−0.963257 + 0.268580i \(0.913446\pi\)
\(150\) 0 0
\(151\) 206.188 1.36548 0.682742 0.730659i \(-0.260787\pi\)
0.682742 + 0.730659i \(0.260787\pi\)
\(152\) 187.414 + 187.414i 1.23299 + 1.23299i
\(153\) 39.3673 39.3673i 0.257303 0.257303i
\(154\) 15.2586i 0.0990819i
\(155\) 0 0
\(156\) 197.354 1.26509
\(157\) −76.0386 76.0386i −0.484322 0.484322i 0.422187 0.906509i \(-0.361263\pi\)
−0.906509 + 0.422187i \(0.861263\pi\)
\(158\) 26.8194 26.8194i 0.169743 0.169743i
\(159\) 114.154i 0.717947i
\(160\) 0 0
\(161\) 54.2443 0.336921
\(162\) −156.492 156.492i −0.966000 0.966000i
\(163\) 21.8597 21.8597i 0.134108 0.134108i −0.636866 0.770974i \(-0.719770\pi\)
0.770974 + 0.636866i \(0.219770\pi\)
\(164\) 95.7941i 0.584110i
\(165\) 0 0
\(166\) −183.969 −1.10825
\(167\) −19.5124 19.5124i −0.116841 0.116841i 0.646269 0.763110i \(-0.276328\pi\)
−0.763110 + 0.646269i \(0.776328\pi\)
\(168\) 111.949 111.949i 0.666361 0.666361i
\(169\) 79.3266i 0.469388i
\(170\) 0 0
\(171\) 674.777 3.94607
\(172\) −8.47313 8.47313i −0.0492624 0.0492624i
\(173\) 214.952 214.952i 1.24250 1.24250i 0.283539 0.958961i \(-0.408492\pi\)
0.958961 0.283539i \(-0.0915084\pi\)
\(174\) 113.135i 0.650198i
\(175\) 0 0
\(176\) −5.33217 −0.0302964
\(177\) 396.879 + 396.879i 2.24225 + 2.24225i
\(178\) −132.363 + 132.363i −0.743611 + 0.743611i
\(179\) 111.046i 0.620370i 0.950676 + 0.310185i \(0.100391\pi\)
−0.950676 + 0.310185i \(0.899609\pi\)
\(180\) 0 0
\(181\) −126.341 −0.698014 −0.349007 0.937120i \(-0.613481\pi\)
−0.349007 + 0.937120i \(0.613481\pi\)
\(182\) −51.2644 51.2644i −0.281672 0.281672i
\(183\) −132.854 + 132.854i −0.725978 + 0.725978i
\(184\) 126.893i 0.689633i
\(185\) 0 0
\(186\) 403.660 2.17021
\(187\) −6.23391 6.23391i −0.0333364 0.0333364i
\(188\) 63.6459 63.6459i 0.338542 0.338542i
\(189\) 229.867i 1.21623i
\(190\) 0 0
\(191\) −172.600 −0.903665 −0.451832 0.892103i \(-0.649230\pi\)
−0.451832 + 0.892103i \(0.649230\pi\)
\(192\) −180.811 180.811i −0.941721 0.941721i
\(193\) −51.8757 + 51.8757i −0.268786 + 0.268786i −0.828611 0.559825i \(-0.810868\pi\)
0.559825 + 0.828611i \(0.310868\pi\)
\(194\) 8.64400i 0.0445567i
\(195\) 0 0
\(196\) −83.8373 −0.427741
\(197\) −117.224 117.224i −0.595045 0.595045i 0.343945 0.938990i \(-0.388237\pi\)
−0.938990 + 0.343945i \(0.888237\pi\)
\(198\) −64.2578 + 64.2578i −0.324534 + 0.324534i
\(199\) 124.111i 0.623671i 0.950136 + 0.311836i \(0.100944\pi\)
−0.950136 + 0.311836i \(0.899056\pi\)
\(200\) 0 0
\(201\) 50.1509 0.249507
\(202\) 56.7018 + 56.7018i 0.280702 + 0.280702i
\(203\) −39.3002 + 39.3002i −0.193597 + 0.193597i
\(204\) 33.2899i 0.163186i
\(205\) 0 0
\(206\) −4.63078 −0.0224795
\(207\) −228.436 228.436i −1.10356 1.10356i
\(208\) −17.9145 + 17.9145i −0.0861273 + 0.0861273i
\(209\) 106.853i 0.511256i
\(210\) 0 0
\(211\) −72.1006 −0.341709 −0.170854 0.985296i \(-0.554653\pi\)
−0.170854 + 0.985296i \(0.554653\pi\)
\(212\) −33.7590 33.7590i −0.159241 0.159241i
\(213\) −78.8450 + 78.8450i −0.370164 + 0.370164i
\(214\) 210.320i 0.982805i
\(215\) 0 0
\(216\) −537.723 −2.48946
\(217\) 140.222 + 140.222i 0.646182 + 0.646182i
\(218\) 73.9820 73.9820i 0.339367 0.339367i
\(219\) 345.537i 1.57780i
\(220\) 0 0
\(221\) −41.8881 −0.189539
\(222\) −308.165 308.165i −1.38813 1.38813i
\(223\) 208.503 208.503i 0.934993 0.934993i −0.0630193 0.998012i \(-0.520073\pi\)
0.998012 + 0.0630193i \(0.0200730\pi\)
\(224\) 108.330i 0.483618i
\(225\) 0 0
\(226\) −96.8243 −0.428426
\(227\) −96.7721 96.7721i −0.426309 0.426309i 0.461060 0.887369i \(-0.347469\pi\)
−0.887369 + 0.461060i \(0.847469\pi\)
\(228\) 285.304 285.304i 1.25133 1.25133i
\(229\) 24.3833i 0.106477i −0.998582 0.0532387i \(-0.983046\pi\)
0.998582 0.0532387i \(-0.0169544\pi\)
\(230\) 0 0
\(231\) −63.8266 −0.276306
\(232\) 91.9341 + 91.9341i 0.396268 + 0.396268i
\(233\) −6.08298 + 6.08298i −0.0261072 + 0.0261072i −0.720040 0.693933i \(-0.755877\pi\)
0.693933 + 0.720040i \(0.255877\pi\)
\(234\) 431.774i 1.84519i
\(235\) 0 0
\(236\) 234.740 0.994663
\(237\) −112.185 112.185i −0.473355 0.473355i
\(238\) −8.64735 + 8.64735i −0.0363334 + 0.0363334i
\(239\) 301.659i 1.26217i 0.775713 + 0.631086i \(0.217391\pi\)
−0.775713 + 0.631086i \(0.782609\pi\)
\(240\) 0 0
\(241\) −152.402 −0.632372 −0.316186 0.948697i \(-0.602402\pi\)
−0.316186 + 0.948697i \(0.602402\pi\)
\(242\) 10.1754 + 10.1754i 0.0420470 + 0.0420470i
\(243\) −238.638 + 238.638i −0.982050 + 0.982050i
\(244\) 78.5787i 0.322044i
\(245\) 0 0
\(246\) 299.638 1.21804
\(247\) −358.992 358.992i −1.45341 1.45341i
\(248\) 328.018 328.018i 1.32265 1.32265i
\(249\) 769.541i 3.09053i
\(250\) 0 0
\(251\) 0.830967 0.00331063 0.00165531 0.999999i \(-0.499473\pi\)
0.00165531 + 0.999999i \(0.499473\pi\)
