Properties

Label 275.3.f.c.232.11
Level $275$
Weight $3$
Character 275.232
Analytic conductor $7.493$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(232,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.232"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 232.11
Character \(\chi\) \(=\) 275.232
Dual form 275.3.f.c.243.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.31629 + 2.31629i) q^{2} +(0.535688 - 0.535688i) q^{3} +6.73036i q^{4} +2.48161 q^{6} +(2.25638 + 2.25638i) q^{7} +(-6.32430 + 6.32430i) q^{8} +8.42608i q^{9} +3.31662 q^{11} +(3.60537 + 3.60537i) q^{12} +(-7.80868 + 7.80868i) q^{13} +10.4529i q^{14} -2.37634 q^{16} +(6.60411 + 6.60411i) q^{17} +(-19.5172 + 19.5172i) q^{18} -14.8216i q^{19} +2.41743 q^{21} +(7.68225 + 7.68225i) q^{22} +(-6.20520 + 6.20520i) q^{23} +6.77570i q^{24} -36.1743 q^{26} +(9.33493 + 9.33493i) q^{27} +(-15.1863 + 15.1863i) q^{28} -55.3363i q^{29} +7.07201 q^{31} +(19.7929 + 19.7929i) q^{32} +(1.77667 - 1.77667i) q^{33} +30.5940i q^{34} -56.7106 q^{36} +(-22.2145 - 22.2145i) q^{37} +(34.3310 - 34.3310i) q^{38} +8.36603i q^{39} -36.8039 q^{41} +(5.59946 + 5.59946i) q^{42} +(50.8752 - 50.8752i) q^{43} +22.3221i q^{44} -28.7460 q^{46} +(45.9755 + 45.9755i) q^{47} +(-1.27298 + 1.27298i) q^{48} -38.8175i q^{49} +7.07547 q^{51} +(-52.5553 - 52.5553i) q^{52} +(-5.18836 + 5.18836i) q^{53} +43.2448i q^{54} -28.5401 q^{56} +(-7.93973 - 7.93973i) q^{57} +(128.175 - 128.175i) q^{58} -94.6910i q^{59} +102.761 q^{61} +(16.3808 + 16.3808i) q^{62} +(-19.0124 + 19.0124i) q^{63} +101.198i q^{64} +8.23057 q^{66} +(-16.0072 - 16.0072i) q^{67} +(-44.4480 + 44.4480i) q^{68} +6.64810i q^{69} -12.0687 q^{71} +(-53.2891 - 53.2891i) q^{72} +(-86.2203 + 86.2203i) q^{73} -102.910i q^{74} +99.7545 q^{76} +(7.48357 + 7.48357i) q^{77} +(-19.3781 + 19.3781i) q^{78} -76.3614i q^{79} -65.8335 q^{81} +(-85.2483 - 85.2483i) q^{82} +(-85.3715 + 85.3715i) q^{83} +16.2702i q^{84} +235.683 q^{86} +(-29.6430 - 29.6430i) q^{87} +(-20.9753 + 20.9753i) q^{88} -3.80628i q^{89} -35.2387 q^{91} +(-41.7633 - 41.7633i) q^{92} +(3.78839 - 3.78839i) q^{93} +212.985i q^{94} +21.2057 q^{96} +(33.8246 + 33.8246i) q^{97} +(89.9124 - 89.9124i) q^{98} +27.9461i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 128 q^{16} - 88 q^{21} + 96 q^{26} + 360 q^{31} + 176 q^{36} - 152 q^{41} + 56 q^{46} - 512 q^{51} - 1048 q^{56} + 784 q^{61} - 440 q^{66} + 728 q^{71} + 1704 q^{76} - 568 q^{81} - 328 q^{86}+ \cdots + 1568 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.31629 + 2.31629i 1.15814 + 1.15814i 0.984875 + 0.173268i \(0.0554328\pi\)
0.173268 + 0.984875i \(0.444567\pi\)
\(3\) 0.535688 0.535688i 0.178563 0.178563i −0.612166 0.790729i \(-0.709702\pi\)
0.790729 + 0.612166i \(0.209702\pi\)
\(4\) 6.73036i 1.68259i
\(5\) 0 0
\(6\) 2.48161 0.413602
\(7\) 2.25638 + 2.25638i 0.322340 + 0.322340i 0.849664 0.527324i \(-0.176805\pi\)
−0.527324 + 0.849664i \(0.676805\pi\)
\(8\) −6.32430 + 6.32430i −0.790538 + 0.790538i
\(9\) 8.42608i 0.936231i
\(10\) 0 0
\(11\) 3.31662 0.301511
\(12\) 3.60537 + 3.60537i 0.300448 + 0.300448i
\(13\) −7.80868 + 7.80868i −0.600668 + 0.600668i −0.940490 0.339822i \(-0.889633\pi\)
0.339822 + 0.940490i \(0.389633\pi\)
\(14\) 10.4529i 0.746632i
\(15\) 0 0
\(16\) −2.37634 −0.148521
\(17\) 6.60411 + 6.60411i 0.388477 + 0.388477i 0.874144 0.485667i \(-0.161423\pi\)
−0.485667 + 0.874144i \(0.661423\pi\)
\(18\) −19.5172 + 19.5172i −1.08429 + 1.08429i
\(19\) 14.8216i 0.780082i −0.920797 0.390041i \(-0.872461\pi\)
0.920797 0.390041i \(-0.127539\pi\)
\(20\) 0 0
\(21\) 2.41743 0.115116
\(22\) 7.68225 + 7.68225i 0.349193 + 0.349193i
\(23\) −6.20520 + 6.20520i −0.269791 + 0.269791i −0.829016 0.559225i \(-0.811099\pi\)
0.559225 + 0.829016i \(0.311099\pi\)
\(24\) 6.77570i 0.282321i
\(25\) 0 0
\(26\) −36.1743 −1.39132
\(27\) 9.33493 + 9.33493i 0.345738 + 0.345738i
\(28\) −15.1863 + 15.1863i −0.542367 + 0.542367i
\(29\) 55.3363i 1.90815i −0.299570 0.954074i \(-0.596843\pi\)
0.299570 0.954074i \(-0.403157\pi\)
\(30\) 0 0
\(31\) 7.07201 0.228129 0.114065 0.993473i \(-0.463613\pi\)
0.114065 + 0.993473i \(0.463613\pi\)
\(32\) 19.7929 + 19.7929i 0.618529 + 0.618529i
\(33\) 1.77667 1.77667i 0.0538386 0.0538386i
\(34\) 30.5940i 0.899823i
\(35\) 0 0
\(36\) −56.7106 −1.57529
\(37\) −22.2145 22.2145i −0.600393 0.600393i 0.340024 0.940417i \(-0.389565\pi\)
−0.940417 + 0.340024i \(0.889565\pi\)
\(38\) 34.3310 34.3310i 0.903447 0.903447i
\(39\) 8.36603i 0.214514i
\(40\) 0 0
\(41\) −36.8039 −0.897655 −0.448828 0.893618i \(-0.648158\pi\)
−0.448828 + 0.893618i \(0.648158\pi\)
\(42\) 5.59946 + 5.59946i 0.133321 + 0.133321i
\(43\) 50.8752 50.8752i 1.18314 1.18314i 0.204219 0.978925i \(-0.434534\pi\)
0.978925 0.204219i \(-0.0654656\pi\)
\(44\) 22.3221i 0.507320i
\(45\) 0 0
\(46\) −28.7460 −0.624914
\(47\) 45.9755 + 45.9755i 0.978203 + 0.978203i 0.999767 0.0215644i \(-0.00686468\pi\)
−0.0215644 + 0.999767i \(0.506865\pi\)
\(48\) −1.27298 + 1.27298i −0.0265203 + 0.0265203i
\(49\) 38.8175i 0.792194i
\(50\) 0 0
\(51\) 7.07547 0.138735
\(52\) −52.5553 52.5553i −1.01068 1.01068i
\(53\) −5.18836 + 5.18836i −0.0978936 + 0.0978936i −0.754357 0.656464i \(-0.772051\pi\)
0.656464 + 0.754357i \(0.272051\pi\)
\(54\) 43.2448i 0.800829i
\(55\) 0 0
\(56\) −28.5401 −0.509644
\(57\) −7.93973 7.93973i −0.139293 0.139293i
\(58\) 128.175 128.175i 2.20991 2.20991i
\(59\) 94.6910i 1.60493i −0.596698 0.802466i \(-0.703521\pi\)
0.596698 0.802466i \(-0.296479\pi\)
\(60\) 0 0
\(61\) 102.761 1.68460 0.842302 0.539006i \(-0.181200\pi\)
0.842302 + 0.539006i \(0.181200\pi\)
\(62\) 16.3808 + 16.3808i 0.264207 + 0.264207i
\(63\) −19.0124 + 19.0124i −0.301785 + 0.301785i
\(64\) 101.198i 1.58121i
\(65\) 0 0
\(66\) 8.23057 0.124706
\(67\) −16.0072 16.0072i −0.238914 0.238914i 0.577486 0.816400i \(-0.304034\pi\)
−0.816400 + 0.577486i \(0.804034\pi\)
\(68\) −44.4480 + 44.4480i −0.653648 + 0.653648i
\(69\) 6.64810i 0.0963493i
