Properties

Label 275.3.d.b.274.14
Level $275$
Weight $3$
Character 275.274
Analytic conductor $7.493$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(274,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.274"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 50x^{14} + 939x^{12} + 8450x^{10} + 39245x^{8} + 93316x^{6} + 104420x^{4} + 45264x^{2} + 6400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.14
Root \(-1.78271i\) of defining polynomial
Character \(\chi\) \(=\) 275.274
Dual form 275.3.d.b.274.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.78271 q^{2} +5.54645i q^{3} +3.74350 q^{4} +15.4342i q^{6} -4.48239 q^{7} -0.713764 q^{8} -21.7632 q^{9} +(2.46337 + 10.7206i) q^{11} +20.7632i q^{12} +15.7063 q^{13} -12.4732 q^{14} -16.9602 q^{16} +25.4820 q^{17} -60.5607 q^{18} +8.44528i q^{19} -24.8614i q^{21} +(6.85487 + 29.8324i) q^{22} -19.8870i q^{23} -3.95886i q^{24} +43.7063 q^{26} -70.7903i q^{27} -16.7798 q^{28} +21.4524i q^{29} +24.9579 q^{31} -44.3404 q^{32} +(-59.4615 + 13.6630i) q^{33} +70.9092 q^{34} -81.4704 q^{36} +30.4659i q^{37} +23.5008i q^{38} +87.1145i q^{39} +10.5577i q^{41} -69.1821i q^{42} +68.3676 q^{43} +(9.22164 + 40.1327i) q^{44} -55.3397i q^{46} +25.0636i q^{47} -94.0690i q^{48} -28.9082 q^{49} +141.335i q^{51} +58.7967 q^{52} -93.9329i q^{53} -196.989i q^{54} +3.19936 q^{56} -46.8414 q^{57} +59.6960i q^{58} +27.3730 q^{59} -81.1075i q^{61} +69.4507 q^{62} +97.5509 q^{63} -55.5457 q^{64} +(-165.464 + 38.0202i) q^{66} +49.5118i q^{67} +95.3920 q^{68} +110.302 q^{69} +44.0132 q^{71} +15.5338 q^{72} -29.1783 q^{73} +84.7779i q^{74} +31.6149i q^{76} +(-11.0418 - 48.0540i) q^{77} +242.415i q^{78} -51.3920i q^{79} +196.767 q^{81} +29.3792i q^{82} +47.2115 q^{83} -93.0685i q^{84} +190.248 q^{86} -118.985 q^{87} +(-1.75827 - 7.65199i) q^{88} -147.455 q^{89} -70.4019 q^{91} -74.4468i q^{92} +138.428i q^{93} +69.7449i q^{94} -245.932i q^{96} -87.8176i q^{97} -80.4433 q^{98} +(-53.6108 - 233.315i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 20 q^{4} - 64 q^{9} - 2 q^{11} - 36 q^{14} - 28 q^{16} + 136 q^{26} - 84 q^{31} + 284 q^{34} - 168 q^{36} - 138 q^{44} + 100 q^{49} + 332 q^{56} + 320 q^{59} - 576 q^{64} - 630 q^{66} + 32 q^{69}+ \cdots - 736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.78271 1.39136 0.695679 0.718353i \(-0.255104\pi\)
0.695679 + 0.718353i \(0.255104\pi\)
\(3\) 5.54645i 1.84882i 0.381402 + 0.924409i \(0.375441\pi\)
−0.381402 + 0.924409i \(0.624559\pi\)
\(4\) 3.74350 0.935875
\(5\) 0 0
\(6\) 15.4342i 2.57237i
\(7\) −4.48239 −0.640341 −0.320170 0.947360i \(-0.603740\pi\)
−0.320170 + 0.947360i \(0.603740\pi\)
\(8\) −0.713764 −0.0892205
\(9\) −21.7632 −2.41813
\(10\) 0 0
\(11\) 2.46337 + 10.7206i 0.223943 + 0.974602i
\(12\) 20.7632i 1.73026i
\(13\) 15.7063 1.20818 0.604090 0.796916i \(-0.293537\pi\)
0.604090 + 0.796916i \(0.293537\pi\)
\(14\) −12.4732 −0.890943
\(15\) 0 0
\(16\) −16.9602 −1.06001
\(17\) 25.4820 1.49894 0.749471 0.662037i \(-0.230308\pi\)
0.749471 + 0.662037i \(0.230308\pi\)
\(18\) −60.5607 −3.36448
\(19\) 8.44528i 0.444488i 0.974991 + 0.222244i \(0.0713382\pi\)
−0.974991 + 0.222244i \(0.928662\pi\)
\(20\) 0 0
\(21\) 24.8614i 1.18387i
\(22\) 6.85487 + 29.8324i 0.311585 + 1.35602i
\(23\) 19.8870i 0.864650i −0.901718 0.432325i \(-0.857693\pi\)
0.901718 0.432325i \(-0.142307\pi\)
\(24\) 3.95886i 0.164952i
\(25\) 0 0
\(26\) 43.7063 1.68101
\(27\) 70.7903i 2.62186i
\(28\) −16.7798 −0.599279
\(29\) 21.4524i 0.739739i 0.929084 + 0.369870i \(0.120598\pi\)