\(252\) −119.200 119.200i −0.473017 0.473017i
\(253\) −36.1734 + 36.1734i −0.142978 + 0.142978i
\(254\) 213.425i 0.840257i
\(255\) 0 0
\(256\) −268.133 −1.04739
\(257\) 213.892 + 213.892i 0.832265 + 0.832265i 0.987826 0.155561i \(-0.0497187\pi\)
−0.155561 + 0.987826i \(0.549719\pi\)
\(258\) 26.5034 26.5034i 0.102726 0.102726i
\(259\) 214.098i 0.826632i
\(260\) 0 0
\(261\) 331.005 1.26822
\(262\) −69.7539 69.7539i −0.266236 0.266236i
\(263\) 242.199 242.199i 0.920908 0.920908i −0.0761856 0.997094i \(-0.524274\pi\)
0.997094 + 0.0761856i \(0.0242741\pi\)
\(264\) 149.308i 0.565562i
\(265\) 0 0
\(266\) −148.220 −0.557219
\(267\) 553.672 + 553.672i 2.07368 + 2.07368i
\(268\) 14.8313 14.8313i 0.0553407 0.0553407i
\(269\) 274.273i 1.01960i −0.860292 0.509801i \(-0.829719\pi\)
0.860292 0.509801i \(-0.170281\pi\)
\(270\) 0 0
\(271\) −224.792 −0.829490 −0.414745 0.909938i \(-0.636129\pi\)
−0.414745 + 0.909938i \(0.636129\pi\)
\(272\) 3.02184 + 3.02184i 0.0111097 + 0.0111097i
\(273\) −214.438 + 214.438i −0.785487 + 0.785487i
\(274\) 14.8609i 0.0542370i
\(275\) 0 0
\(276\) −193.171 −0.699894
\(277\) −63.8151 63.8151i −0.230379 0.230379i 0.582472 0.812851i \(-0.302086\pi\)
−0.812851 + 0.582472i \(0.802086\pi\)
\(278\) 143.119 143.119i 0.514818 0.514818i
\(279\) 1181.01i 4.23303i
\(280\) 0 0
\(281\) 305.190 1.08609 0.543043 0.839705i \(-0.317272\pi\)
0.543043 + 0.839705i \(0.317272\pi\)
\(282\) 199.080 + 199.080i 0.705958 + 0.705958i
\(283\) −367.259 + 367.259i −1.29773 + 1.29773i −0.367849 + 0.929885i \(0.619906\pi\)
−0.929885 + 0.367849i \(0.880094\pi\)
\(284\) 46.6342i 0.164205i
\(285\) 0 0
\(286\) 68.3724 0.239064
\(287\) 104.087 + 104.087i 0.362672 + 0.362672i
\(288\) −456.206 + 456.206i −1.58405 + 1.58405i
\(289\) 281.934i 0.975551i
\(290\) 0 0
\(291\) 36.1577 0.124253
\(292\) 102.187 + 102.187i 0.349955 + 0.349955i
\(293\) −249.733 + 249.733i −0.852332 + 0.852332i −0.990420 0.138088i \(-0.955904\pi\)
0.138088 + 0.990420i \(0.455904\pi\)
\(294\) 262.238i 0.891965i
\(295\) 0 0
\(296\) −500.834 −1.69201
\(297\) 153.289 + 153.289i 0.516125 + 0.516125i
\(298\) −74.0368 + 74.0368i −0.248446 + 0.248446i
\(299\) 243.063i 0.812921i
\(300\) 0 0
\(301\) 18.4133 0.0611736
\(302\) 190.731 + 190.731i 0.631560 + 0.631560i
\(303\) 237.183 237.183i 0.782781 0.782781i
\(304\) 51.7960i 0.170382i
\(305\) 0 0
\(306\) 72.8323 0.238014
\(307\) −282.935 282.935i −0.921614 0.921614i 0.0755300 0.997144i \(-0.475935\pi\)
−0.997144 + 0.0755300i \(0.975935\pi\)
\(308\) −18.8756 + 18.8756i −0.0612846 + 0.0612846i
\(309\) 19.3705i 0.0626876i
\(310\) 0 0
\(311\) −20.6266 −0.0663233 −0.0331617 0.999450i \(-0.510558\pi\)
−0.0331617 + 0.999450i \(0.510558\pi\)
\(312\) 501.631 + 501.631i 1.60779 + 1.60779i
\(313\) 164.238 164.238i 0.524722 0.524722i −0.394272 0.918994i \(-0.629003\pi\)
0.918994 + 0.394272i \(0.129003\pi\)
\(314\) 140.677i 0.448015i
\(315\) 0 0
\(316\) −66.3538 −0.209980
\(317\) 58.8640 + 58.8640i 0.185691 + 0.185691i 0.793830 0.608139i \(-0.208084\pi\)
−0.608139 + 0.793830i \(0.708084\pi\)
\(318\) 105.596 105.596i 0.332063 0.332063i
\(319\) 52.4155i 0.164312i
\(320\) 0 0
\(321\) −879.767 −2.74071
\(322\) 50.1778 + 50.1778i 0.155832 + 0.155832i
\(323\) −60.5554 + 60.5554i −0.187478 + 0.187478i
\(324\) 387.176i 1.19499i
\(325\) 0 0
\(326\) 40.4419 0.124055
\(327\) −309.466 309.466i −0.946378 0.946378i
\(328\) 243.488 243.488i 0.742342 0.742342i
\(329\) 138.311i 0.420398i
\(330\) 0 0
\(331\) 388.432 1.17351 0.586756 0.809764i \(-0.300405\pi\)
0.586756 + 0.809764i \(0.300405\pi\)
\(332\) 227.579 + 227.579i 0.685479 + 0.685479i
\(333\) −901.618 + 901.618i −2.70756 + 2.70756i
\(334\) 36.0992i 0.108081i
\(335\) 0 0
\(336\) 30.9395 0.0920817
\(337\) −77.3541 77.3541i −0.229538 0.229538i 0.582962 0.812499i \(-0.301894\pi\)
−0.812499 + 0.582962i \(0.801894\pi\)
\(338\) 73.3799 73.3799i 0.217100 0.217100i
\(339\) 405.014i 1.19473i
\(340\) 0 0
\(341\) −187.017 −0.548436
\(342\) 624.192 + 624.192i 1.82512 + 1.82512i
\(343\) 212.945 212.945i 0.620832 0.620832i
\(344\) 43.0738i 0.125214i
\(345\) 0 0
\(346\) 397.677 1.14935
\(347\) 171.192 + 171.192i 0.493349 + 0.493349i 0.909360 0.416011i \(-0.136572\pi\)
−0.416011 + 0.909360i \(0.636572\pi\)
\(348\) 139.953 139.953i 0.402163 0.402163i
\(349\) 29.9624i 0.0858521i −0.999078 0.0429260i \(-0.986332\pi\)
0.999078 0.0429260i \(-0.0136680\pi\)
\(350\) 0 0
\(351\) 1030.01 2.93450
\(352\) 72.2413 + 72.2413i 0.205231 + 0.205231i
\(353\) −126.771 + 126.771i −0.359125 + 0.359125i −0.863490 0.504365i \(-0.831726\pi\)
0.504365 + 0.863490i \(0.331726\pi\)
\(354\) 734.253i 2.07416i
\(355\) 0 0
\(356\) 327.478 0.919883
\(357\) 36.1717 + 36.1717i 0.101321 + 0.101321i