\(70\) 0 0
\(71\) −12.0687 −0.169982 −0.0849908 0.996382i \(-0.527086\pi\)
−0.0849908 + 0.996382i \(0.527086\pi\)
\(72\) −53.2891 53.2891i −0.740126 0.740126i
\(73\) −86.2203 + 86.2203i −1.18110 + 1.18110i −0.201641 + 0.979460i \(0.564627\pi\)
−0.979460 + 0.201641i \(0.935373\pi\)
\(74\) 102.910i 1.39068i
\(75\) 0 0
\(76\) 99.7545 1.31256
\(77\) 7.48357 + 7.48357i 0.0971892 + 0.0971892i
\(78\) −19.3781 + 19.3781i −0.248437 + 0.248437i
\(79\) 76.3614i 0.966600i −0.875455 0.483300i \(-0.839438\pi\)
0.875455 0.483300i \(-0.160562\pi\)
\(80\) 0 0
\(81\) −65.8335 −0.812759
\(82\) −85.2483 85.2483i −1.03961 1.03961i
\(83\) −85.3715 + 85.3715i −1.02857 + 1.02857i −0.0289933 + 0.999580i \(0.509230\pi\)
−0.999580 + 0.0289933i \(0.990770\pi\)
\(84\) 16.2702i 0.193693i
\(85\) 0 0
\(86\) 235.683 2.74050
\(87\) −29.6430 29.6430i −0.340724 0.340724i
\(88\) −20.9753 + 20.9753i −0.238356 + 0.238356i
\(89\) 3.80628i 0.0427672i −0.999771 0.0213836i \(-0.993193\pi\)
0.999771 0.0213836i \(-0.00680713\pi\)
\(90\) 0 0
\(91\) −35.2387 −0.387239
\(92\) −41.7633 41.7633i −0.453949 0.453949i
\(93\) 3.78839 3.78839i 0.0407354 0.0407354i
\(94\) 212.985i 2.26580i
\(95\) 0 0
\(96\) 21.2057 0.220892
\(97\) 33.8246 + 33.8246i 0.348707 + 0.348707i 0.859628 0.510921i \(-0.170695\pi\)
−0.510921 + 0.859628i \(0.670695\pi\)
\(98\) 89.9124 89.9124i 0.917473 0.917473i
\(99\) 27.9461i 0.282284i
\(100\) 0 0
\(101\) 132.615 1.31302 0.656510 0.754317i \(-0.272032\pi\)
0.656510 + 0.754317i \(0.272032\pi\)
\(102\) 16.3888 + 16.3888i 0.160675 + 0.160675i
\(103\) −26.3409 + 26.3409i −0.255737 + 0.255737i −0.823318 0.567581i \(-0.807879\pi\)
0.567581 + 0.823318i \(0.307879\pi\)
\(104\) 98.7690i 0.949702i
\(105\) 0 0
\(106\) −24.0355 −0.226750
\(107\) 6.67005 + 6.67005i 0.0623370 + 0.0623370i 0.737588 0.675251i \(-0.235965\pi\)
−0.675251 + 0.737588i \(0.735965\pi\)
\(108\) −62.8275 + 62.8275i −0.581736 + 0.581736i
\(109\) 48.5455i 0.445372i 0.974890 + 0.222686i \(0.0714825\pi\)
−0.974890 + 0.222686i \(0.928518\pi\)
\(110\) 0 0
\(111\) −23.8001 −0.214415
\(112\) −5.36193 5.36193i −0.0478744 0.0478744i
\(113\) 97.1769 97.1769i 0.859973 0.859973i −0.131362 0.991334i \(-0.541935\pi\)
0.991334 + 0.131362i \(0.0419349\pi\)
\(114\) 36.7814i 0.322644i
\(115\) 0 0
\(116\) 372.433 3.21063
\(117\) −65.7966 65.7966i −0.562364 0.562364i
\(118\) 219.331 219.331i 1.85874 1.85874i
\(119\) 29.8028i 0.250443i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) 238.023 + 238.023i 1.95101 + 1.95101i
\(123\) −19.7154 + 19.7154i −0.160288 + 0.160288i
\(124\) 47.5972i 0.383848i
\(125\) 0 0
\(126\) −88.0765 −0.699020
\(127\) −12.2300 12.2300i −0.0962992 0.0962992i 0.657316 0.753615i \(-0.271692\pi\)
−0.753615 + 0.657316i \(0.771692\pi\)
\(128\) −155.231 + 155.231i −1.21274 + 1.21274i
\(129\) 54.5064i 0.422530i
\(130\) 0 0
\(131\) −93.1147 −0.710800 −0.355400 0.934714i \(-0.615655\pi\)
−0.355400 + 0.934714i \(0.615655\pi\)
\(132\) 11.9577 + 11.9577i 0.0905884 + 0.0905884i
\(133\) 33.4431 33.4431i 0.251452 0.251452i
\(134\) 74.1547i 0.553393i
\(135\) 0 0
\(136\) −83.5327 −0.614211
\(137\) −132.310 132.310i −0.965764 0.965764i 0.0336695 0.999433i \(-0.489281\pi\)
−0.999433 + 0.0336695i \(0.989281\pi\)
\(138\) −15.3989 + 15.3989i −0.111586 + 0.111586i
\(139\) 180.635i 1.29954i 0.760133 + 0.649768i \(0.225134\pi\)
−0.760133 + 0.649768i \(0.774866\pi\)
\(140\) 0 0
\(141\) 49.2571 0.349341
\(142\) −27.9545 27.9545i −0.196863 0.196863i
\(143\) −25.8985 + 25.8985i −0.181108 + 0.181108i
\(144\) 20.0232i 0.139050i
\(145\) 0 0
\(146\) −399.422 −2.73577
\(147\) −20.7940 20.7940i −0.141456 0.141456i
\(148\) 149.512 149.512i 1.01022 1.01022i
\(149\) 39.4408i 0.264703i −0.991203 0.132352i \(-0.957747\pi\)
0.991203 0.132352i \(-0.0422528\pi\)
\(150\) 0 0
\(151\) −151.320 −1.00212 −0.501060 0.865412i \(-0.667057\pi\)
−0.501060 + 0.865412i \(0.667057\pi\)
\(152\) 93.7361 + 93.7361i 0.616685 + 0.616685i
\(153\) −55.6467 + 55.6467i −0.363704 + 0.363704i
\(154\) 34.6682i 0.225118i
\(155\) 0 0
\(156\) −56.3064 −0.360939
\(157\) −38.3532 38.3532i −0.244288 0.244288i 0.574333 0.818621i \(-0.305261\pi\)
−0.818621 + 0.574333i \(0.805261\pi\)
\(158\) 176.875 176.875i 1.11946 1.11946i
\(159\) 5.55868i 0.0349602i
\(160\) 0 0
\(161\) −28.0026 −0.173929
\(162\) −152.489 152.489i −0.941291 0.941291i
\(163\) −170.729 + 170.729i −1.04741 + 1.04741i −0.0485963 + 0.998818i \(0.515475\pi\)
−0.998818 + 0.0485963i \(0.984525\pi\)
\(164\) 247.703i 1.51039i
\(165\) 0 0
\(166\) −395.490 −2.38247
\(167\) 52.4959 + 52.4959i 0.314347 + 0.314347i 0.846591 0.532244i \(-0.178651\pi\)
−0.532244 + 0.846591i \(0.678651\pi\)
\(168\) −15.2886 + 15.2886i −0.0910034 + 0.0910034i
\(169\) 47.0489i 0.278396i
\(170\) 0 0
\(171\) 124.888 0.730337
\(172\) 342.409 + 342.409i 1.99075 + 1.99075i
\(173\) 50.0798 50.0798i 0.289478 0.289478i −0.547396 0.836874i \(-0.684381\pi\)
0.836874 + 0.547396i \(0.184381\pi\)
\(174\) 137.323i 0.789214i
\(175\) 0 0
\(176\) −7.88143 −0.0447809
\(177\) −50.7248 50.7248i −0.286581 0.286581i
\(178\) 8.81644 8.81644i 0.0495306 0.0495306i
\(179\) 338.727i 1.89233i −0.323689 0.946164i \(-0.604923\pi\)
0.323689 0.946164i \(-0.395077\pi\)
\(180\) 0 0
\(181\) −253.266 −1.39926 −0.699629 0.714506i \(-0.746652\pi\)
−0.699629 + 0.714506i \(0.746652\pi\)
\(182\) −81.6230 81.6230i −0.448478 0.448478i
\(183\) 55.0477 55.0477i 0.300807 0.300807i
\(184\) 78.4872i 0.426561i
\(185\) 0 0
\(186\) 17.5500 0.0943548
\(187\) 21.9033 + 21.9033i 0.117130 + 0.117130i
\(188\) −309.432 + 309.432i −1.64592 + 1.64592i
\(189\) 42.1263i 0.222891i
\(190\) 0 0
\(191\) −108.158 −0.566274 −0.283137 0.959079i \(-0.591375\pi\)
−0.283137 + 0.959079i \(0.591375\pi\)
\(192\) 54.2103 + 54.2103i 0.282345 + 0.282345i
\(193\) −47.4394 + 47.4394i −0.245800 + 0.245800i −0.819244 0.573445i \(-0.805607\pi\)
0.573445 + 0.819244i \(0.305607\pi\)
\(194\) 156.695i 0.807706i
\(195\) 0 0
\(196\) 261.256 1.33294