−0.929084 + 0.369870i \(0.879402\pi\)
\(30\) 0 0
\(31\) 24.9579 0.805093 0.402547 0.915400i \(-0.368125\pi\)
0.402547 + 0.915400i \(0.368125\pi\)
\(32\) −44.3404 −1.38564
\(33\) −59.4615 + 13.6630i −1.80186 + 0.414030i
\(34\) 70.9092 2.08556
\(35\) 0 0
\(36\) −81.4704 −2.26307
\(37\) 30.4659i 0.823403i 0.911319 + 0.411701i \(0.135065\pi\)
−0.911319 + 0.411701i \(0.864935\pi\)
\(38\) 23.5008i 0.618442i
\(39\) 87.1145i 2.23371i
\(40\) 0 0
\(41\) 10.5577i 0.257506i 0.991677 + 0.128753i \(0.0410974\pi\)
−0.991677 + 0.128753i \(0.958903\pi\)
\(42\) 69.1821i 1.64719i
\(43\) 68.3676 1.58994 0.794972 0.606645i \(-0.207485\pi\)
0.794972 + 0.606645i \(0.207485\pi\)
\(44\) 9.22164 + 40.1327i 0.209583 + 0.912106i
\(45\) 0 0
\(46\) 55.3397i 1.20304i
\(47\) 25.0636i 0.533269i 0.963798 + 0.266634i \(0.0859116\pi\)
−0.963798 + 0.266634i \(0.914088\pi\)
\(48\) 94.0690i 1.95977i
\(49\) −28.9082 −0.589964
\(50\) 0 0
\(51\) 141.335i 2.77127i
\(52\) 58.7967 1.13071
\(53\) 93.9329i 1.77232i −0.463381 0.886159i \(-0.653364\pi\)
0.463381 0.886159i \(-0.346636\pi\)
\(54\) 196.989i 3.64795i
\(55\) 0 0
\(56\) 3.19936 0.0571315
\(57\) −46.8414 −0.821778
\(58\) 59.6960i 1.02924i
\(59\) 27.3730 0.463949 0.231974 0.972722i \(-0.425481\pi\)
0.231974 + 0.972722i \(0.425481\pi\)
\(60\) 0 0
\(61\) 81.1075i 1.32963i −0.747008 0.664815i \(-0.768510\pi\)
0.747008 0.664815i \(-0.231490\pi\)
\(62\) 69.4507 1.12017
\(63\) 97.5509 1.54843
\(64\) −55.5457 −0.867902
\(65\) 0 0
\(66\) −165.464 + 38.0202i −2.50703 + 0.576064i
\(67\) 49.5118i 0.738982i 0.929234 + 0.369491i \(0.120468\pi\)
−0.929234 + 0.369491i \(0.879532\pi\)
\(68\) 95.3920 1.40282
\(69\) 110.302 1.59858
\(70\) 0 0
\(71\) 44.0132 0.619904 0.309952 0.950752i \(-0.399687\pi\)
0.309952 + 0.950752i \(0.399687\pi\)
\(72\) 15.5338 0.215747
\(73\) −29.1783 −0.399703 −0.199851 0.979826i \(-0.564046\pi\)
−0.199851 + 0.979826i \(0.564046\pi\)
\(74\) 84.7779i 1.14565i
\(75\) 0 0
\(76\) 31.6149i 0.415986i
\(77\) −11.0418 48.0540i −0.143400 0.624078i
\(78\) 242.415i 3.10788i
\(79\) 51.3920i 0.650532i −0.945623 0.325266i \(-0.894546\pi\)
0.945623 0.325266i \(-0.105454\pi\)
\(80\) 0 0
\(81\) 196.767 2.42922
\(82\) 29.3792i 0.358283i
\(83\) 47.2115 0.568814 0.284407 0.958704i \(-0.408203\pi\)
0.284407 + 0.958704i \(0.408203\pi\)
\(84\) 93.0685i 1.10796i
\(85\) 0 0
\(86\) 190.248 2.21218
\(87\) −118.985 −1.36764
\(88\) −1.75827 7.65199i −0.0199803 0.0869545i
\(89\) −147.455 −1.65679 −0.828397 0.560141i \(-0.810747\pi\)
−0.828397 + 0.560141i \(0.810747\pi\)
\(90\) 0 0
\(91\) −70.4019 −0.773647
\(92\) 74.4468i 0.809205i
\(93\) 138.428i 1.48847i
\(94\) 69.7449i 0.741967i
\(95\) 0 0
\(96\) 245.932i 2.56179i
\(97\) 87.8176i 0.905337i −0.891679 0.452668i \(-0.850472\pi\)
0.891679 0.452668i \(-0.149528\pi\)
\(98\) −80.4433 −0.820850
\(99\) −53.6108 233.315i −0.541523 2.35671i
\(100\) 0 0
\(101\) 22.1571i 0.219377i −0.993966 0.109688i \(-0.965015\pi\)
0.993966 0.109688i \(-0.0349853\pi\)
\(102\) 393.295i 3.85583i
\(103\) 64.5972i 0.627158i 0.949562 + 0.313579i \(0.101528\pi\)
−0.949562 + 0.313579i \(0.898472\pi\)
\(104\) −11.2106 −0.107794
\(105\) 0 0
\(106\) 261.388i 2.46593i
\(107\) −39.4535 −0.368725 −0.184362 0.982858i \(-0.559022\pi\)
−0.184362 + 0.982858i \(0.559022\pi\)
\(108\) 265.003i 2.45374i
\(109\) 12.6081i 0.115671i 0.998326 + 0.0578355i \(0.0184199\pi\)
−0.998326 + 0.0578355i \(0.981580\pi\)
\(110\) 0 0
\(111\) −168.978 −1.52232
\(112\) 76.0222 0.678770
\(113\) 98.6045i 0.872606i −0.899800 0.436303i \(-0.856288\pi\)