\(358\) −102.722 + 102.722i −0.286932 + 0.286932i
\(359\) 191.615i 0.533745i −0.963732 0.266873i \(-0.914010\pi\)
0.963732 0.266873i \(-0.0859903\pi\)
\(360\) 0 0
\(361\) −676.952 −1.87521
\(362\) −116.869 116.869i −0.322844 0.322844i
\(363\) 42.5635 42.5635i 0.117255 0.117255i
\(364\) 126.833i 0.348442i
\(365\) 0 0
\(366\) −245.789 −0.671555
\(367\) 214.617 + 214.617i 0.584788 + 0.584788i 0.936215 0.351427i \(-0.114303\pi\)
−0.351427 + 0.936215i \(0.614303\pi\)
\(368\) 17.5348 17.5348i 0.0476489 0.0476489i
\(369\) 876.670i 2.37580i
\(370\) 0 0
\(371\) 73.3629 0.197744
\(372\) −499.347 499.347i −1.34233 1.34233i
\(373\) −118.727 + 118.727i −0.318304 + 0.318304i −0.848115 0.529812i \(-0.822263\pi\)
0.529812 + 0.848115i \(0.322263\pi\)
\(374\) 11.5332i 0.0308373i
\(375\) 0 0
\(376\) 323.548 0.860501
\(377\) −176.100 176.100i −0.467109 0.467109i
\(378\) 212.635 212.635i 0.562526 0.562526i
\(379\) 70.6243i 0.186344i 0.995650 + 0.0931719i \(0.0297006\pi\)
−0.995650 + 0.0931719i \(0.970299\pi\)
\(380\) 0 0
\(381\) −892.755 −2.34319
\(382\) −159.661 159.661i −0.417960 0.417960i
\(383\) 408.698 408.698i 1.06710 1.06710i 0.0695164 0.997581i \(-0.477854\pi\)
0.997581 0.0695164i \(-0.0221456\pi\)
\(384\) 339.742i 0.884745i
\(385\) 0 0
\(386\) −95.9735 −0.248636
\(387\) −77.5428 77.5428i −0.200369 0.200369i
\(388\) 10.6930 10.6930i 0.0275594 0.0275594i
\(389\) 601.280i 1.54571i 0.634584 + 0.772854i \(0.281171\pi\)
−0.634584 + 0.772854i \(0.718829\pi\)
\(390\) 0 0
\(391\) 41.0003 0.104860
\(392\) −213.097 213.097i −0.543614 0.543614i
\(393\) −291.780 + 291.780i −0.742442 + 0.742442i
\(394\) 216.872i 0.550437i
\(395\) 0 0
\(396\) 158.980 0.401465
\(397\) −341.609 341.609i −0.860477 0.860477i 0.130916 0.991393i \(-0.458208\pi\)
−0.991393 + 0.130916i \(0.958208\pi\)
\(398\) −114.807 + 114.807i −0.288459 + 0.288459i
\(399\) 620.003i 1.55389i
\(400\) 0 0
\(401\) −210.080 −0.523889 −0.261945 0.965083i \(-0.584364\pi\)
−0.261945 + 0.965083i \(0.584364\pi\)
\(402\) 46.3913 + 46.3913i 0.115401 + 0.115401i
\(403\) −628.319 + 628.319i −1.55910 + 1.55910i
\(404\) 140.286i 0.347242i
\(405\) 0 0
\(406\) −72.7080 −0.179084
\(407\) 142.773 + 142.773i 0.350794 + 0.350794i
\(408\) 84.6159 84.6159i 0.207392 0.207392i
\(409\) 691.981i 1.69188i 0.533275 + 0.845942i \(0.320961\pi\)
−0.533275 + 0.845942i \(0.679039\pi\)
\(410\) 0 0
\(411\) 62.1630 0.151248
\(412\) 5.72850 + 5.72850i 0.0139041 + 0.0139041i
\(413\) −255.061 + 255.061i −0.617582 + 0.617582i
\(414\) 422.622i 1.02083i
\(415\) 0 0
\(416\) 485.418 1.16687
\(417\) −598.667 598.667i −1.43565 1.43565i
\(418\) 98.8423 98.8423i 0.236465 0.236465i
\(419\) 390.808i 0.932717i −0.884596 0.466358i \(-0.845566\pi\)
0.884596 0.466358i \(-0.154434\pi\)
\(420\) 0 0
\(421\) −417.581 −0.991879 −0.495939 0.868357i \(-0.665176\pi\)
−0.495939 + 0.868357i \(0.665176\pi\)
\(422\) −66.6955 66.6955i −0.158046 0.158046i
\(423\) 582.462 582.462i 1.37698 1.37698i
\(424\) 171.616i 0.404756i
\(425\) 0 0
\(426\) −145.869 −0.342415
\(427\) −85.3811 85.3811i −0.199956 0.199956i
\(428\) −260.176 + 260.176i −0.607888 + 0.607888i
\(429\) 286.001i 0.666668i
\(430\) 0 0
\(431\) −114.444 −0.265532 −0.132766 0.991147i \(-0.542386\pi\)
−0.132766 + 0.991147i \(0.542386\pi\)
\(432\) −74.3058 74.3058i −0.172004 0.172004i
\(433\) 212.706 212.706i 0.491237 0.491237i −0.417459 0.908696i \(-0.637079\pi\)
0.908696 + 0.417459i \(0.137079\pi\)
\(434\) 259.419i 0.597741i
\(435\) 0 0
\(436\) −183.039 −0.419813
\(437\) 351.384 + 351.384i 0.804081 + 0.804081i
\(438\) −319.634 + 319.634i −0.729758 + 0.729758i
\(439\) 410.312i 0.934652i −0.884085 0.467326i \(-0.845217\pi\)
0.884085 0.467326i \(-0.154783\pi\)
\(440\) 0 0
\(441\) −767.246 −1.73979
\(442\) −38.7479 38.7479i −0.0876650 0.0876650i
\(443\) 226.060 226.060i 0.510293 0.510293i −0.404323 0.914616i \(-0.632493\pi\)
0.914616 + 0.404323i \(0.132493\pi\)
\(444\) 762.429i 1.71718i
\(445\) 0 0
\(446\) 385.746 0.864901
\(447\) 309.695 + 309.695i 0.692830 + 0.692830i
\(448\) 116.201 116.201i 0.259378 0.259378i
\(449\) 378.916i 0.843912i 0.906616 + 0.421956i \(0.138656\pi\)
−0.906616 + 0.421956i \(0.861344\pi\)
\(450\) 0 0
\(451\) −138.823 −0.307811
\(452\) 119.776 + 119.776i 0.264992 + 0.264992i
\(453\) 797.825 797.825i 1.76120 1.76120i
\(454\) 179.035i 0.394350i
\(455\) 0 0
\(456\) 1450.36 3.18062
\(457\) −360.460 360.460i −0.788753 0.788753i 0.192537 0.981290i \(-0.438329\pi\)
−0.981290 + 0.192537i \(0.938329\pi\)
\(458\) 22.5554 22.5554i 0.0492476 0.0492476i
\(459\) 173.744i 0.378527i
\(460\) 0 0
\(461\) −219.012 −0.475081 −0.237540 0.971378i \(-0.576341\pi\)
−0.237540 + 0.971378i \(0.576341\pi\)
\(462\) −59.0418 59.0418i −0.127796 0.127796i