\(197\) −179.302 179.302i −0.910161 0.910161i 0.0861231 0.996285i \(-0.472552\pi\)
−0.996285 + 0.0861231i \(0.972552\pi\)
\(198\) −64.7313 + 64.7313i −0.326926 + 0.326926i
\(199\) 196.013i 0.984989i 0.870315 + 0.492495i \(0.163915\pi\)
−0.870315 + 0.492495i \(0.836085\pi\)
\(200\) 0 0
\(201\) −17.1497 −0.0853221
\(202\) 307.174 + 307.174i 1.52067 + 1.52067i
\(203\) 124.860 124.860i 0.615073 0.615073i
\(204\) 47.6205i 0.233434i
\(205\) 0 0
\(206\) −122.026 −0.592360
\(207\) −52.2855 52.2855i −0.252587 0.252587i
\(208\) 18.5561 18.5561i 0.0892120 0.0892120i
\(209\) 49.1576i 0.235204i
\(210\) 0 0
\(211\) −37.5901 −0.178152 −0.0890761 0.996025i \(-0.528391\pi\)
−0.0890761 + 0.996025i \(0.528391\pi\)
\(212\) −34.9195 34.9195i −0.164715 0.164715i
\(213\) −6.46505 + 6.46505i −0.0303523 + 0.0303523i
\(214\) 30.8995i 0.144390i
\(215\) 0 0
\(216\) −118.074 −0.546638
\(217\) 15.9572 + 15.9572i 0.0735353 + 0.0735353i
\(218\) −112.445 + 112.445i −0.515804 + 0.515804i
\(219\) 92.3743i 0.421800i
\(220\) 0 0
\(221\) −103.139 −0.466691
\(222\) −55.1278 55.1278i −0.248324 0.248324i
\(223\) −174.596 + 174.596i −0.782941 + 0.782941i −0.980326 0.197385i \(-0.936755\pi\)
0.197385 + 0.980326i \(0.436755\pi\)
\(224\) 89.3208i 0.398754i
\(225\) 0 0
\(226\) 450.179 1.99194
\(227\) 254.298 + 254.298i 1.12026 + 1.12026i 0.991702 + 0.128555i \(0.0410339\pi\)
0.128555 + 0.991702i \(0.458966\pi\)
\(228\) 53.4373 53.4373i 0.234374 0.234374i
\(229\) 344.525i 1.50448i 0.658891 + 0.752238i \(0.271026\pi\)
−0.658891 + 0.752238i \(0.728974\pi\)
\(230\) 0 0
\(231\) 8.01771 0.0347087
\(232\) 349.964 + 349.964i 1.50846 + 1.50846i
\(233\) 266.136 266.136i 1.14222 1.14222i 0.154172 0.988044i \(-0.450729\pi\)
0.988044 0.154172i \(-0.0492708\pi\)
\(234\) 304.807i 1.30260i
\(235\) 0 0
\(236\) 637.305 2.70044
\(237\) −40.9059 40.9059i −0.172599 0.172599i
\(238\) −69.0317 + 69.0317i −0.290049 + 0.290049i
\(239\) 275.134i 1.15119i 0.817735 + 0.575594i \(0.195229\pi\)
−0.817735 + 0.575594i \(0.804771\pi\)
\(240\) 0 0
\(241\) 187.853 0.779475 0.389738 0.920926i \(-0.372566\pi\)
0.389738 + 0.920926i \(0.372566\pi\)
\(242\) 25.4791 + 25.4791i 0.105286 + 0.105286i
\(243\) −119.281 + 119.281i −0.490867 + 0.490867i
\(244\) 691.618i 2.83450i
\(245\) 0 0
\(246\) −91.3329 −0.371272
\(247\) 115.737 + 115.737i 0.468571 + 0.468571i
\(248\) −44.7256 + 44.7256i −0.180345 + 0.180345i
\(249\) 91.4649i 0.367329i
\(250\) 0 0
\(251\) −228.760 −0.911395 −0.455697 0.890135i \(-0.650610\pi\)
−0.455697 + 0.890135i \(0.650610\pi\)
\(252\) −127.961 127.961i −0.507781 0.507781i
\(253\) −20.5803 + 20.5803i −0.0813452 + 0.0813452i
\(254\) 56.6564i 0.223057i
\(255\) 0 0
\(256\) −314.328 −1.22784
\(257\) −199.176 199.176i −0.775003 0.775003i 0.203973 0.978976i \(-0.434614\pi\)
−0.978976 + 0.203973i \(0.934614\pi\)
\(258\) 126.252 126.252i 0.489351 0.489351i
\(259\) 100.249i 0.387062i
\(260\) 0 0
\(261\) 466.268 1.78647
\(262\) −215.680 215.680i −0.823208 0.823208i
\(263\) −168.588 + 168.588i −0.641019 + 0.641019i −0.950806 0.309787i \(-0.899742\pi\)
0.309787 + 0.950806i \(0.399742\pi\)
\(264\) 22.4725i 0.0851230i
\(265\) 0 0
\(266\) 154.928 0.582435
\(267\) −2.03898 2.03898i −0.00763662 0.00763662i
\(268\) 107.734 107.734i 0.401994 0.401994i
\(269\) 82.2687i 0.305832i −0.988239 0.152916i \(-0.951134\pi\)
0.988239 0.152916i \(-0.0488664\pi\)
\(270\) 0 0
\(271\) 151.503 0.559051 0.279525 0.960138i \(-0.409823\pi\)
0.279525 + 0.960138i \(0.409823\pi\)
\(272\) −15.6936 15.6936i −0.0576971 0.0576971i
\(273\) −18.8770 + 18.8770i −0.0691464 + 0.0691464i
\(274\) 612.934i 2.23698i
\(275\) 0 0
\(276\) −44.7441 −0.162116
\(277\) 340.510 + 340.510i 1.22928 + 1.22928i 0.964237 + 0.265041i \(0.0853855\pi\)
0.265041 + 0.964237i \(0.414615\pi\)
\(278\) −418.403 + 418.403i −1.50505 + 1.50505i
\(279\) 59.5893i 0.213582i
\(280\) 0 0
\(281\) −11.0542 −0.0393386 −0.0196693 0.999807i \(-0.506261\pi\)
−0.0196693 + 0.999807i \(0.506261\pi\)
\(282\) 114.093 + 114.093i 0.404587 + 0.404587i
\(283\) 202.451 202.451i 0.715376 0.715376i −0.252279 0.967655i \(-0.581180\pi\)
0.967655 + 0.252279i \(0.0811800\pi\)
\(284\) 81.2267i 0.286009i
\(285\) 0 0
\(286\) −119.977 −0.419498
\(287\) −83.0436 83.0436i −0.289350 0.289350i
\(288\) −166.777 + 166.777i −0.579086 + 0.579086i
\(289\) 201.772i 0.698172i
\(290\) 0 0
\(291\) 36.2388 0.124532
\(292\) −580.294 580.294i −1.98731 1.98731i
\(293\) 161.658 161.658i 0.551734 0.551734i −0.375207 0.926941i \(-0.622428\pi\)
0.926941 + 0.375207i \(0.122428\pi\)
\(294\) 96.3299i 0.327653i
\(295\) 0 0
\(296\) 280.983 0.949267
\(297\) 30.9605 + 30.9605i 0.104244 + 0.104244i
\(298\) 91.3562 91.3562i 0.306565 0.306565i
\(299\) 96.9089i 0.324110i
\(300\) 0 0
\(301\) 229.588 0.762750
\(302\) −350.501 350.501i −1.16060 1.16060i
\(303\) 71.0402 71.0402i 0.234456 0.234456i
\(304\) 35.2211i 0.115859i
\(305\) 0 0
\(306\) −257.787 −0.842443
\(307\) 24.1388 + 24.1388i 0.0786280 + 0.0786280i 0.745327 0.666699i \(-0.232293\pi\)
−0.666699 + 0.745327i \(0.732293\pi\)
\(308\) −50.3672 + 50.3672i −0.163530 + 0.163530i
\(309\) 28.2210i 0.0913301i
\(310\) 0 0
\(311\) −35.5406 −0.114278 −0.0571392 0.998366i \(-0.518198\pi\)
−0.0571392 + 0.998366i \(0.518198\pi\)
\(312\) −52.9093 52.9093i −0.169581 0.169581i
\(313\) −12.7719 + 12.7719i −0.0408047 + 0.0408047i −0.727215 0.686410i \(-0.759186\pi\)
0.686410 + 0.727215i \(0.259186\pi\)
\(314\) 177.674i 0.565841i
\(315\) 0 0
\(316\) 513.940 1.62639
\(317\) −290.699 290.699i −0.917033 0.917033i 0.0797797 0.996813i \(-0.474578\pi\)
−0.996813 + 0.0797797i \(0.974578\pi\)
\(318\) −12.8755 + 12.8755i −0.0404890 + 0.0404890i
\(319\) 183.530i 0.575328i
\(320\) 0 0
\(321\) 7.14613 0.0222621
\(322\) −64.8621 64.8621i −0.201435 0.201435i
\(323\) 97.8832 97.8832i 0.303044 0.303044i
\(324\) 443.083i 1.36754i
\(325\) 0 0
\(326\) −790.913 −2.42611
\(327\) 26.0052 + 26.0052i 0.0795267 + 0.0795267i
\(328\) 232.759 232.759i 0.709631 0.709631i