0.899800 0.436303i \(-0.143712\pi\)
\(114\) −130.346 −1.14339
\(115\) 0 0
\(116\) 80.3072i 0.692304i
\(117\) −341.820 −2.92154
\(118\) 76.1712 0.645519
\(119\) −114.220 −0.959834
\(120\) 0 0
\(121\) −108.864 + 52.8178i −0.899699 + 0.436511i
\(122\) 225.699i 1.84999i
\(123\) −58.5580 −0.476081
\(124\) 93.4299 0.753467
\(125\) 0 0
\(126\) 271.456 2.15441
\(127\) 155.235 1.22233 0.611163 0.791505i \(-0.290702\pi\)
0.611163 + 0.791505i \(0.290702\pi\)
\(128\) 22.7935 0.178074
\(129\) 379.198i 2.93952i
\(130\) 0 0
\(131\) 103.068i 0.786778i 0.919372 + 0.393389i \(0.128698\pi\)
−0.919372 + 0.393389i \(0.871302\pi\)
\(132\) −222.594 + 51.1474i −1.68632 + 0.387480i
\(133\) 37.8550i 0.284624i
\(134\) 137.777i 1.02819i
\(135\) 0 0
\(136\) −18.1881 −0.133736
\(137\) 46.4667i 0.339173i −0.985515 0.169587i \(-0.945757\pi\)
0.985515 0.169587i \(-0.0542432\pi\)
\(138\) 306.939 2.22420
\(139\) 113.716i 0.818102i −0.912512 0.409051i \(-0.865860\pi\)
0.912512 0.409051i \(-0.134140\pi\)
\(140\) 0 0
\(141\) −139.014 −0.985917
\(142\) 122.476 0.862508
\(143\) 38.6906 + 168.382i 0.270564 + 1.17750i
\(144\) 369.108 2.56325
\(145\) 0 0
\(146\) −81.1949 −0.556129
\(147\) 160.338i 1.09074i
\(148\) 114.049i 0.770602i
\(149\) 160.233i 1.07539i −0.843139 0.537695i \(-0.819295\pi\)
0.843139 0.537695i \(-0.180705\pi\)
\(150\) 0 0
\(151\) 166.134i 1.10023i 0.835090 + 0.550113i \(0.185415\pi\)
−0.835090 + 0.550113i \(0.814585\pi\)
\(152\) 6.02793i 0.0396575i
\(153\) −554.569 −3.62463
\(154\) −30.7262 133.721i −0.199521 0.868315i
\(155\) 0 0
\(156\) 326.113i 2.09047i
\(157\) 61.2202i 0.389937i −0.980809 0.194969i \(-0.937539\pi\)
0.980809 0.194969i \(-0.0624605\pi\)
\(158\) 143.009i 0.905123i
\(159\) 520.994 3.27669
\(160\) 0 0
\(161\) 89.1410i 0.553671i
\(162\) 547.545 3.37991
\(163\) 134.800i 0.826995i −0.910505 0.413498i \(-0.864307\pi\)
0.910505 0.413498i \(-0.135693\pi\)
\(164\) 39.5229i 0.240993i
\(165\) 0 0
\(166\) 131.376 0.791423
\(167\) 241.427 1.44567 0.722835 0.691021i \(-0.242839\pi\)
0.722835 + 0.691021i \(0.242839\pi\)
\(168\) 17.7451i 0.105626i
\(169\) 77.6893 0.459700
\(170\) 0 0
\(171\) 183.796i 1.07483i
\(172\) 255.934 1.48799
\(173\) 181.146 1.04708 0.523542 0.852000i \(-0.324610\pi\)
0.523542 + 0.852000i \(0.324610\pi\)
\(174\) −331.101 −1.90288
\(175\) 0 0
\(176\) −41.7793 181.824i −0.237383 1.03309i
\(177\) 151.823i 0.857757i
\(178\) −410.324 −2.30519
\(179\) −109.667 −0.612664 −0.306332 0.951925i \(-0.599102\pi\)
−0.306332 + 0.951925i \(0.599102\pi\)
\(180\) 0 0
\(181\) −98.6522 −0.545040 −0.272520 0.962150i \(-0.587857\pi\)
−0.272520 + 0.962150i \(0.587857\pi\)
\(182\) −195.908 −1.07642
\(183\) 449.859 2.45825
\(184\) 14.1946i 0.0771445i
\(185\) 0 0
\(186\) 385.205i 2.07099i
\(187\) 62.7717 + 273.183i 0.335678 + 1.46087i
\(188\) 93.8257i 0.499073i
\(189\) 317.309i 1.67889i
\(190\) 0 0
\(191\) −72.5260 −0.379717 −0.189859 0.981811i \(-0.560803\pi\)
−0.189859 + 0.981811i \(0.560803\pi\)
\(192\) 308.082i 1.60459i
\(193\) −132.224 −0.685098 −0.342549 0.939500i \(-0.611290\pi\)
−0.342549 + 0.939500i \(0.611290\pi\)
\(194\) 244.371i 1.25965i
\(195\) 0 0
\(196\) −108.218 −0.552132
\(197\) −295.931 −1.50219 −0.751095 0.660194i \(-0.770474\pi\)
−0.751095 + 0.660194i \(0.770474\pi\)
\(198\) −149.184 649.248i −0.753452 3.27903i
\(199\) −77.7266 −0.390586 −0.195293 0.980745i \(-0.562566\pi\)
−0.195293 + 0.980745i \(0.562566\pi\)
\(200\) 0 0
\(201\) −274.615 −1.36624
\(202\) 61.6568i 0.305232i
\(203\) 96.1581i 0.473685i