\(463\) 192.919 192.919i 0.416672 0.416672i −0.467383 0.884055i \(-0.654803\pi\)
0.884055 + 0.467383i \(0.154803\pi\)
\(464\) 25.4080i 0.0547586i
\(465\) 0 0
\(466\) −11.2539 −0.0241500
\(467\) −82.3422 82.3422i −0.176322 0.176322i 0.613429 0.789750i \(-0.289790\pi\)
−0.789750 + 0.613429i \(0.789790\pi\)
\(468\) 534.125 534.125i 1.14129 1.14129i
\(469\) 32.2304i 0.0687216i
\(470\) 0 0
\(471\) −588.448 −1.24936
\(472\) 596.660 + 596.660i 1.26411 + 1.26411i
\(473\) −12.2791 + 12.2791i −0.0259600 + 0.0259600i
\(474\) 207.550i 0.437870i
\(475\) 0 0
\(476\) 21.3944 0.0449462
\(477\) −308.949 308.949i −0.647692 0.647692i
\(478\) −279.045 + 279.045i −0.583777 + 0.583777i
\(479\) 888.420i 1.85474i −0.374147 0.927369i \(-0.622065\pi\)
0.374147 0.927369i \(-0.377935\pi\)
\(480\) 0 0
\(481\) 959.351 1.99449
\(482\) −140.977 140.977i −0.292483 0.292483i
\(483\) 209.893 209.893i 0.434561 0.434561i
\(484\) 25.1749i 0.0520142i
\(485\) 0 0
\(486\) −441.497 −0.908430
\(487\) −124.471 124.471i −0.255587 0.255587i 0.567669 0.823257i \(-0.307845\pi\)
−0.823257 + 0.567669i \(0.807845\pi\)
\(488\) −199.730 + 199.730i −0.409283 + 0.409283i
\(489\) 169.168i 0.345946i
\(490\) 0 0
\(491\) 970.147 1.97586 0.987929 0.154906i \(-0.0495074\pi\)
0.987929 + 0.154906i \(0.0495074\pi\)
\(492\) −370.666 370.666i −0.753386 0.753386i
\(493\) −29.7049 + 29.7049i −0.0602533 + 0.0602533i
\(494\) 664.161i 1.34445i
\(495\) 0 0
\(496\) 90.6549 0.182772
\(497\) −50.6712 50.6712i −0.101954 0.101954i
\(498\) −711.852 + 711.852i −1.42942 + 1.42942i
\(499\) 581.566i 1.16546i −0.812665 0.582732i \(-0.801984\pi\)
0.812665 0.582732i \(-0.198016\pi\)
\(500\) 0 0
\(501\) −151.003 −0.301402
\(502\) 0.768673 + 0.768673i 0.00153122 + 0.00153122i
\(503\) −337.601 + 337.601i −0.671176 + 0.671176i −0.957987 0.286811i \(-0.907405\pi\)
0.286811 + 0.957987i \(0.407405\pi\)
\(504\) 605.963i 1.20231i
\(505\) 0 0
\(506\) −66.9232 −0.132259
\(507\) −306.947 306.947i −0.605418 0.605418i
\(508\) −264.017 + 264.017i −0.519719 + 0.519719i
\(509\) 368.994i 0.724939i −0.931996 0.362470i \(-0.881934\pi\)
0.931996 0.362470i \(-0.118066\pi\)
\(510\) 0 0
\(511\) −222.066 −0.434571
\(512\) −72.4279 72.4279i −0.141461 0.141461i
\(513\) 1489.03 1489.03i 2.90260 2.90260i
\(514\) 395.715i 0.769873i
\(515\) 0 0
\(516\) −65.5720 −0.127077
\(517\) −92.2342 92.2342i −0.178403 0.178403i
\(518\) 198.048 198.048i 0.382331 0.382331i
\(519\) 1663.48i 3.20516i
\(520\) 0 0
\(521\) 533.075 1.02318 0.511589 0.859231i \(-0.329057\pi\)
0.511589 + 0.859231i \(0.329057\pi\)
\(522\) 306.191 + 306.191i 0.586573 + 0.586573i
\(523\) 311.717 311.717i 0.596018 0.596018i −0.343233 0.939250i \(-0.611522\pi\)
0.939250 + 0.343233i \(0.111522\pi\)
\(524\) 172.578i 0.329347i
\(525\) 0 0
\(526\) 448.084 0.851871
\(527\) 105.986 + 105.986i 0.201112 + 0.201112i
\(528\) −20.6323 + 20.6323i −0.0390764 + 0.0390764i
\(529\) 291.088i 0.550262i
\(530\) 0 0
\(531\) 2148.25 4.04567
\(532\) 183.356 + 183.356i 0.344653 + 0.344653i
\(533\) −466.403 + 466.403i −0.875052 + 0.875052i
\(534\) 1024.33i 1.91822i
\(535\) 0 0
\(536\) 75.3960 0.140664
\(537\) 429.683 + 429.683i 0.800154 + 0.800154i
\(538\) 253.712 253.712i 0.471584 0.471584i
\(539\) 121.495i 0.225409i
\(540\) 0 0
\(541\) 1005.97 1.85947 0.929736 0.368227i \(-0.120035\pi\)
0.929736 + 0.368227i \(0.120035\pi\)
\(542\) −207.940 207.940i −0.383653 0.383653i
\(543\) −488.863 + 488.863i −0.900300 + 0.900300i
\(544\) 81.8811i 0.150517i
\(545\) 0 0
\(546\) −396.725 −0.726603
\(547\) 5.81163 + 5.81163i 0.0106245 + 0.0106245i 0.712399 0.701775i \(-0.247609\pi\)
−0.701775 + 0.712399i \(0.747609\pi\)
\(548\) 18.3837 18.3837i 0.0335469 0.0335469i
\(549\) 719.121i 1.30988i
\(550\) 0 0
\(551\) −509.157 −0.924060
\(552\) −490.999 490.999i −0.889490 0.889490i
\(553\) 72.0979 72.0979i 0.130376 0.130376i
\(554\) 118.062i 0.213109i
\(555\) 0 0
\(556\) −354.091 −0.636855
\(557\) 647.706 + 647.706i 1.16285 + 1.16285i 0.983850 + 0.178998i \(0.0572854\pi\)
0.178998 + 0.983850i \(0.442715\pi\)
\(558\) 1092.48 1092.48i 1.95785 1.95785i
\(559\) 82.5081i 0.147599i
\(560\) 0 0
\(561\) −48.2430 −0.0859947
\(562\) 282.311 + 282.311i 0.502334 + 0.502334i
\(563\) −175.680 + 175.680i −0.312042 + 0.312042i −0.845700 0.533658i \(-0.820817\pi\)
0.533658 + 0.845700i \(0.320817\pi\)
\(564\) 492.543i 0.873304i
\(565\) 0 0
\(566\) −679.454 −1.20045
\(567\) −420.693 420.693i −0.741964 0.741964i
\(568\) −118.534 + 118.534i −0.208687 + 0.208687i
\(569\) 731.096i 1.28488i 0.766336 + 0.642440i \(0.222078\pi\)
−0.766336 + 0.642440i \(0.777922\pi\)
\(570\) 0 0
\(571\) 135.547 0.237385 0.118693 0.992931i \(-0.462130\pi\)
0.118693 + 0.992931i \(0.462130\pi\)
\(572\) −84.5799 84.5799i −0.147867 0.147867i