\(329\) 207.477i 0.630628i
\(330\) 0 0
\(331\) −324.542 −0.980489 −0.490244 0.871585i \(-0.663093\pi\)
−0.490244 + 0.871585i \(0.663093\pi\)
\(332\) −574.582 574.582i −1.73067 1.73067i
\(333\) 187.181 187.181i 0.562106 0.562106i
\(334\) 243.191i 0.728117i
\(335\) 0 0
\(336\) −5.74464 −0.0170971
\(337\) −144.992 144.992i −0.430242 0.430242i 0.458468 0.888711i \(-0.348398\pi\)
−0.888711 + 0.458468i \(0.848398\pi\)
\(338\) −108.979 + 108.979i −0.322422 + 0.322422i
\(339\) 104.113i 0.307118i
\(340\) 0 0
\(341\) 23.4552 0.0687836
\(342\) 289.276 + 289.276i 0.845835 + 0.845835i
\(343\) 198.150 198.150i 0.577696 0.577696i
\(344\) 643.501i 1.87064i
\(345\) 0 0
\(346\) 231.998 0.670515
\(347\) 306.003 + 306.003i 0.881852 + 0.881852i 0.993723 0.111871i \(-0.0356843\pi\)
−0.111871 + 0.993723i \(0.535684\pi\)
\(348\) 199.508 199.508i 0.573299 0.573299i
\(349\) 241.147i 0.690965i −0.938425 0.345483i \(-0.887715\pi\)
0.938425 0.345483i \(-0.112285\pi\)
\(350\) 0 0
\(351\) −145.787 −0.415348
\(352\) 65.6457 + 65.6457i 0.186494 + 0.186494i
\(353\) −115.582 + 115.582i −0.327429 + 0.327429i −0.851608 0.524179i \(-0.824372\pi\)
0.524179 + 0.851608i \(0.324372\pi\)
\(354\) 234.986i 0.663803i
\(355\) 0 0
\(356\) 25.6177 0.0719597
\(357\) 15.9650 + 15.9650i 0.0447198 + 0.0447198i
\(358\) 784.588 784.588i 2.19159 2.19159i
\(359\) 119.466i 0.332775i 0.986060 + 0.166387i \(0.0532103\pi\)
−0.986060 + 0.166387i \(0.946790\pi\)
\(360\) 0 0
\(361\) 141.321 0.391471
\(362\) −586.636 586.636i −1.62054 1.62054i
\(363\) 5.89256 5.89256i 0.0162330 0.0162330i
\(364\) 237.170i 0.651565i
\(365\) 0 0
\(366\) 255.012 0.696755
\(367\) 397.007 + 397.007i 1.08176 + 1.08176i 0.996345 + 0.0854192i \(0.0272229\pi\)
0.0854192 + 0.996345i \(0.472777\pi\)
\(368\) 14.7457 14.7457i 0.0400698 0.0400698i
\(369\) 310.112i 0.840413i
\(370\) 0 0
\(371\) −23.4138 −0.0631101
\(372\) 25.4972 + 25.4972i 0.0685409 + 0.0685409i
\(373\) 382.736 382.736i 1.02610 1.02610i 0.0264513 0.999650i \(-0.491579\pi\)
0.999650 0.0264513i \(-0.00842070\pi\)
\(374\) 101.469i 0.271307i
\(375\) 0 0
\(376\) −581.527 −1.54661
\(377\) 432.104 + 432.104i 1.14616 + 1.14616i
\(378\) −97.5767 + 97.5767i −0.258139 + 0.258139i
\(379\) 664.428i 1.75311i 0.481303 + 0.876554i \(0.340164\pi\)
−0.481303 + 0.876554i \(0.659836\pi\)
\(380\) 0 0
\(381\) −13.1029 −0.0343909
\(382\) −250.526 250.526i −0.655826 0.655826i
\(383\) 493.549 493.549i 1.28864 1.28864i 0.353025 0.935614i \(-0.385153\pi\)
0.935614 0.353025i \(-0.114847\pi\)
\(384\) 166.310i 0.433100i
\(385\) 0 0
\(386\) −219.766 −0.569343
\(387\) 428.678 + 428.678i 1.10770 + 1.10770i
\(388\) −227.652 + 227.652i −0.586732 + 0.586732i
\(389\) 283.340i 0.728380i −0.931325 0.364190i \(-0.881346\pi\)
0.931325 0.364190i \(-0.118654\pi\)
\(390\) 0 0
\(391\) −81.9596 −0.209615
\(392\) 245.494 + 245.494i 0.626259 + 0.626259i
\(393\) −49.8804 + 49.8804i −0.126922 + 0.126922i
\(394\) 830.629i 2.10819i
\(395\) 0 0
\(396\) −188.088 −0.474969
\(397\) −196.379 196.379i −0.494657 0.494657i 0.415113 0.909770i \(-0.363742\pi\)
−0.909770 + 0.415113i \(0.863742\pi\)
\(398\) −454.022 + 454.022i −1.14076 + 1.14076i
\(399\) 35.8301i 0.0897998i
\(400\) 0 0
\(401\) 377.835 0.942232 0.471116 0.882071i \(-0.343851\pi\)
0.471116 + 0.882071i \(0.343851\pi\)
\(402\) −39.7237 39.7237i −0.0988152 0.0988152i
\(403\) −55.2231 + 55.2231i −0.137030 + 0.137030i
\(404\) 892.547i 2.20928i
\(405\) 0 0
\(406\) 578.422 1.42469
\(407\) −73.6773 73.6773i −0.181025 0.181025i
\(408\) −44.7474 + 44.7474i −0.109675 + 0.109675i
\(409\) 593.471i 1.45103i −0.688207 0.725515i \(-0.741602\pi\)
0.688207 0.725515i \(-0.258398\pi\)
\(410\) 0 0
\(411\) −141.753 −0.344898
\(412\) −177.284 177.284i −0.430301 0.430301i
\(413\) 213.659 213.659i 0.517334 0.517334i
\(414\) 242.216i 0.585064i
\(415\) 0 0
\(416\) −309.113 −0.743061
\(417\) 96.7642 + 96.7642i 0.232048 + 0.232048i
\(418\) 113.863 113.863i 0.272400 0.272400i
\(419\) 475.070i 1.13382i 0.823781 + 0.566909i \(0.191861\pi\)
−0.823781 + 0.566909i \(0.808139\pi\)
\(420\) 0 0
\(421\) 780.496 1.85391 0.926955 0.375173i \(-0.122417\pi\)
0.926955 + 0.375173i \(0.122417\pi\)
\(422\) −87.0695 87.0695i −0.206326 0.206326i
\(423\) −387.394 + 387.394i −0.915824 + 0.915824i
\(424\) 65.6255i 0.154777i
\(425\) 0 0
\(426\) −29.9498 −0.0703047
\(427\) 231.868 + 231.868i 0.543016 + 0.543016i
\(428\) −44.8919 + 44.8919i −0.104888 + 0.104888i
\(429\) 27.7470i 0.0646783i
\(430\) 0 0
\(431\) 371.853 0.862768 0.431384 0.902168i \(-0.358025\pi\)
0.431384 + 0.902168i \(0.358025\pi\)
\(432\) −22.1830 22.1830i −0.0513495 0.0513495i
\(433\) −542.802 + 542.802i −1.25358 + 1.25358i −0.299483 + 0.954102i \(0.596814\pi\)
−0.954102 + 0.299483i \(0.903186\pi\)
\(434\) 73.9227i 0.170329i
\(435\) 0 0
\(436\) −326.729 −0.749379
\(437\) 91.9708 + 91.9708i 0.210460 + 0.210460i
\(438\) −213.965 + 213.965i −0.488505 + 0.488505i
\(439\) 270.318i 0.615759i 0.951425 + 0.307880i \(0.0996194\pi\)
−0.951425 + 0.307880i \(0.900381\pi\)
\(440\) 0 0
\(441\) 327.079 0.741676
\(442\) −238.899 238.899i −0.540495 0.540495i
\(443\) −123.199 + 123.199i −0.278102 + 0.278102i −0.832351 0.554249i \(-0.813006\pi\)
0.554249 + 0.832351i \(0.313006\pi\)
\(444\) 160.183i 0.360773i
\(445\) 0 0
\(446\) −808.828 −1.81352
\(447\) −21.1280 21.1280i −0.0472661 0.0472661i
\(448\) −228.340 + 228.340i −0.509688 + 0.509688i
\(449\) 72.9616i 0.162498i 0.996694 + 0.0812490i \(0.0258909\pi\)
−0.996694 + 0.0812490i \(0.974109\pi\)
\(450\) 0 0
\(451\) −122.065 −0.270653
\(452\) 654.036 + 654.036i 1.44698 + 1.44698i
\(453\) −81.0603 + 81.0603i −0.178941 + 0.178941i
\(454\) 1178.06i 2.59484i
\(455\) 0 0
\(456\) 100.427 0.220234
\(457\) −258.612 258.612i −0.565890 0.565890i 0.365084 0.930974i \(-0.381040\pi\)
−0.930974 + 0.365084i \(0.881040\pi\)
\(458\) −798.019 + 798.019i −1.74240 + 1.74240i
\(459\) 123.298i 0.268623i
\(460\) 0 0
\(461\) −436.020 −0.945813 −0.472906 0.881113i \(-0.656795\pi\)