\(204\) 529.087i 2.59356i
\(205\) 0 0
\(206\) 179.756i 0.872600i
\(207\) 432.803i 2.09084i
\(208\) −266.383 −1.28069
\(209\) −90.5387 + 20.8039i −0.433199 + 0.0995401i
\(210\) 0 0
\(211\) 162.936i 0.772209i −0.922455 0.386104i \(-0.873820\pi\)
0.922455 0.386104i \(-0.126180\pi\)
\(212\) 351.638i 1.65867i
\(213\) 244.117i 1.14609i
\(214\) −109.788 −0.513028
\(215\) 0 0
\(216\) 50.5275i 0.233924i
\(217\) −111.871 −0.515534
\(218\) 35.0848i 0.160940i
\(219\) 161.836i 0.738978i
\(220\) 0 0
\(221\) 400.229 1.81099
\(222\) −470.217 −2.11809
\(223\) 27.3536i 0.122662i −0.998117 0.0613310i \(-0.980465\pi\)
0.998117 0.0613310i \(-0.0195345\pi\)
\(224\) 198.751 0.887279
\(225\) 0 0
\(226\) 274.388i 1.21411i
\(227\) −69.9378 −0.308096 −0.154048 0.988063i \(-0.549231\pi\)
−0.154048 + 0.988063i \(0.549231\pi\)
\(228\) −175.351 −0.769082
\(229\) 126.890 0.554103 0.277052 0.960855i \(-0.410643\pi\)
0.277052 + 0.960855i \(0.410643\pi\)
\(230\) 0 0
\(231\) 266.529 61.2428i 1.15381 0.265120i
\(232\) 15.3120i 0.0659999i
\(233\) −127.078 −0.545398 −0.272699 0.962099i \(-0.587916\pi\)
−0.272699 + 0.962099i \(0.587916\pi\)
\(234\) −951.187 −4.06490
\(235\) 0 0
\(236\) 102.471 0.434198
\(237\) 285.044 1.20272
\(238\) −317.842 −1.33547
\(239\) 242.100i 1.01297i 0.862249 + 0.506485i \(0.169055\pi\)
−0.862249 + 0.506485i \(0.830945\pi\)
\(240\) 0 0
\(241\) 118.029i 0.489748i −0.969555 0.244874i \(-0.921253\pi\)
0.969555 0.244874i \(-0.0787466\pi\)
\(242\) −302.936 + 146.977i −1.25180 + 0.607343i
\(243\) 454.245i 1.86932i
\(244\) 303.626i 1.24437i
\(245\) 0 0
\(246\) −162.950 −0.662399
\(247\) 132.644i 0.537022i
\(248\) −17.8140 −0.0718308
\(249\) 261.857i 1.05163i
\(250\) 0 0
\(251\) −122.747 −0.489033 −0.244516 0.969645i \(-0.578629\pi\)
−0.244516 + 0.969645i \(0.578629\pi\)
\(252\) 365.182 1.44913
\(253\) 213.201 48.9890i 0.842690 0.193632i
\(254\) 431.976 1.70069
\(255\) 0 0
\(256\) 285.611 1.11567
\(257\) 440.444i 1.71379i 0.515491 + 0.856895i \(0.327609\pi\)
−0.515491 + 0.856895i \(0.672391\pi\)
\(258\) 1055.20i 4.08992i
\(259\) 136.560i 0.527258i
\(260\) 0 0
\(261\) 466.873i 1.78878i
\(262\) 286.809i 1.09469i
\(263\) 196.653 0.747729 0.373865 0.927483i \(-0.378032\pi\)
0.373865 + 0.927483i \(0.378032\pi\)
\(264\) 42.4414 9.75215i 0.160763 0.0369399i
\(265\) 0 0
\(266\) 105.340i 0.396014i
\(267\) 817.851i 3.06311i
\(268\) 185.347i 0.691595i
\(269\) −140.084 −0.520759 −0.260379 0.965506i \(-0.583848\pi\)
−0.260379 + 0.965506i \(0.583848\pi\)
\(270\) 0 0
\(271\) 122.461i 0.451886i 0.974141 + 0.225943i \(0.0725463\pi\)
−0.974141 + 0.225943i \(0.927454\pi\)
\(272\) −432.180 −1.58890
\(273\) 390.481i 1.43033i
\(274\) 129.304i 0.471911i
\(275\) 0 0
\(276\) 412.916 1.49607
\(277\) 431.002 1.55596 0.777981 0.628287i \(-0.216244\pi\)
0.777981 + 0.628287i \(0.216244\pi\)
\(278\) 316.440i 1.13827i
\(279\) −543.162 −1.94682
\(280\) 0 0
\(281\) 401.798i 1.42989i 0.699182 + 0.714943i \(0.253548\pi\)
−0.699182 + 0.714943i \(0.746452\pi\)
\(282\) −386.837 −1.37176
\(283\) −22.4597 −0.0793628 −0.0396814 0.999212i \(-0.512634\pi\)
−0.0396814 + 0.999212i \(0.512634\pi\)
\(284\) 164.763 0.580153
\(285\) 0 0
\(286\) 107.665 + 468.559i 0.376451 + 1.63832i
\(287\) 47.3239i 0.164892i
\(288\) 964.986 3.35065
\(289\) 360.333 1.24683
\(290\) 0 0
\(291\) 487.077 1.67380
\(292\) −109.229 −0.374072
\(293\) −455.602 −1.55496 −0.777478 0.628911i \(-0.783501\pi\)
−0.777478 + 0.628911i \(0.783501\pi\)
\(294\) 446.175i 1.51760i
\(295\) 0 0
\(296\) 21.7454i 0.0734643i