\(573\) −667.859 + 667.859i −1.16555 + 1.16555i
\(574\) 192.568i 0.335484i
\(575\) 0 0
\(576\) −978.704 −1.69914
\(577\) −232.635 232.635i −0.403180 0.403180i 0.476172 0.879352i \(-0.342024\pi\)
−0.879352 + 0.476172i \(0.842024\pi\)
\(578\) 260.799 260.799i 0.451209 0.451209i
\(579\) 401.456i 0.693361i
\(580\) 0 0
\(581\) −494.560 −0.851222
\(582\) 33.4471 + 33.4471i 0.0574693 + 0.0574693i
\(583\) −48.9228 + 48.9228i −0.0839157 + 0.0839157i
\(584\) 519.475i 0.889511i
\(585\) 0 0
\(586\) −462.024 −0.788436
\(587\) −344.731 344.731i −0.587275 0.587275i 0.349617 0.936893i \(-0.386312\pi\)
−0.936893 + 0.349617i \(0.886312\pi\)
\(588\) −324.401 + 324.401i −0.551702 + 0.551702i
\(589\) 1816.65i 3.08430i
\(590\) 0 0
\(591\) −907.173 −1.53498
\(592\) −69.2083 69.2083i −0.116906 0.116906i
\(593\) −497.299 + 497.299i −0.838616 + 0.838616i −0.988677 0.150060i \(-0.952053\pi\)
0.150060 + 0.988677i \(0.452053\pi\)
\(594\) 283.595i 0.477433i
\(595\) 0 0
\(596\) 183.174 0.307339
\(597\) 480.234 + 480.234i 0.804412 + 0.804412i
\(598\) −224.842 + 224.842i −0.375990 + 0.375990i
\(599\) 282.743i 0.472025i −0.971750 0.236012i \(-0.924159\pi\)
0.971750 0.236012i \(-0.0758406\pi\)
\(600\) 0 0
\(601\) 755.637 1.25730 0.628650 0.777689i \(-0.283608\pi\)
0.628650 + 0.777689i \(0.283608\pi\)
\(602\) 17.0329 + 17.0329i 0.0282939 + 0.0282939i
\(603\) 135.730 135.730i 0.225092 0.225092i
\(604\) 471.887i 0.781270i
\(605\) 0 0
\(606\) 438.804 0.724100
\(607\) 171.655 + 171.655i 0.282792 + 0.282792i 0.834221 0.551430i \(-0.185917\pi\)
−0.551430 + 0.834221i \(0.685917\pi\)
\(608\) 701.743 701.743i 1.15418 1.15418i
\(609\) 304.136i 0.499403i
\(610\) 0 0
\(611\) −619.759 −1.01433
\(612\) −90.0970 90.0970i −0.147217 0.147217i
\(613\) −15.8263 + 15.8263i −0.0258178 + 0.0258178i −0.719898 0.694080i \(-0.755811\pi\)
0.694080 + 0.719898i \(0.255811\pi\)
\(614\) 523.450i 0.852524i
\(615\) 0 0
\(616\) −95.9557 −0.155772
\(617\) −85.3768 85.3768i −0.138374 0.138374i 0.634527 0.772901i \(-0.281195\pi\)
−0.772901 + 0.634527i \(0.781195\pi\)
\(618\) −17.9184 + 17.9184i −0.0289941 + 0.0289941i
\(619\) 833.509i 1.34654i 0.739396 + 0.673270i \(0.235111\pi\)
−0.739396 + 0.673270i \(0.764889\pi\)
\(620\) 0 0
\(621\) −1008.18 −1.62348
\(622\) −19.0803 19.0803i −0.0306757 0.0306757i
\(623\) −355.827 + 355.827i −0.571151 + 0.571151i
\(624\) 138.637i 0.222174i
\(625\) 0 0
\(626\) 303.851 0.485386
\(627\) −413.456 413.456i −0.659419 0.659419i
\(628\) −174.024 + 174.024i −0.277108 + 0.277108i
\(629\) 161.825i 0.257273i
\(630\) 0 0
\(631\) 581.183 0.921051 0.460526 0.887646i \(-0.347661\pi\)
0.460526 + 0.887646i \(0.347661\pi\)
\(632\) −168.657 168.657i −0.266862 0.266862i
\(633\) −278.986 + 278.986i −0.440737 + 0.440737i
\(634\) 108.902i 0.171770i
\(635\) 0 0
\(636\) −261.254 −0.410778
\(637\) 408.188 + 408.188i 0.640797 + 0.640797i
\(638\) 48.4861 48.4861i 0.0759970 0.0759970i
\(639\) 426.778i 0.667884i
\(640\) 0 0
\(641\) 109.559 0.170918 0.0854592 0.996342i \(-0.472764\pi\)
0.0854592 + 0.996342i \(0.472764\pi\)
\(642\) −813.814 813.814i −1.26762 1.26762i
\(643\) −572.874 + 572.874i −0.890940 + 0.890940i −0.994612 0.103672i \(-0.966941\pi\)
0.103672 + 0.994612i \(0.466941\pi\)
\(644\) 124.145i 0.192771i
\(645\) 0 0
\(646\) −112.032 −0.173424
\(647\) 389.176 + 389.176i 0.601509 + 0.601509i 0.940713 0.339204i \(-0.110158\pi\)
−0.339204 + 0.940713i \(0.610158\pi\)
\(648\) −984.120 + 984.120i −1.51870 + 1.51870i
\(649\) 340.181i 0.524162i
\(650\) 0 0
\(651\) 1085.15 1.66689
\(652\) −50.0285 50.0285i −0.0767308 0.0767308i
\(653\) −365.630 + 365.630i −0.559923 + 0.559923i −0.929285 0.369362i \(-0.879576\pi\)
0.369362 + 0.929285i \(0.379576\pi\)
\(654\) 572.533i 0.875432i
\(655\) 0 0
\(656\) 67.2933 0.102581
\(657\) 935.174 + 935.174i 1.42340 + 1.42340i
\(658\) −127.942 + 127.942i −0.194441 + 0.194441i
\(659\) 472.236i 0.716595i −0.933607 0.358298i \(-0.883357\pi\)
0.933607 0.358298i \(-0.116643\pi\)
\(660\) 0 0
\(661\) −240.373 −0.363651 −0.181825 0.983331i \(-0.558201\pi\)
−0.181825 + 0.983331i \(0.558201\pi\)
\(662\) 359.313 + 359.313i 0.542769 + 0.542769i
\(663\) −162.082 + 162.082i −0.244468 + 0.244468i
\(664\) 1156.91i 1.74234i
\(665\) 0 0
\(666\) −1668.05 −2.50459
\(667\) 172.368 + 172.368i 0.258422 + 0.258422i
\(668\) −44.6565 + 44.6565i −0.0668510 + 0.0668510i
\(669\) 1613.57i 2.41191i
\(670\) 0 0
\(671\) 113.875 0.169709
\(672\) −419.174 419.174i −0.623771 0.623771i
\(673\) 243.135 243.135i 0.361270 0.361270i −0.503010 0.864280i \(-0.667774\pi\)
0.864280 + 0.503010i \(0.167774\pi\)
\(674\) 143.110i 0.212330i
\(675\) 0 0
\(676\) −181.549 −0.268563
\(677\) −471.912 471.912i −0.697064 0.697064i 0.266712 0.963776i \(-0.414063\pi\)