−0.472906 + 0.881113i \(0.656795\pi\)
\(462\) 18.5713 + 18.5713i 0.0401977 + 0.0401977i
\(463\) −144.556 + 144.556i −0.312216 + 0.312216i −0.845768 0.533551i \(-0.820857\pi\)
0.533551 + 0.845768i \(0.320857\pi\)
\(464\) 131.498i 0.283401i
\(465\) 0 0
\(466\) 1232.90 2.64570
\(467\) −577.283 577.283i −1.23615 1.23615i −0.961561 0.274591i \(-0.911458\pi\)
−0.274591 0.961561i \(-0.588542\pi\)
\(468\) 442.835 442.835i 0.946228 0.946228i
\(469\) 72.2368i 0.154023i
\(470\) 0 0
\(471\) −41.0907 −0.0872414
\(472\) 598.855 + 598.855i 1.26876 + 1.26876i
\(473\) 168.734 168.734i 0.356731 0.356731i
\(474\) 189.499i 0.399788i
\(475\) 0 0
\(476\) −200.583 −0.421394
\(477\) −43.7175 43.7175i −0.0916510 0.0916510i
\(478\) −637.289 + 637.289i −1.33324 + 1.33324i
\(479\) 654.219i 1.36580i −0.730511 0.682901i \(-0.760718\pi\)
0.730511 0.682901i \(-0.239282\pi\)
\(480\) 0 0
\(481\) 346.933 0.721274
\(482\) 435.122 + 435.122i 0.902744 + 0.902744i
\(483\) −15.0006 + 15.0006i −0.0310572 + 0.0310572i
\(484\) 74.0340i 0.152963i
\(485\) 0 0
\(486\) −552.576 −1.13699
\(487\) 504.551 + 504.551i 1.03604 + 1.03604i 0.999326 + 0.0367134i \(0.0116889\pi\)
0.0367134 + 0.999326i \(0.488311\pi\)
\(488\) −649.891 + 649.891i −1.33174 + 1.33174i
\(489\) 182.914i 0.374058i
\(490\) 0 0
\(491\) −523.273 −1.06573 −0.532865 0.846200i \(-0.678885\pi\)
−0.532865 + 0.846200i \(0.678885\pi\)
\(492\) −132.692 132.692i −0.269698 0.269698i
\(493\) 365.447 365.447i 0.741271 0.741271i
\(494\) 536.160i 1.08534i
\(495\) 0 0
\(496\) −16.8055 −0.0338821
\(497\) −27.2316 27.2316i −0.0547919 0.0547919i
\(498\) −211.859 + 211.859i −0.425420 + 0.425420i
\(499\) 648.175i 1.29895i −0.760384 0.649474i \(-0.774989\pi\)
0.760384 0.649474i \(-0.225011\pi\)
\(500\) 0 0
\(501\) 56.2428 0.112261
\(502\) −529.874 529.874i −1.05553 1.05553i
\(503\) −539.158 + 539.158i −1.07188 + 1.07188i −0.0746767 + 0.997208i \(0.523792\pi\)
−0.997208 + 0.0746767i \(0.976208\pi\)
\(504\) 240.481i 0.477145i
\(505\) 0 0
\(506\) −95.3399 −0.188419
\(507\) 25.2035 + 25.2035i 0.0497111 + 0.0497111i
\(508\) 82.3123 82.3123i 0.162032 0.162032i
\(509\) 663.413i 1.30336i 0.758492 + 0.651682i \(0.225936\pi\)
−0.758492 + 0.651682i \(0.774064\pi\)
\(510\) 0 0
\(511\) −389.092 −0.761432
\(512\) −107.150 107.150i −0.209276 0.209276i
\(513\) 138.358 138.358i 0.269704 0.269704i
\(514\) 922.696i 1.79513i
\(515\) 0 0
\(516\) 366.848 0.710946
\(517\) 152.484 + 152.484i 0.294939 + 0.294939i
\(518\) 232.205 232.205i 0.448273 0.448273i
\(519\) 53.6542i 0.103380i
\(520\) 0 0
\(521\) −90.7825 −0.174247 −0.0871233 0.996198i \(-0.527767\pi\)
−0.0871233 + 0.996198i \(0.527767\pi\)
\(522\) 1080.01 + 1080.01i 2.06898 + 2.06898i
\(523\) −259.722 + 259.722i −0.496600 + 0.496600i −0.910378 0.413778i \(-0.864209\pi\)
0.413778 + 0.910378i \(0.364209\pi\)
\(524\) 626.696i 1.19598i
\(525\) 0 0
\(526\) −780.996 −1.48478
\(527\) 46.7043 + 46.7043i 0.0886230 + 0.0886230i
\(528\) −4.22198 + 4.22198i −0.00799618 + 0.00799618i
\(529\) 451.991i 0.854425i
\(530\) 0 0
\(531\) 797.874 1.50259
\(532\) 225.084 + 225.084i 0.423091 + 0.423091i
\(533\) 287.390 287.390i 0.539193 0.539193i
\(534\) 9.44571i 0.0176886i
\(535\) 0 0
\(536\) 202.469 0.377741
\(537\) −181.452 181.452i −0.337899 0.337899i
\(538\) 190.558 190.558i 0.354197 0.354197i
\(539\) 128.743i 0.238855i
\(540\) 0 0
\(541\) 258.243 0.477345 0.238672 0.971100i \(-0.423288\pi\)
0.238672 + 0.971100i \(0.423288\pi\)
\(542\) 350.924 + 350.924i 0.647461 + 0.647461i
\(543\) −135.671 + 135.671i −0.249855 + 0.249855i
\(544\) 261.429i 0.480568i
\(545\) 0 0
\(546\) −87.4489 −0.160163
\(547\) −14.6234 14.6234i −0.0267339 0.0267339i 0.693613 0.720347i \(-0.256018\pi\)
−0.720347 + 0.693613i \(0.756018\pi\)
\(548\) 890.492 890.492i 1.62499 1.62499i
\(549\) 865.871i 1.57718i
\(550\) 0 0
\(551\) −820.171 −1.48851
\(552\) −42.0446 42.0446i −0.0761677 0.0761677i
\(553\) 172.301 172.301i 0.311574 0.311574i
\(554\) 1577.44i 2.84736i
\(555\) 0 0
\(556\) −1215.74 −2.18659
\(557\) −114.984 114.984i −0.206434 0.206434i 0.596316 0.802750i \(-0.296631\pi\)
−0.802750 + 0.596316i \(0.796631\pi\)
\(558\) −138.026 + 138.026i −0.247358 + 0.247358i
\(559\) 794.537i 1.42135i
\(560\) 0 0
\(561\) 23.4667 0.0418301
\(562\) −25.6046 25.6046i −0.0455598 0.0455598i
\(563\) 492.621 492.621i 0.874992 0.874992i −0.118019 0.993011i \(-0.537654\pi\)
0.993011 + 0.118019i \(0.0376544\pi\)
\(564\) 331.518i 0.587798i
\(565\) 0 0
\(566\) 937.870 1.65701
\(567\) −148.545 148.545i −0.261985 0.261985i
\(568\) 76.3261 76.3261i 0.134377 0.134377i
\(569\) 518.523i 0.911288i −0.890162 0.455644i \(-0.849409\pi\)
0.890162 0.455644i \(-0.150591\pi\)
\(570\) 0 0
\(571\) −168.460 −0.295027 −0.147513 0.989060i \(-0.547127\pi\)
−0.147513 + 0.989060i \(0.547127\pi\)
\(572\) −174.306 174.306i −0.304731 0.304731i
\(573\) −57.9391 + 57.9391i −0.101115 + 0.101115i
\(574\) 384.705i 0.670218i
\(575\) 0 0
\(576\) −852.698 −1.48038
\(577\) −337.711 337.711i −0.585288 0.585288i 0.351063 0.936352i \(-0.385820\pi\)
−0.936352 + 0.351063i \(0.885820\pi\)
\(578\) 467.361 467.361i 0.808583 0.808583i
\(579\) 50.8254i 0.0877813i
\(580\) 0 0
\(581\) −385.262 −0.663101
\(582\) 83.9395 + 83.9395i 0.144226 + 0.144226i
\(583\) −17.2078 + 17.2078i −0.0295160 + 0.0295160i
\(584\) 1090.57i 1.86741i
\(585\) 0 0
\(586\) 748.893 1.27797
\(587\) −566.152 566.152i −0.964484 0.964484i 0.0349064 0.999391i \(-0.488887\pi\)
−0.999391 + 0.0349064i \(0.988887\pi\)
\(588\) 139.951 139.951i 0.238013 0.238013i
\(589\) 104.818i 0.177960i
\(590\) 0 0
\(591\) −192.099 −0.325041
\(592\) 52.7893 + 52.7893i 0.0891711 + 0.0891711i
\(593\) 252.393 252.393i 0.425620 0.425620i −0.461513 0.887133i \(-0.652693\pi\)
0.887133 + 0.461513i \(0.152693\pi\)
\(594\) 143.427i 0.241459i
\(595\) 0 0
\(596\) 265.451 0.445388
\(597\) 105.002 + 105.002i 0.175882 + 0.175882i
\(598\) 224.469 224.469i 0.375366 0.375366i