\(297\) 758.916 174.383i 2.55527 0.587148i
\(298\) 445.883i 1.49625i
\(299\) 312.351i 1.04465i
\(300\) 0 0
\(301\) −306.450 −1.01811
\(302\) 462.304i 1.53081i
\(303\) 122.893 0.405588
\(304\) 143.234i 0.471163i
\(305\) 0 0
\(306\) −1543.21 −5.04316
\(307\) −312.438 −1.01771 −0.508857 0.860851i \(-0.669932\pi\)
−0.508857 + 0.860851i \(0.669932\pi\)
\(308\) −41.3350 179.890i −0.134204 0.584059i
\(309\) −358.286 −1.15950
\(310\) 0 0
\(311\) −256.878 −0.825975 −0.412987 0.910737i \(-0.635515\pi\)
−0.412987 + 0.910737i \(0.635515\pi\)
\(312\) 62.1792i 0.199292i
\(313\) 29.6563i 0.0947485i −0.998877 0.0473742i \(-0.984915\pi\)
0.998877 0.0473742i \(-0.0150853\pi\)
\(314\) 170.358i 0.542542i
\(315\) 0 0
\(316\) 192.386i 0.608817i
\(317\) 99.6748i 0.314431i 0.987564 + 0.157216i \(0.0502518\pi\)
−0.987564 + 0.157216i \(0.949748\pi\)
\(318\) 1449.78 4.55905
\(319\) −229.984 + 52.8454i −0.720952 + 0.165659i
\(320\) 0 0
\(321\) 218.827i 0.681705i
\(322\) 248.054i 0.770354i
\(323\) 215.203i 0.666262i
\(324\) 736.596 2.27344
\(325\) 0 0
\(326\) 375.111i 1.15065i
\(327\) −69.9305 −0.213855
\(328\) 7.53573i 0.0229748i
\(329\) 112.345i 0.341474i
\(330\) 0 0
\(331\) 138.630 0.418820 0.209410 0.977828i \(-0.432846\pi\)
0.209410 + 0.977828i \(0.432846\pi\)
\(332\) 176.736 0.532339
\(333\) 663.034i 1.99109i
\(334\) 671.822 2.01144
\(335\) 0 0
\(336\) 421.654i 1.25492i
\(337\) 504.040 1.49567 0.747834 0.663886i \(-0.231094\pi\)
0.747834 + 0.663886i \(0.231094\pi\)
\(338\) 216.187 0.639607
\(339\) 546.905 1.61329
\(340\) 0 0
\(341\) 61.4806 + 267.564i 0.180295 + 0.784646i
\(342\) 511.452i 1.49547i
\(343\) 349.215 1.01812
\(344\) −48.7983 −0.141856
\(345\) 0 0
\(346\) 504.076 1.45687
\(347\) 305.042 0.879083 0.439542 0.898222i \(-0.355141\pi\)
0.439542 + 0.898222i \(0.355141\pi\)
\(348\) −445.420 −1.27994
\(349\) 383.638i 1.09925i −0.835412 0.549625i \(-0.814771\pi\)
0.835412 0.549625i \(-0.185229\pi\)
\(350\) 0 0
\(351\) 1111.86i 3.16768i
\(352\) −109.227 475.356i −0.310304 1.35044i
\(353\) 571.115i 1.61789i 0.587884 + 0.808945i \(0.299961\pi\)
−0.587884 + 0.808945i \(0.700039\pi\)
\(354\) 422.480i 1.19345i
\(355\) 0 0
\(356\) −551.997 −1.55055
\(357\) 633.517i 1.77456i
\(358\) −305.172 −0.852434
\(359\) 105.966i 0.295169i 0.989049 + 0.147585i \(0.0471499\pi\)
−0.989049 + 0.147585i \(0.952850\pi\)
\(360\) 0 0
\(361\) 289.677 0.802430
\(362\) −274.521 −0.758345
\(363\) −292.952 603.807i −0.807029 1.66338i
\(364\) −263.550 −0.724037
\(365\) 0 0
\(366\) 1251.83 3.42030
\(367\) 409.176i 1.11492i −0.830203 0.557461i \(-0.811776\pi\)
0.830203 0.557461i \(-0.188224\pi\)
\(368\) 337.287i 0.916540i
\(369\) 229.770i 0.622682i
\(370\) 0 0
\(371\) 421.043i 1.13489i
\(372\) 518.205i 1.39302i
\(373\) 286.691 0.768608 0.384304 0.923207i \(-0.374441\pi\)
0.384304 + 0.923207i \(0.374441\pi\)
\(374\) 174.676 + 760.191i 0.467048 + 2.03260i
\(375\) 0 0
\(376\) 17.8895i 0.0475785i
\(377\) 336.939i 0.893738i
\(378\) 882.981i 2.33593i
\(379\) 396.663 1.04660 0.523302 0.852147i \(-0.324700\pi\)
0.523302 + 0.852147i \(0.324700\pi\)
\(380\) 0 0
\(381\) 861.006i 2.25986i
\(382\) −201.819 −0.528322
\(383\) 423.356i 1.10537i 0.833391 + 0.552684i \(0.186396\pi\)
−0.833391 + 0.552684i \(0.813604\pi\)
\(384\) 126.423i 0.329227i
\(385\) 0 0
\(386\) −367.941 −0.953216
\(387\) −1487.90 −3.84469
\(388\) 328.745i 0.847282i
\(389\) 453.620 1.16612 0.583059 0.812430i \(-0.301855\pi\)
0.583059 + 0.812430i \(0.301855\pi\)
\(390\) 0 0
\(391\) 506.760i 1.29606i
\(392\) 20.6336 0.0526368