−0.963776 + 0.266712i \(0.914063\pi\)
\(678\) −374.652 + 374.652i −0.552584 + 0.552584i
\(679\) 23.2374i 0.0342230i
\(680\) 0 0
\(681\) −748.901 −1.09971
\(682\) −172.997 172.997i −0.253661 0.253661i
\(683\) −30.4808 + 30.4808i −0.0446278 + 0.0446278i −0.729069 0.684441i \(-0.760046\pi\)
0.684441 + 0.729069i \(0.260046\pi\)
\(684\) 1544.31i 2.25776i
\(685\) 0 0
\(686\) 393.964 0.574291
\(687\) −94.3489 94.3489i −0.137335 0.137335i
\(688\) 5.95219 5.95219i 0.00865145 0.00865145i
\(689\) 328.732i 0.477115i
\(690\) 0 0
\(691\) 121.709 0.176134 0.0880671 0.996115i \(-0.471931\pi\)
0.0880671 + 0.996115i \(0.471931\pi\)
\(692\) −491.945 491.945i −0.710903 0.710903i
\(693\) −172.743 + 172.743i −0.249268 + 0.249268i
\(694\) 316.717i 0.456365i
\(695\) 0 0
\(696\) 711.460 1.02221
\(697\) 78.6735 + 78.6735i 0.112874 + 0.112874i
\(698\) 27.7162 27.7162i 0.0397080 0.0397080i
\(699\) 47.0750i 0.0673462i
\(700\) 0 0
\(701\) 930.403 1.32725 0.663625 0.748065i \(-0.269017\pi\)
0.663625 + 0.748065i \(0.269017\pi\)
\(702\) 952.795 + 952.795i 1.35726 + 1.35726i
\(703\) 1386.88 1386.88i 1.97280 1.97280i
\(704\) 154.980i 0.220142i
\(705\) 0 0
\(706\) −234.535 −0.332203
\(707\) 152.430 + 152.430i 0.215601 + 0.215601i
\(708\) 908.306 908.306i 1.28292 1.28292i
\(709\) 1012.74i 1.42841i 0.699935 + 0.714206i \(0.253212\pi\)
−0.699935 + 0.714206i \(0.746788\pi\)
\(710\) 0 0
\(711\) −607.244 −0.854070
\(712\) 832.380 + 832.380i 1.16907 + 1.16907i
\(713\) 615.002 615.002i 0.862555 0.862555i
\(714\) 66.9202i 0.0937258i
\(715\) 0 0
\(716\) 254.143 0.354948
\(717\) 1167.24 + 1167.24i 1.62795 + 1.62795i
\(718\) 177.250 177.250i 0.246866 0.246866i
\(719\) 1241.19i 1.72627i 0.504973 + 0.863135i \(0.331502\pi\)
−0.504973 + 0.863135i \(0.668498\pi\)
\(720\) 0 0
\(721\) −12.4488 −0.0172660
\(722\) −626.204 626.204i −0.867318 0.867318i
\(723\) −589.704 + 589.704i −0.815635 + 0.815635i
\(724\) 289.146i 0.399373i
\(725\) 0 0
\(726\) 78.7453 0.108465
\(727\) 251.623 + 251.623i 0.346112 + 0.346112i 0.858659 0.512547i \(-0.171298\pi\)
−0.512547 + 0.858659i \(0.671298\pi\)
\(728\) −322.382 + 322.382i −0.442833 + 0.442833i
\(729\) 324.206i 0.444727i
\(730\) 0 0
\(731\) 13.9176 0.0190391
\(732\) 304.053 + 304.053i 0.415373 + 0.415373i
\(733\) 458.627 458.627i 0.625685 0.625685i −0.321294 0.946979i \(-0.604118\pi\)
0.946979 + 0.321294i \(0.104118\pi\)
\(734\) 397.057i 0.540949i
\(735\) 0 0
\(736\) −475.130 −0.645557
\(737\) −21.4932 21.4932i −0.0291631 0.0291631i
\(738\) 810.949 810.949i 1.09885 1.09885i
\(739\) 912.068i 1.23419i −0.786888 0.617096i \(-0.788309\pi\)
0.786888 0.617096i \(-0.211691\pi\)
\(740\) 0 0
\(741\) −2778.17 −3.74922
\(742\) 67.8632 + 67.8632i 0.0914598 + 0.0914598i
\(743\) −623.884 + 623.884i −0.839682 + 0.839682i −0.988817 0.149134i \(-0.952351\pi\)
0.149134 + 0.988817i \(0.452351\pi\)
\(744\) 2538.47i 3.41192i
\(745\) 0 0
\(746\) −219.654 −0.294442
\(747\) 2082.71 + 2082.71i 2.78810 + 2.78810i
\(748\) −14.2671 + 14.2671i −0.0190736 + 0.0190736i
\(749\) 565.398i 0.754871i
\(750\) 0 0
\(751\) −776.710 −1.03423 −0.517117 0.855915i \(-0.672995\pi\)
−0.517117 + 0.855915i \(0.672995\pi\)
\(752\) 44.7099 + 44.7099i 0.0594546 + 0.0594546i
\(753\) 3.21535 3.21535i 0.00427005 0.00427005i
\(754\) 325.797i 0.432092i
\(755\) 0 0
\(756\) −526.079 −0.695871
\(757\) 490.116 + 490.116i 0.647445 + 0.647445i 0.952375 0.304930i \(-0.0986330\pi\)
−0.304930 + 0.952375i \(0.598633\pi\)
\(758\) −65.3299 + 65.3299i −0.0861872 + 0.0861872i
\(759\) 279.939i 0.368826i
\(760\) 0 0
\(761\) 60.1820 0.0790828 0.0395414 0.999218i \(-0.487410\pi\)
0.0395414 + 0.999218i \(0.487410\pi\)
\(762\) −825.829 825.829i −1.08377 1.08377i
\(763\) 198.884 198.884i 0.260660 0.260660i
\(764\) 395.016i 0.517037i
\(765\) 0 0
\(766\) 756.120 0.987101
\(767\) −1142.91 1142.91i −1.49010 1.49010i
\(768\) −1037.52 + 1037.52i −1.35093 + 1.35093i
\(769\) 637.781i 0.829363i −0.909967 0.414682i \(-0.863893\pi\)
0.909967 0.414682i \(-0.136107\pi\)
\(770\) 0 0
\(771\) 1655.27 2.14691
\(772\) 118.724 + 118.724i 0.153787 + 0.153787i
\(773\) 173.796 173.796i 0.224833 0.224833i −0.585697 0.810530i \(-0.699179\pi\)
0.810530 + 0.585697i \(0.199179\pi\)
\(774\) 143.459i 0.185348i
\(775\) 0 0
\(776\) 54.3589 0.0700501
\(777\) −828.430 828.430i −1.06619 1.06619i
\(778\) −556.205 + 556.205i −0.714916 + 0.714916i
\(779\) 1348.51i 1.73107i
\(780\) 0 0
\(781\) 67.5813 0.0865317
\(782\) 37.9267 + 37.9267i 0.0484996 + 0.0484996i
\(783\) 730.430 730.430i 0.932860 0.932860i
\(784\) 58.8939i 0.0751198i
\(785\) 0 0
\(786\) −539.812 −0.686784
\(787\) 812.907 + 812.907i 1.03292 + 1.03292i 0.999439 + 0.0334795i \(0.0106588\pi\)
0.0334795 + 0.999439i \(0.489341\pi\)