\(599\) 365.644i 0.610423i −0.952285 0.305212i \(-0.901273\pi\)
0.952285 0.305212i \(-0.0987272\pi\)
\(600\) 0 0
\(601\) −213.337 −0.354969 −0.177485 0.984124i \(-0.556796\pi\)
−0.177485 + 0.984124i \(0.556796\pi\)
\(602\) 531.791 + 531.791i 0.883374 + 0.883374i
\(603\) 134.878 134.878i 0.223679 0.223679i
\(604\) 1018.44i 1.68616i
\(605\) 0 0
\(606\) 329.099 0.543068
\(607\) 363.922 + 363.922i 0.599543 + 0.599543i 0.940191 0.340648i \(-0.110646\pi\)
−0.340648 + 0.940191i \(0.610646\pi\)
\(608\) 293.362 293.362i 0.482504 0.482504i
\(609\) 133.772i 0.219658i
\(610\) 0 0
\(611\) −718.017 −1.17515
\(612\) −374.523 374.523i −0.611965 0.611965i
\(613\) −254.795 + 254.795i −0.415653 + 0.415653i −0.883702 0.468049i \(-0.844957\pi\)
0.468049 + 0.883702i \(0.344957\pi\)
\(614\) 111.825i 0.182125i
\(615\) 0 0
\(616\) −94.6568 −0.153664
\(617\) −617.888 617.888i −1.00144 1.00144i −0.999999 0.00144021i \(-0.999542\pi\)
−0.00144021 0.999999i \(-0.500458\pi\)
\(618\) −65.3679 + 65.3679i −0.105773 + 0.105773i
\(619\) 49.4374i 0.0798665i −0.999202 0.0399333i \(-0.987285\pi\)
0.999202 0.0399333i \(-0.0127145\pi\)
\(620\) 0 0
\(621\) −115.850 −0.186554
\(622\) −82.3222 82.3222i −0.132351 0.132351i
\(623\) 8.58843 8.58843i 0.0137856 0.0137856i
\(624\) 19.8805i 0.0318598i
\(625\) 0 0
\(626\) −59.1667 −0.0945154
\(627\) −26.3331 26.3331i −0.0419986 0.0419986i
\(628\) 258.131 258.131i 0.411037 0.411037i
\(629\) 293.414i 0.466477i
\(630\) 0 0
\(631\) 160.479 0.254326 0.127163 0.991882i \(-0.459413\pi\)
0.127163 + 0.991882i \(0.459413\pi\)
\(632\) 482.933 + 482.933i 0.764134 + 0.764134i
\(633\) −20.1366 + 20.1366i −0.0318113 + 0.0318113i
\(634\) 1346.69i 2.12411i
\(635\) 0 0
\(636\) −37.4119 −0.0588238
\(637\) 303.113 + 303.113i 0.475845 + 0.475845i
\(638\) 425.107 425.107i 0.666313 0.666313i
\(639\) 101.692i 0.159142i
\(640\) 0 0
\(641\) 229.507 0.358045 0.179022 0.983845i \(-0.442707\pi\)
0.179022 + 0.983845i \(0.442707\pi\)
\(642\) 16.5525 + 16.5525i 0.0257827 + 0.0257827i
\(643\) −484.144 + 484.144i −0.752946 + 0.752946i −0.975028 0.222082i \(-0.928715\pi\)
0.222082 + 0.975028i \(0.428715\pi\)
\(644\) 188.468i 0.292652i
\(645\) 0 0
\(646\) 453.451 0.701936
\(647\) −561.713 561.713i −0.868181 0.868181i 0.124090 0.992271i \(-0.460399\pi\)
−0.992271 + 0.124090i \(0.960399\pi\)
\(648\) 416.351 416.351i 0.642517 0.642517i
\(649\) 314.054i 0.483905i
\(650\) 0 0
\(651\) 17.0961 0.0262613
\(652\) −1149.07 1149.07i −1.76237 1.76237i
\(653\) −217.884 + 217.884i −0.333666 + 0.333666i −0.853977 0.520311i \(-0.825816\pi\)
0.520311 + 0.853977i \(0.325816\pi\)
\(654\) 120.471i 0.184207i
\(655\) 0 0
\(656\) 87.4585 0.133321
\(657\) −726.499 726.499i −1.10578 1.10578i
\(658\) −480.576 + 480.576i −0.730358 + 0.730358i
\(659\) 67.5668i 0.102529i −0.998685 0.0512646i \(-0.983675\pi\)
0.998685 0.0512646i \(-0.0163252\pi\)
\(660\) 0 0
\(661\) −652.282 −0.986811 −0.493406 0.869799i \(-0.664248\pi\)
−0.493406 + 0.869799i \(0.664248\pi\)
\(662\) −751.732 751.732i −1.13555 1.13555i
\(663\) −55.2501 + 55.2501i −0.0833335 + 0.0833335i
\(664\) 1079.83i 1.62625i
\(665\) 0 0
\(666\) 867.131 1.30200
\(667\) 343.373 + 343.373i 0.514802 + 0.514802i
\(668\) −353.317 + 353.317i −0.528917 + 0.528917i
\(669\) 187.058i 0.279608i
\(670\) 0 0
\(671\) 340.819 0.507927
\(672\) 47.8480 + 47.8480i 0.0712024 + 0.0712024i
\(673\) −414.530 + 414.530i −0.615943 + 0.615943i −0.944488 0.328545i \(-0.893442\pi\)
0.328545 + 0.944488i \(0.393442\pi\)
\(674\) 671.684i 0.996564i
\(675\) 0 0
\(676\) −316.656 −0.468426
\(677\) 73.4867 + 73.4867i 0.108548 + 0.108548i 0.759295 0.650747i \(-0.225544\pi\)
−0.650747 + 0.759295i \(0.725544\pi\)
\(678\) 241.155 241.155i 0.355686 0.355686i
\(679\) 152.642i 0.224805i
\(680\) 0 0
\(681\) 272.449 0.400072
\(682\) 54.3290 + 54.3290i 0.0796613 + 0.0796613i
\(683\) 21.5357 21.5357i 0.0315310 0.0315310i −0.691166 0.722697i \(-0.742902\pi\)
0.722697 + 0.691166i \(0.242902\pi\)
\(684\) 840.539i 1.22886i
\(685\) 0 0
\(686\) 917.943 1.33811
\(687\) 184.558 + 184.558i 0.268643 + 0.268643i
\(688\) −120.897 + 120.897i −0.175722 + 0.175722i
\(689\) 81.0285i 0.117603i
\(690\) 0 0
\(691\) −911.677 −1.31936 −0.659679 0.751547i \(-0.729308\pi\)
−0.659679 + 0.751547i \(0.729308\pi\)
\(692\) 337.055 + 337.055i 0.487074 + 0.487074i
\(693\) −63.0572 + 63.0572i −0.0909916 + 0.0909916i
\(694\) 1417.58i 2.04262i
\(695\) 0 0
\(696\) 374.942 0.538710
\(697\) −243.057 243.057i −0.348718 0.348718i
\(698\) 558.565 558.565i 0.800236 0.800236i
\(699\) 285.132i 0.407914i
\(700\) 0 0
\(701\) −377.613 −0.538678 −0.269339 0.963045i \(-0.586805\pi\)
−0.269339 + 0.963045i \(0.586805\pi\)
\(702\) −337.685 337.685i −0.481032 0.481032i
\(703\) −329.254 + 329.254i −0.468356 + 0.468356i
\(704\) 335.634i 0.476753i
\(705\) 0 0
\(706\) −535.443 −0.758418
\(707\) 299.230 + 299.230i 0.423239 + 0.423239i
\(708\) 341.396 341.396i 0.482198 0.482198i
\(709\) 621.973i 0.877253i 0.898669 + 0.438627i \(0.144535\pi\)
−0.898669 + 0.438627i \(0.855465\pi\)
\(710\) 0 0
\(711\) 643.427 0.904961
\(712\) 24.0721 + 24.0721i 0.0338091 + 0.0338091i
\(713\) −43.8833 + 43.8833i −0.0615474 + 0.0615474i
\(714\) 73.9589i 0.103584i
\(715\) 0 0
\(716\) 2279.75 3.18401
\(717\) 147.386 + 147.386i 0.205559 + 0.205559i
\(718\) −276.718 + 276.718i −0.385401 + 0.385401i
\(719\) 325.457i 0.452653i 0.974051 + 0.226326i \(0.0726716\pi\)
−0.974051 + 0.226326i \(0.927328\pi\)
\(720\) 0 0
\(721\) −118.870 −0.164869
\(722\) 327.340 + 327.340i 0.453380 + 0.453380i
\(723\) 100.631 100.631i 0.139185 0.139185i
\(724\) 1704.57i 2.35438i
\(725\) 0 0
\(726\) 27.2977 0.0376002
\(727\) −956.282 956.282i −1.31538 1.31538i −0.917389 0.397992i \(-0.869707\pi\)
−0.397992 0.917389i \(-0.630293\pi\)
\(728\) 222.861 222.861i 0.306127 0.306127i
\(729\) 464.707i 0.637458i
\(730\) 0 0
\(731\) 671.971 0.919248
\(732\) 370.491 + 370.491i 0.506135 + 0.506135i
\(733\) 299.492 299.492i 0.408584 0.408584i −0.472660 0.881245i \(-0.656706\pi\)