\(393\) −571.662 −1.45461
\(394\) −823.493 −2.09008
\(395\) 0 0
\(396\) −200.692 873.414i −0.506798 2.20559i
\(397\) 535.740i 1.34947i −0.738060 0.674735i \(-0.764258\pi\)
0.738060 0.674735i \(-0.235742\pi\)
\(398\) −216.291 −0.543445
\(399\) 209.961 0.526218
\(400\) 0 0
\(401\) −611.297 −1.52443 −0.762216 0.647323i \(-0.775889\pi\)
−0.762216 + 0.647323i \(0.775889\pi\)
\(402\) −764.175 −1.90093
\(403\) 391.997 0.972698
\(404\) 82.9450i 0.205309i
\(405\) 0 0
\(406\) 267.581i 0.659066i
\(407\) −326.613 + 75.0489i −0.802490 + 0.184395i
\(408\) 100.880i 0.247254i
\(409\) 748.695i 1.83055i −0.402831 0.915275i \(-0.631974\pi\)
0.402831 0.915275i \(-0.368026\pi\)
\(410\) 0 0
\(411\) 257.725 0.627069
\(412\) 241.820i 0.586941i
\(413\) −122.696 −0.297085
\(414\) 1204.37i 2.90910i
\(415\) 0 0
\(416\) −696.425 −1.67410
\(417\) 630.721 1.51252
\(418\) −251.943 + 57.8913i −0.602735 + 0.138496i
\(419\) −1.63966 −0.00391327 −0.00195663 0.999998i \(-0.500623\pi\)
−0.00195663 + 0.999998i \(0.500623\pi\)
\(420\) 0 0
\(421\) 587.016 1.39434 0.697169 0.716907i \(-0.254443\pi\)
0.697169 + 0.716907i \(0.254443\pi\)
\(422\) 453.404i 1.07442i
\(423\) 545.464i 1.28951i
\(424\) 67.0459i 0.158127i
\(425\) 0 0
\(426\) 679.308i 1.59462i
\(427\) 363.555i 0.851417i
\(428\) −147.694 −0.345080
\(429\) −933.922 + 214.596i −2.17697 + 0.500223i
\(430\) 0 0
\(431\) 709.692i 1.64662i −0.567595 0.823308i \(-0.692126\pi\)
0.567595 0.823308i \(-0.307874\pi\)
\(432\) 1200.62i 2.77921i
\(433\) 821.863i 1.89807i −0.315175 0.949034i \(-0.602063\pi\)
0.315175 0.949034i \(-0.397937\pi\)
\(434\) −311.305 −0.717292
\(435\) 0 0
\(436\) 47.1986i 0.108254i
\(437\) 167.951 0.384327
\(438\) 450.344i 1.02818i
\(439\) 522.233i 1.18960i 0.803875 + 0.594798i \(0.202768\pi\)
−0.803875 + 0.594798i \(0.797232\pi\)
\(440\) 0 0
\(441\) 629.134 1.42661
\(442\) 1113.72 2.51974
\(443\) 377.862i 0.852963i −0.904496 0.426481i \(-0.859753\pi\)
0.904496 0.426481i \(-0.140247\pi\)
\(444\) −632.568 −1.42470
\(445\) 0 0
\(446\) 76.1173i 0.170667i
\(447\) 888.726 1.98820
\(448\) 248.977 0.555753
\(449\) −565.531 −1.25953 −0.629767 0.776784i \(-0.716850\pi\)
−0.629767 + 0.776784i \(0.716850\pi\)
\(450\) 0 0
\(451\) −113.186 + 26.0077i −0.250966 + 0.0576667i
\(452\) 369.126i 0.816650i
\(453\) −921.455 −2.03412
\(454\) −194.617 −0.428672
\(455\) 0 0
\(456\) 33.4337 0.0733194
\(457\) −311.699 −0.682054 −0.341027 0.940054i \(-0.610775\pi\)
−0.341027 + 0.940054i \(0.610775\pi\)
\(458\) 353.098 0.770955
\(459\) 1803.88i 3.93002i
\(460\) 0 0
\(461\) 125.484i 0.272200i 0.990695 + 0.136100i \(0.0434569\pi\)
−0.990695 + 0.136100i \(0.956543\pi\)
\(462\) 741.675 170.421i 1.60536 0.368877i
\(463\) 478.622i 1.03374i 0.856063 + 0.516871i \(0.172903\pi\)
−0.856063 + 0.516871i \(0.827097\pi\)
\(464\) 363.838i 0.784133i
\(465\) 0 0
\(466\) −353.621 −0.758844
\(467\) 422.419i 0.904538i 0.891882 + 0.452269i \(0.149385\pi\)
−0.891882 + 0.452269i \(0.850615\pi\)
\(468\) −1279.60 −2.73419
\(469\) 221.931i 0.473200i
\(470\) 0 0
\(471\) 339.555 0.720923
\(472\) −19.5378 −0.0413937
\(473\) 168.415 + 732.944i 0.356057 + 1.54956i
\(474\) 793.195 1.67341
\(475\) 0 0
\(476\) −427.584 −0.898285
\(477\) 2044.28i 4.28569i
\(478\) 673.695i 1.40940i
\(479\) 158.064i 0.329987i 0.986295 + 0.164993i \(0.0527603\pi\)
−0.986295 + 0.164993i \(0.947240\pi\)
\(480\) 0 0
\(481\) 478.508i 0.994819i
\(482\) 328.442i 0.681414i
\(483\) −494.417 −1.02364
\(484\) −407.531 + 197.724i −0.842006 + 0.408520i
\(485\) 0 0