\(788\) −268.281 + 268.281i −0.340459 + 0.340459i
\(789\) 1874.33i 2.37558i
\(790\) 0 0
\(791\) −260.290 −0.329064
\(792\) 404.093 + 404.093i 0.510219 + 0.510219i
\(793\) 382.584 382.584i 0.482452 0.482452i
\(794\) 632.001i 0.795971i
\(795\) 0 0
\(796\) 284.042 0.356837
\(797\) 971.779 + 971.779i 1.21930 + 1.21930i 0.967879 + 0.251417i \(0.0808966\pi\)
0.251417 + 0.967879i \(0.419103\pi\)
\(798\) −573.524 + 573.524i −0.718702 + 0.718702i
\(799\) 104.542i 0.130841i
\(800\) 0 0
\(801\) 2996.95 3.74151
\(802\) −194.331 194.331i −0.242308 0.242308i
\(803\) 148.087 148.087i 0.184417 0.184417i
\(804\) 114.777i 0.142757i
\(805\) 0 0
\(806\) −1162.43 −1.44223
\(807\) −1061.27 1061.27i −1.31508 1.31508i
\(808\) 356.576 356.576i 0.441307 0.441307i
\(809\) 17.3877i 0.0214928i −0.999942 0.0107464i \(-0.996579\pi\)
0.999942 0.0107464i \(-0.00342076\pi\)
\(810\) 0 0
\(811\) −852.035 −1.05060 −0.525299 0.850918i \(-0.676046\pi\)
−0.525299 + 0.850918i \(0.676046\pi\)
\(812\) 89.9433 + 89.9433i 0.110768 + 0.110768i
\(813\) −869.810 + 869.810i −1.06988 + 1.06988i
\(814\) 264.140i 0.324497i
\(815\) 0 0
\(816\) 23.3855 0.0286586
\(817\) 119.277 + 119.277i 0.145994 + 0.145994i
\(818\) −640.106 + 640.106i −0.782525 + 0.782525i
\(819\) 1160.73i 1.41725i
\(820\) 0 0
\(821\) 632.202 0.770039 0.385020 0.922908i \(-0.374195\pi\)
0.385020 + 0.922908i \(0.374195\pi\)
\(822\) 57.5029 + 57.5029i 0.0699549 + 0.0699549i
\(823\) 783.340 783.340i 0.951810 0.951810i −0.0470806 0.998891i \(-0.514992\pi\)
0.998891 + 0.0470806i \(0.0149918\pi\)
\(824\) 29.1212i 0.0353413i
\(825\) 0 0
\(826\) −471.881 −0.571285
\(827\) 841.100 + 841.100i 1.01705 + 1.01705i 0.999852 + 0.0171980i \(0.00547458\pi\)
0.0171980 + 0.999852i \(0.494525\pi\)
\(828\) −522.804 + 522.804i −0.631406 + 0.631406i
\(829\) 57.3663i 0.0691994i −0.999401 0.0345997i \(-0.988984\pi\)
0.999401 0.0345997i \(-0.0110156\pi\)
\(830\) 0 0
\(831\) −493.853 −0.594287
\(832\) 520.686 + 520.686i 0.625825 + 0.625825i
\(833\) 68.8537 68.8537i 0.0826575 0.0826575i
\(834\) 1107.57i 1.32803i
\(835\) 0 0
\(836\) −244.545 −0.292518
\(837\) −2606.15 2606.15i −3.11368 3.11368i
\(838\) 361.511 361.511i 0.431397 0.431397i
\(839\) 1356.86i 1.61724i −0.588333 0.808619i \(-0.700215\pi\)
0.588333 0.808619i \(-0.299785\pi\)
\(840\) 0 0
\(841\) 591.238 0.703018
\(842\) −386.277 386.277i −0.458761 0.458761i
\(843\) 1180.90 1180.90i 1.40084 1.40084i
\(844\) 165.011i 0.195511i
\(845\) 0 0
\(846\) 1077.59 1.27375
\(847\) 27.3542 + 27.3542i 0.0322954 + 0.0322954i
\(848\) 23.7150 23.7150i 0.0279658 0.0279658i
\(849\) 2842.15i 3.34764i
\(850\) 0 0
\(851\) −939.017 −1.10343
\(852\) 180.447 + 180.447i 0.211792 + 0.211792i
\(853\) −306.457 + 306.457i −0.359269 + 0.359269i −0.863544 0.504274i \(-0.831760\pi\)
0.504274 + 0.863544i \(0.331760\pi\)
\(854\) 157.961i 0.184966i
\(855\) 0 0
\(856\) −1322.62 −1.54512
\(857\) −698.176 698.176i −0.814674 0.814674i 0.170656 0.985331i \(-0.445411\pi\)
−0.985331 + 0.170656i \(0.945411\pi\)
\(858\) 264.560 264.560i 0.308346 0.308346i
\(859\) 126.063i 0.146755i −0.997304 0.0733776i \(-0.976622\pi\)
0.997304 0.0733776i \(-0.0233778\pi\)
\(860\) 0 0
\(861\) 805.507 0.935549
\(862\) −105.865 105.865i −0.122813 0.122813i
\(863\) 828.692 828.692i 0.960245 0.960245i −0.0389942 0.999239i \(-0.512415\pi\)
0.999239 + 0.0389942i \(0.0124154\pi\)
\(864\) 2013.42i 2.33035i
\(865\) 0 0
\(866\) 393.520 0.454411
\(867\) −1090.92 1090.92i −1.25827 1.25827i
\(868\) 320.914 320.914i 0.369717 0.369717i
\(869\) 96.1585i 0.110654i
\(870\) 0 0
\(871\) −144.421 −0.165811
\(872\) −465.245 465.245i −0.533538 0.533538i
\(873\) 97.8586 97.8586i 0.112095 0.112095i
\(874\) 650.084i 0.743803i
\(875\) 0 0
\(876\) 790.805 0.902745
\(877\) −601.057 601.057i −0.685356 0.685356i 0.275846 0.961202i \(-0.411042\pi\)
−0.961202 + 0.275846i \(0.911042\pi\)
\(878\) 379.553 379.553i 0.432293 0.432293i
\(879\) 1932.64i 2.19868i
\(880\) 0 0
\(881\) 179.995 0.204307 0.102154 0.994769i \(-0.467427\pi\)
0.102154 + 0.994769i \(0.467427\pi\)
\(882\) −709.729 709.729i −0.804682 0.804682i
\(883\) 688.177 688.177i 0.779362 0.779362i −0.200360 0.979722i \(-0.564211\pi\)
0.979722 + 0.200360i \(0.0642111\pi\)
\(884\) 95.8661i 0.108446i
\(885\) 0 0
\(886\) 418.226 0.472038
\(887\) −342.387 342.387i −0.386005 0.386005i 0.487255 0.873260i \(-0.337998\pi\)
−0.873260 + 0.487255i \(0.837998\pi\)
\(888\) −1937.93 + 1937.93i −2.18235 + 2.18235i
\(889\) 573.745i 0.645383i
\(890\) 0 0
\(891\) 561.088 0.629728
\(892\) −477.186 477.186i −0.534962 0.534962i
\(893\) −895.952 + 895.952i −1.00331 + 1.00331i
\(894\) 572.957i 0.640891i
\(895\) 0 0
\(896\) −218.342 −0.243685
\(897\) 940.510 + 940.510i 1.04851 + 1.04851i