0.881245 + 0.472660i \(0.156706\pi\)
\(734\) 1839.17i 2.50568i
\(735\) 0 0
\(736\) −245.638 −0.333748
\(737\) −53.0900 53.0900i −0.0720352 0.0720352i
\(738\) 718.309 718.309i 0.973318 0.973318i
\(739\) 522.550i 0.707104i 0.935415 + 0.353552i \(0.115026\pi\)
−0.935415 + 0.353552i \(0.884974\pi\)
\(740\) 0 0
\(741\) 123.998 0.167338
\(742\) −54.2332 54.2332i −0.0730905 0.0730905i
\(743\) −480.166 + 480.166i −0.646253 + 0.646253i −0.952085 0.305833i \(-0.901065\pi\)
0.305833 + 0.952085i \(0.401065\pi\)
\(744\) 47.9178i 0.0644057i
\(745\) 0 0
\(746\) 1773.05 2.37674
\(747\) −719.347 719.347i −0.962982 0.962982i
\(748\) −147.417 + 147.417i −0.197082 + 0.197082i
\(749\) 30.1004i 0.0401874i
\(750\) 0 0
\(751\) −858.032 −1.14252 −0.571259 0.820770i \(-0.693545\pi\)
−0.571259 + 0.820770i \(0.693545\pi\)
\(752\) −109.254 109.254i −0.145284 0.145284i
\(753\) −122.544 + 122.544i −0.162741 + 0.162741i
\(754\) 2001.75i 2.65484i
\(755\) 0 0
\(756\) −283.526 −0.375034
\(757\) 369.714 + 369.714i 0.488394 + 0.488394i 0.907799 0.419405i \(-0.137761\pi\)
−0.419405 + 0.907799i \(0.637761\pi\)
\(758\) −1539.01 + 1539.01i −2.03035 + 2.03035i
\(759\) 22.0492i 0.0290504i
\(760\) 0 0
\(761\) 894.818 1.17585 0.587923 0.808917i \(-0.299946\pi\)
0.587923 + 0.808917i \(0.299946\pi\)
\(762\) −30.3501 30.3501i −0.0398295 0.0398295i
\(763\) −109.537 + 109.537i −0.143561 + 0.143561i
\(764\) 727.945i 0.952807i
\(765\) 0 0
\(766\) 2286.40 2.98486
\(767\) 739.412 + 739.412i 0.964031 + 0.964031i
\(768\) −168.381 + 168.381i −0.219247 + 0.219247i
\(769\) 53.0200i 0.0689467i −0.999406 0.0344734i \(-0.989025\pi\)
0.999406 0.0344734i \(-0.0109754\pi\)
\(770\) 0 0
\(771\) −213.392 −0.276773
\(772\) −319.284 319.284i −0.413581 0.413581i
\(773\) −75.9189 + 75.9189i −0.0982133 + 0.0982133i −0.754506 0.656293i \(-0.772124\pi\)
0.656293 + 0.754506i \(0.272124\pi\)
\(774\) 1985.88i 2.56574i
\(775\) 0 0
\(776\) −427.834 −0.551333
\(777\) −53.7021 53.7021i −0.0691147 0.0691147i
\(778\) 656.296 656.296i 0.843568 0.843568i
\(779\) 545.491i 0.700245i
\(780\) 0 0
\(781\) −40.0273 −0.0512514
\(782\) −189.842 189.842i −0.242765 0.242765i
\(783\) 516.561 516.561i 0.659720 0.659720i
\(784\) 92.2436i 0.117658i
\(785\) 0 0
\(786\) −231.075 −0.293988
\(787\) 166.709 + 166.709i 0.211829 + 0.211829i 0.805044 0.593215i \(-0.202142\pi\)
−0.593215 + 0.805044i \(0.702142\pi\)
\(788\) 1206.77 1206.77i 1.53143 1.53143i
\(789\) 180.621i 0.228924i
\(790\) 0 0
\(791\) 438.536 0.554408
\(792\) −176.740 176.740i −0.223156 0.223156i
\(793\) −802.427 + 802.427i −1.01189 + 1.01189i
\(794\) 909.740i 1.14577i
\(795\) 0 0
\(796\) −1319.24 −1.65733
\(797\) 244.912 + 244.912i 0.307292 + 0.307292i 0.843858 0.536566i \(-0.180279\pi\)
−0.536566 + 0.843858i \(0.680279\pi\)
\(798\) 82.9928 82.9928i 0.104001 0.104001i
\(799\) 607.255i 0.760018i
\(800\) 0 0
\(801\) 32.0720 0.0400400
\(802\) 875.174 + 875.174i 1.09124 + 1.09124i
\(803\) −285.960 + 285.960i −0.356115 + 0.356115i
\(804\) 115.424i 0.143562i
\(805\) 0 0
\(806\) −255.825 −0.317401
\(807\) −44.0703 44.0703i −0.0546101 0.0546101i
\(808\) −838.698 + 838.698i −1.03799 + 1.03799i
\(809\) 998.342i 1.23404i −0.786946 0.617022i \(-0.788339\pi\)
0.786946 0.617022i \(-0.211661\pi\)
\(810\) 0 0
\(811\) 753.628 0.929258 0.464629 0.885505i \(-0.346188\pi\)
0.464629 + 0.885505i \(0.346188\pi\)
\(812\) 840.352 + 840.352i 1.03492 + 1.03492i
\(813\) 81.1581 81.1581i 0.0998255 0.0998255i
\(814\) 341.315i 0.419306i
\(815\) 0 0
\(816\) −16.8137 −0.0206051
\(817\) −754.050 754.050i −0.922950 0.922950i
\(818\) 1374.65 1374.65i 1.68050 1.68050i
\(819\) 296.924i 0.362545i
\(820\) 0 0
\(821\) 507.827 0.618547 0.309274 0.950973i \(-0.399914\pi\)
0.309274 + 0.950973i \(0.399914\pi\)
\(822\) −328.341 328.341i −0.399442 0.399442i
\(823\) −657.940 + 657.940i −0.799441 + 0.799441i −0.983007 0.183566i \(-0.941236\pi\)
0.183566 + 0.983007i \(0.441236\pi\)
\(824\) 333.176i 0.404340i
\(825\) 0 0
\(826\) 989.791 1.19829
\(827\) 296.348 + 296.348i 0.358341 + 0.358341i 0.863201 0.504860i \(-0.168456\pi\)
−0.504860 + 0.863201i \(0.668456\pi\)
\(828\) 351.901 351.901i 0.425001 0.425001i
\(829\) 856.072i 1.03266i −0.856391 0.516328i \(-0.827298\pi\)
0.856391 0.516328i \(-0.172702\pi\)
\(830\) 0 0
\(831\) 364.814 0.439006
\(832\) −790.220 790.220i −0.949783 0.949783i
\(833\) 256.355 256.355i 0.307749 0.307749i
\(834\) 448.267i 0.537490i
\(835\) 0 0
\(836\) 330.848 0.395752
\(837\) 66.0168 + 66.0168i 0.0788731 + 0.0788731i
\(838\) −1100.40 + 1100.40i −1.31312 + 1.31312i
\(839\) 1313.02i 1.56498i −0.622663 0.782490i \(-0.713949\pi\)
0.622663 0.782490i \(-0.286051\pi\)
\(840\) 0 0
\(841\) −2221.11 −2.64103
\(842\) 1807.85 + 1807.85i 2.14709 + 2.14709i
\(843\) −5.92157 + 5.92157i −0.00702441 + 0.00702441i
\(844\) 252.995i 0.299757i
\(845\) 0 0
\(846\) −1794.63 −2.12131
\(847\) 24.8202 + 24.8202i 0.0293037 + 0.0293037i
\(848\) 12.3293 12.3293i 0.0145393 0.0145393i
\(849\) 216.901i 0.255479i
\(850\) 0 0
\(851\) 275.691 0.323962
\(852\) −43.5121 43.5121i −0.0510706 0.0510706i
\(853\) −426.296 + 426.296i −0.499761 + 0.499761i −0.911363 0.411603i \(-0.864969\pi\)
0.411603 + 0.911363i \(0.364969\pi\)
\(854\) 1074.14i 1.25778i
\(855\) 0 0
\(856\) −84.3669 −0.0985595
\(857\) −874.858 874.858i −1.02084 1.02084i −0.999778 0.0210593i \(-0.993296\pi\)
−0.0210593 0.999778i \(-0.506704\pi\)
\(858\) −64.2699 + 64.2699i −0.0749067 + 0.0749067i
\(859\) 777.425i 0.905035i −0.891756 0.452517i \(-0.850526\pi\)
0.891756 0.452517i \(-0.149474\pi\)
\(860\) 0 0
\(861\) −88.9708 −0.103334
\(862\) 861.318 + 861.318i 0.999209 + 0.999209i
\(863\) 836.459 836.459i 0.969246 0.969246i −0.0302952 0.999541i \(-0.509645\pi\)
0.999541 + 0.0302952i \(0.00964474\pi\)
\(864\) 369.531i 0.427698i
\(865\) 0 0
\(866\) −2514.57 −2.90366
\(867\) −108.087 108.087i −0.124667 0.124667i
\(868\) −107.397 + 107.397i −0.123730 + 0.123730i
\(869\) 253.262i 0.291441i