\(486\) 1264.03i 2.60089i
\(487\) 840.800i 1.72649i −0.504786 0.863245i \(-0.668429\pi\)
0.504786 0.863245i \(-0.331571\pi\)
\(488\) 57.8916i 0.118630i
\(489\) 747.663 1.52896
\(490\) 0 0
\(491\) 327.239i 0.666476i −0.942843 0.333238i \(-0.891859\pi\)
0.942843 0.333238i \(-0.108141\pi\)
\(492\) −219.212 −0.445553
\(493\) 546.651i 1.10883i
\(494\) 369.112i 0.747190i
\(495\) 0 0
\(496\) −423.291 −0.853409
\(497\) −197.284 −0.396950
\(498\) 728.673i 1.46320i
\(499\) −551.123 −1.10445 −0.552227 0.833693i \(-0.686222\pi\)
−0.552227 + 0.833693i \(0.686222\pi\)
\(500\) 0 0
\(501\) 1339.06i 2.67278i
\(502\) −341.571 −0.680420
\(503\) −399.050 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(504\) −69.6283 −0.138151
\(505\) 0 0
\(506\) 593.276 136.322i 1.17248 0.269412i
\(507\) 430.900i 0.849901i
\(508\) 581.124 1.14394
\(509\) 18.2410 0.0358370 0.0179185 0.999839i \(-0.494296\pi\)
0.0179185 + 0.999839i \(0.494296\pi\)
\(510\) 0 0
\(511\) 130.788 0.255946
\(512\) 703.599 1.37422
\(513\) 597.844 1.16539
\(514\) 1225.63i 2.38449i
\(515\) 0 0
\(516\) 1419.53i 2.75102i
\(517\) −268.698 + 61.7411i −0.519725 + 0.119422i
\(518\) 380.007i 0.733605i
\(519\) 1004.72i 1.93587i
\(520\) 0 0
\(521\) 673.198 1.29213 0.646064 0.763284i \(-0.276414\pi\)
0.646064 + 0.763284i \(0.276414\pi\)
\(522\) 1299.17i 2.48884i
\(523\) 102.262 0.195529 0.0977645 0.995210i \(-0.468831\pi\)
0.0977645 + 0.995210i \(0.468831\pi\)
\(524\) 385.835i 0.736326i
\(525\) 0 0
\(526\) 547.229 1.04036
\(527\) 635.977 1.20679
\(528\) 1008.48 231.727i 1.91000 0.438877i
\(529\) 133.509 0.252380
\(530\) 0 0
\(531\) −595.723 −1.12189
\(532\) 141.710i 0.266373i
\(533\) 165.824i 0.311114i
\(534\) 2275.84i 4.26188i
\(535\) 0 0
\(536\) 35.3397i 0.0659323i
\(537\) 608.262i 1.13270i
\(538\) −389.814 −0.724561
\(539\) −71.2117 309.914i −0.132118 0.574980i
\(540\) 0 0
\(541\) 822.873i 1.52102i 0.649324 + 0.760512i \(0.275052\pi\)
−0.649324 + 0.760512i \(0.724948\pi\)
\(542\) 340.774i 0.628735i
\(543\) 547.170i 1.00768i
\(544\) −1129.88 −2.07699
\(545\) 0 0
\(546\) 1086.60i 1.99010i
\(547\) −641.446 −1.17266 −0.586331 0.810071i \(-0.699428\pi\)
−0.586331 + 0.810071i \(0.699428\pi\)
\(548\) 173.948i 0.317424i
\(549\) 1765.15i 3.21522i
\(550\) 0 0
\(551\) −181.172 −0.328805
\(552\) −78.7296 −0.142626
\(553\) 230.359i 0.416562i
\(554\) 1199.35 2.16490
\(555\) 0 0
\(556\) 425.696i 0.765641i
\(557\) 523.719 0.940250 0.470125 0.882600i \(-0.344209\pi\)
0.470125 + 0.882600i \(0.344209\pi\)
\(558\) −1511.47 −2.70872
\(559\) 1073.81 1.92094
\(560\) 0 0
\(561\) −1515.20 + 348.161i −2.70089 + 0.620607i
\(562\) 1118.09i 1.98948i
\(563\) −1008.31 −1.79095 −0.895475 0.445111i \(-0.853164\pi\)
−0.895475 + 0.445111i \(0.853164\pi\)
\(564\) −520.400 −0.922695
\(565\) 0 0
\(566\) −62.4988 −0.110422
\(567\) −881.984 −1.55553
\(568\) −31.4150 −0.0553081
\(569\) 369.577i 0.649521i 0.945796 + 0.324760i \(0.105284\pi\)
−0.945796 + 0.324760i \(0.894716\pi\)
\(570\) 0 0
\(571\) 456.385i 0.799273i −0.916674 0.399636i \(-0.869136\pi\)
0.916674 0.399636i \(-0.130864\pi\)
\(572\) 144.838 + 630.338i 0.253214 + 1.10199i
\(573\) 402.262i 0.702028i
\(574\) 131.689i 0.229423i
\(575\) 0 0
\(576\) 1208.85 2.09870
\(577\) 886.043i 1.53560i −0.640687 0.767802i \(-0.721351\pi\)
0.640687 0.767802i \(-0.278649\pi\)
\(578\) 1002.70 1.73478
\(579\) 733.373i 1.26662i
\(580\) 0 0
\(581\) −211.620 −0.364235
\(582\) 1355.40 2.32886
\(583\) 1007.02 231.392i 1.72731 0.396898i
\(584\) 20.8264 0.0356617
\(585\) 0 0
\(586\) −1267.81 −2.16350