\(898\) −350.511 + 350.511i −0.390324 + 0.390324i
\(899\) 891.142i 0.991259i
\(900\) 0 0
\(901\) 55.4510 0.0615439
\(902\) −128.416 128.416i −0.142368 0.142368i
\(903\) 71.2484 71.2484i 0.0789018 0.0789018i
\(904\) 608.891i 0.673552i
\(905\) 0 0
\(906\) 1476.03 1.62917
\(907\) −826.608 826.608i −0.911365 0.911365i 0.0850144 0.996380i \(-0.472906\pi\)
−0.996380 + 0.0850144i \(0.972906\pi\)
\(908\) −221.475 + 221.475i −0.243915 + 0.243915i
\(909\) 1283.84i 1.41236i
\(910\) 0 0
\(911\) −826.053 −0.906754 −0.453377 0.891319i \(-0.649781\pi\)
−0.453377 + 0.891319i \(0.649781\pi\)
\(912\) 200.420 + 200.420i 0.219758 + 0.219758i
\(913\) 329.803 329.803i 0.361230 0.361230i
\(914\) 666.876i 0.729623i
\(915\) 0 0
\(916\) −55.8042 −0.0609216
\(917\) −187.518 187.518i −0.204490 0.204490i
\(918\) 160.719 160.719i 0.175075 0.175075i
\(919\) 319.750i 0.347933i −0.984752 0.173966i \(-0.944342\pi\)
0.984752 0.173966i \(-0.0556584\pi\)
\(920\) 0 0
\(921\) −2189.58 −2.37740
\(922\) −202.594 202.594i −0.219733 0.219733i
\(923\) 227.053 227.053i 0.245994 0.245994i
\(924\) 146.075i 0.158090i
\(925\) 0 0
\(926\) 356.913 0.385435
\(927\) 52.4249 + 52.4249i 0.0565533 + 0.0565533i
\(928\) 344.233 344.233i 0.370941 0.370941i
\(929\) 756.667i 0.814496i −0.913318 0.407248i \(-0.866488\pi\)
0.913318 0.407248i \(-0.133512\pi\)
\(930\) 0 0
\(931\) 1180.19 1.26766
\(932\) 13.9216 + 13.9216i 0.0149374 + 0.0149374i
\(933\) −79.8125 + 79.8125i −0.0855440 + 0.0855440i
\(934\) 152.339i 0.163104i
\(935\) 0 0
\(936\) 2715.26 2.90092
\(937\) 422.038 + 422.038i 0.450414 + 0.450414i 0.895492 0.445078i \(-0.146824\pi\)
−0.445078 + 0.895492i \(0.646824\pi\)
\(938\) −29.8142 + 29.8142i −0.0317849 + 0.0317849i
\(939\) 1271.01i 1.35357i
\(940\) 0 0
\(941\) −1091.44 −1.15987 −0.579937 0.814661i \(-0.696923\pi\)
−0.579937 + 0.814661i \(0.696923\pi\)
\(942\) −544.335 544.335i −0.577850 0.577850i
\(943\) 456.517 456.517i 0.484111 0.484111i
\(944\) 164.900i 0.174682i
\(945\) 0 0
\(946\) −22.7171 −0.0240139
\(947\) −681.095 681.095i −0.719213 0.719213i 0.249231 0.968444i \(-0.419822\pi\)
−0.968444 + 0.249231i \(0.919822\pi\)
\(948\) −256.750 + 256.750i −0.270833 + 0.270833i
\(949\) 995.056i 1.04853i
\(950\) 0 0
\(951\) 455.537 0.479008
\(952\) 54.3799 + 54.3799i 0.0571218 + 0.0571218i
\(953\) −402.146 + 402.146i −0.421979 + 0.421979i −0.885885 0.463905i \(-0.846448\pi\)
0.463905 + 0.885885i \(0.346448\pi\)
\(954\) 571.577i 0.599137i
\(955\) 0 0
\(956\) 690.385 0.722160
\(957\) −202.817 202.817i −0.211930 0.211930i
\(958\) 821.819 821.819i 0.857848 0.857848i
\(959\) 39.9502i 0.0416582i
\(960\) 0 0
\(961\) 2218.56 2.30860
\(962\) 887.432 + 887.432i 0.922487 + 0.922487i
\(963\) −2381.03 + 2381.03i −2.47251 + 2.47251i
\(964\) 348.790i 0.361816i
\(965\) 0 0
\(966\) 388.316 0.401984
\(967\) 568.231 + 568.231i 0.587623 + 0.587623i 0.936987 0.349364i \(-0.113602\pi\)
−0.349364 + 0.936987i \(0.613602\pi\)
\(968\) 63.9891 63.9891i 0.0661045 0.0661045i
\(969\) 468.627i 0.483619i
\(970\) 0 0
\(971\) −1823.88 −1.87835 −0.939176 0.343436i \(-0.888409\pi\)
−0.939176 + 0.343436i \(0.888409\pi\)
\(972\) 546.153 + 546.153i 0.561886 + 0.561886i
\(973\) 384.744 384.744i 0.395421 0.395421i
\(974\) 230.280i 0.236427i
\(975\) 0 0
\(976\) −55.1999 −0.0565572
\(977\) −61.1157 61.1157i −0.0625544 0.0625544i 0.675137 0.737692i \(-0.264084\pi\)
−0.737692 + 0.675137i \(0.764084\pi\)
\(978\) 156.486 156.486i 0.160006 0.160006i
\(979\) 474.575i 0.484754i
\(980\) 0 0
\(981\) −1675.10 −1.70754
\(982\) 897.419 + 897.419i 0.913868 + 0.913868i
\(983\) −55.5500 + 55.5500i −0.0565107 + 0.0565107i −0.734797 0.678287i \(-0.762723\pi\)
0.678287 + 0.734797i \(0.262723\pi\)
\(984\) 1884.31i 1.91495i
\(985\) 0 0
\(986\) −54.9560 −0.0557363
\(987\) 535.182 + 535.182i 0.542231 + 0.542231i
\(988\) −821.599 + 821.599i −0.831577 + 0.831577i
\(989\) 80.7593i 0.0816575i
\(990\) 0 0
\(991\) −491.094 −0.495554 −0.247777 0.968817i \(-0.579700\pi\)
−0.247777 + 0.968817i \(0.579700\pi\)
\(992\) −1228.21 1228.21i −1.23812 1.23812i
\(993\) 1503.00 1503.00i 1.51360 1.51360i
\(994\) 93.7452i 0.0943111i
\(995\) 0 0
\(996\) 1761.19 1.76826
\(997\) −175.640 175.640i −0.176169 0.176169i 0.613515 0.789683i \(-0.289755\pi\)
−0.789683 + 0.613515i \(0.789755\pi\)
\(998\) 537.969 537.969i 0.539047 0.539047i
\(999\) 3979.20i 3.98318i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.f.c.232.8 yes 24
5.2 odd 4 inner 275.3.f.c.243.5 yes 24
5.3 odd 4 inner 275.3.f.c.243.8 yes 24
5.4 even 2 inner 275.3.f.c.232.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.f.c.232.5 24 5.4 even 2 inner
275.3.f.c.232.8 yes 24 1.1 even 1 trivial
275.3.f.c.243.5 yes 24 5.2 odd 4 inner
275.3.f.c.243.8 yes 24 5.3 odd 4 inner