\(870\) 0 0
\(871\) 249.991 0.287016
\(872\) −307.017 307.017i −0.352083 0.352083i
\(873\) −285.009 + 285.009i −0.326471 + 0.326471i
\(874\) 426.061i 0.487484i
\(875\) 0 0
\(876\) −621.713 −0.709718
\(877\) 649.687 + 649.687i 0.740806 + 0.740806i 0.972733 0.231927i \(-0.0745031\pi\)
−0.231927 + 0.972733i \(0.574503\pi\)
\(878\) −626.135 + 626.135i −0.713137 + 0.713137i
\(879\) 173.197i 0.197038i
\(880\) 0 0
\(881\) 162.266 0.184184 0.0920921 0.995750i \(-0.470645\pi\)
0.0920921 + 0.995750i \(0.470645\pi\)
\(882\) 757.609 + 757.609i 0.858967 + 0.858967i
\(883\) 34.2561 34.2561i 0.0387951 0.0387951i −0.687443 0.726238i \(-0.741267\pi\)
0.726238 + 0.687443i \(0.241267\pi\)
\(884\) 694.161i 0.785250i
\(885\) 0 0
\(886\) −570.729 −0.644164
\(887\) 175.705 + 175.705i 0.198089 + 0.198089i 0.799180 0.601091i \(-0.205267\pi\)
−0.601091 + 0.799180i \(0.705267\pi\)
\(888\) 150.519 150.519i 0.169503 0.169503i
\(889\) 55.1911i 0.0620822i
\(890\) 0 0
\(891\) −218.345 −0.245056
\(892\) −1175.09 1175.09i −1.31737 1.31737i
\(893\) 681.430 681.430i 0.763079 0.763079i
\(894\) 97.8768i 0.109482i
\(895\) 0 0
\(896\) −700.520 −0.781830
\(897\) −51.9129 51.9129i −0.0578739 0.0578739i
\(898\) −169.000 + 169.000i −0.188196 + 0.188196i
\(899\) 391.339i 0.435305i
\(900\) 0 0
\(901\) −68.5289 −0.0760588
\(902\) −282.737 282.737i −0.313455 0.313455i
\(903\) 122.987 122.987i 0.136199 0.136199i
\(904\) 1229.15i 1.35968i
\(905\) 0 0
\(906\) −375.518 −0.414479
\(907\) −913.002 913.002i −1.00662 1.00662i −0.999978 0.00663968i \(-0.997887\pi\)
−0.00663968 0.999978i \(-0.502113\pi\)
\(908\) −1711.52 + 1711.52i −1.88494 + 1.88494i
\(909\) 1117.42i 1.22929i
\(910\) 0 0
\(911\) 414.304 0.454779 0.227390 0.973804i \(-0.426981\pi\)
0.227390 + 0.973804i \(0.426981\pi\)
\(912\) 18.8675 + 18.8675i 0.0206880 + 0.0206880i
\(913\) −283.145 + 283.145i −0.310126 + 0.310126i
\(914\) 1198.04i 1.31076i
\(915\) 0 0
\(916\) −2318.78 −2.53142
\(917\) −210.102 210.102i −0.229119 0.229119i
\(918\) −285.593 + 285.593i −0.311103 + 0.311103i
\(919\) 333.359i 0.362741i 0.983415 + 0.181371i \(0.0580533\pi\)
−0.983415 + 0.181371i \(0.941947\pi\)
\(920\) 0 0
\(921\) 25.8617 0.0280800
\(922\) −1009.95 1009.95i −1.09539 1.09539i
\(923\) 94.2406 94.2406i 0.102102 0.102102i
\(924\) 53.9621i 0.0584006i
\(925\) 0 0
\(926\) −669.667 −0.723183
\(927\) −221.951 221.951i −0.239429 0.239429i
\(928\) 1095.27 1095.27i 1.18025 1.18025i
\(929\) 488.198i 0.525509i −0.964863 0.262755i \(-0.915369\pi\)
0.964863 0.262755i \(-0.0846309\pi\)
\(930\) 0 0
\(931\) −575.336 −0.617976
\(932\) 1791.19 + 1791.19i 1.92188 + 1.92188i
\(933\) −19.0387 + 19.0387i −0.0204059 + 0.0204059i
\(934\) 2674.30i 2.86328i
\(935\) 0 0
\(936\) 832.235 0.889140
\(937\) 1156.79 + 1156.79i 1.23457 + 1.23457i 0.962191 + 0.272377i \(0.0878098\pi\)
0.272377 + 0.962191i \(0.412190\pi\)
\(938\) 167.321 167.321i 0.178381 0.178381i
\(939\) 13.6835i 0.0145724i
\(940\) 0 0
\(941\) 684.642 0.727569 0.363784 0.931483i \(-0.381485\pi\)
0.363784 + 0.931483i \(0.381485\pi\)
\(942\) −95.1778 95.1778i −0.101038 0.101038i
\(943\) 228.375 228.375i 0.242180 0.242180i
\(944\) 225.018i 0.238367i
\(945\) 0 0
\(946\) 781.672 0.826292
\(947\) 209.592 + 209.592i 0.221322 + 0.221322i 0.809055 0.587733i \(-0.199979\pi\)
−0.587733 + 0.809055i \(0.699979\pi\)
\(948\) 275.311 275.311i 0.290413 0.290413i
\(949\) 1346.53i 1.41890i
\(950\) 0 0
\(951\) −311.448 −0.327495
\(952\) −188.482 188.482i −0.197985 0.197985i
\(953\) 219.429 219.429i 0.230251 0.230251i −0.582546 0.812798i \(-0.697944\pi\)
0.812798 + 0.582546i \(0.197944\pi\)
\(954\) 202.525i 0.212290i
\(955\) 0 0
\(956\) −1851.75 −1.93698
\(957\) −98.3146 98.3146i −0.102732 0.102732i
\(958\) 1515.36 1515.36i 1.58179 1.58179i
\(959\) 597.082i 0.622609i
\(960\) 0 0
\(961\) −910.987 −0.947957
\(962\) 803.595 + 803.595i 0.835338 + 0.835338i
\(963\) −56.2024 + 56.2024i −0.0583618 + 0.0583618i
\(964\) 1264.32i 1.31154i
\(965\) 0 0
\(966\) −69.4916 −0.0719375
\(967\) 949.654 + 949.654i 0.982062 + 0.982062i 0.999842 0.0177798i \(-0.00565978\pi\)
−0.0177798 + 0.999842i \(0.505660\pi\)
\(968\) −69.5673 + 69.5673i −0.0718671 + 0.0718671i
\(969\) 104.870i 0.108225i
\(970\) 0 0
\(971\) −149.959 −0.154437 −0.0772186 0.997014i \(-0.524604\pi\)
−0.0772186 + 0.997014i \(0.524604\pi\)
\(972\) −802.802 802.802i −0.825928 0.825928i
\(973\) −407.583 + 407.583i −0.418893 + 0.418893i
\(974\) 2337.37i 2.39976i
\(975\) 0 0
\(976\) −244.195 −0.250200
\(977\) 1123.34 + 1123.34i 1.14978 + 1.14978i 0.986595 + 0.163186i \(0.0521770\pi\)
0.163186 + 0.986595i \(0.447823\pi\)
\(978\) −423.682 + 423.682i −0.433213 + 0.433213i
\(979\) 12.6240i 0.0128948i
\(980\) 0 0
\(981\) −409.049 −0.416971
\(982\) −1212.05 1212.05i −1.23427 1.23427i
\(983\) −547.724 + 547.724i −0.557196 + 0.557196i −0.928508 0.371312i \(-0.878908\pi\)
0.371312 + 0.928508i \(0.378908\pi\)
\(984\) 249.372i 0.253427i
\(985\) 0 0
\(986\) 1692.96 1.71700
\(987\) 111.143 + 111.143i 0.112607 + 0.112607i
\(988\) −778.952 + 778.952i −0.788413 + 0.788413i
\(989\) 631.382i 0.638404i
\(990\) 0 0
\(991\) 1405.64 1.41841 0.709205 0.705002i \(-0.249054\pi\)
0.709205 + 0.705002i \(0.249054\pi\)
\(992\) 139.976 + 139.976i 0.141105 + 0.141105i
\(993\) −173.853 + 173.853i −0.175079 + 0.175079i
\(994\) 126.152i 0.126914i
\(995\) 0 0
\(996\) −615.592 −0.618065
\(997\) 75.6789 + 75.6789i 0.0759066 + 0.0759066i 0.744041 0.668134i \(-0.232907\pi\)
−0.668134 + 0.744041i \(0.732907\pi\)
\(998\) 1501.36 1501.36i 1.50437 1.50437i
\(999\) 414.742i 0.415158i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.f.c.232.11 yes 24
5.2 odd 4 inner 275.3.f.c.243.2 yes 24
5.3 odd 4 inner 275.3.f.c.243.11 yes 24
5.4 even 2 inner 275.3.f.c.232.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.f.c.232.2 24 5.4 even 2 inner
275.3.f.c.232.11 yes 24 1.1 even 1 trivial
275.3.f.c.243.2 yes 24 5.2 odd 4 inner
275.3.f.c.243.11 yes 24 5.3 odd 4 inner