\(587\) 497.919i 0.848243i −0.905605 0.424121i \(-0.860583\pi\)
0.905605 0.424121i \(-0.139417\pi\)
\(588\) 600.226i 1.02079i
\(589\) 210.776i 0.357855i
\(590\) 0 0
\(591\) 1641.37i 2.77728i
\(592\) 516.708i 0.872817i
\(593\) 60.1067 0.101360 0.0506802 0.998715i \(-0.483861\pi\)
0.0506802 + 0.998715i \(0.483861\pi\)
\(594\) 2111.85 485.258i 3.55530 0.816933i
\(595\) 0 0
\(596\) 599.833i 1.00643i
\(597\) 431.107i 0.722122i
\(598\) 869.185i 1.45349i
\(599\) −935.800 −1.56227 −0.781135 0.624362i \(-0.785359\pi\)
−0.781135 + 0.624362i \(0.785359\pi\)
\(600\) 0 0
\(601\) 925.265i 1.53954i −0.638320 0.769771i \(-0.720370\pi\)
0.638320 0.769771i \(-0.279630\pi\)
\(602\) −852.763 −1.41655
\(603\) 1077.53i 1.78695i
\(604\) 621.923i 1.02967i
\(605\) 0 0
\(606\) 341.976 0.564318
\(607\) 790.264 1.30192 0.650959 0.759113i \(-0.274367\pi\)
0.650959 + 0.759113i \(0.274367\pi\)
\(608\) 374.467i 0.615899i
\(609\) 533.337 0.875758
\(610\) 0 0
\(611\) 393.658i 0.644285i
\(612\) −2076.03 −3.39221
\(613\) −390.665 −0.637300 −0.318650 0.947872i \(-0.603230\pi\)
−0.318650 + 0.947872i \(0.603230\pi\)
\(614\) −869.427 −1.41600
\(615\) 0 0
\(616\) 7.88123 + 34.2992i 0.0127942 + 0.0556805i
\(617\) 283.723i 0.459843i 0.973209 + 0.229922i \(0.0738470\pi\)
−0.973209 + 0.229922i \(0.926153\pi\)
\(618\) −997.007 −1.61328
\(619\) 774.717 1.25156 0.625781 0.779999i \(-0.284780\pi\)
0.625781 + 0.779999i \(0.284780\pi\)
\(620\) 0 0
\(621\) −1407.80 −2.26699
\(622\) −714.818 −1.14923
\(623\) 660.949 1.06091
\(624\) 1477.48i 2.36776i
\(625\) 0 0
\(626\) 82.5250i 0.131829i
\(627\) −115.388 502.169i −0.184032 0.800907i
\(628\) 229.178i 0.364933i
\(629\) 776.332i 1.23423i
\(630\) 0 0
\(631\) 392.301 0.621712 0.310856 0.950457i \(-0.399384\pi\)
0.310856 + 0.950457i \(0.399384\pi\)
\(632\) 36.6818i 0.0580408i
\(633\) 903.717 1.42767
\(634\) 277.366i 0.437487i
\(635\) 0 0
\(636\) 1950.34 3.06658
\(637\) −454.042 −0.712782
\(638\) −639.979 + 147.054i −1.00310 + 0.230492i
\(639\) −957.865 −1.49901
\(640\) 0 0
\(641\) −685.356 −1.06920 −0.534599 0.845106i \(-0.679537\pi\)
−0.534599 + 0.845106i \(0.679537\pi\)
\(642\) 608.934i 0.948495i
\(643\) 747.072i 1.16185i 0.813956 + 0.580927i \(0.197310\pi\)
−0.813956 + 0.580927i \(0.802690\pi\)
\(644\) 333.699i 0.518167i
\(645\) 0 0
\(646\) 598.848i 0.927009i
\(647\) 190.791i 0.294885i 0.989071 + 0.147443i \(0.0471042\pi\)
−0.989071 + 0.147443i \(0.952896\pi\)
\(648\) −140.445 −0.216736
\(649\) 67.4299 + 293.456i 0.103898 + 0.452166i
\(650\) 0 0
\(651\) 620.487i 0.953129i
\(652\) 504.625i 0.773964i
\(653\) 142.136i 0.217666i 0.994060 + 0.108833i \(0.0347114\pi\)
−0.994060 + 0.108833i \(0.965289\pi\)
\(654\) −194.596 −0.297548
\(655\) 0 0
\(656\) 179.061i 0.272959i
\(657\) 635.012 0.966533
\(658\) 312.624i 0.475112i
\(659\) 528.247i 0.801589i 0.916168 + 0.400794i \(0.131266\pi\)
−0.916168 + 0.400794i \(0.868734\pi\)
\(660\) 0 0
\(661\) 2.43838 0.00368892 0.00184446 0.999998i \(-0.499413\pi\)
0.00184446 + 0.999998i \(0.499413\pi\)
\(662\) 385.766 0.582729
\(663\) 2219.85i 3.34820i
\(664\) −33.6979 −0.0507498
\(665\) 0 0
\(666\) 1845.03i 2.77032i
\(667\) 426.624 0.639616
\(668\) 903.781 1.35297
\(669\) 151.716 0.226780
\(670\) 0 0
\(671\) 869.523 199.798i 1.29586 0.297762i
\(672\) 1102.36i 1.64042i
\(673\) 684.594 1.01723 0.508614 0.860995i \(-0.330158\pi\)
0.508614 + 0.860995i \(0.330158\pi\)
\(674\) 1402.60 2.08101
\(675\) 0 0
\(676\) 290.830 0.430222
\(677\) −326.416 −0.482151 −0.241076 0.970506i \(-0.577500\pi\)
−0.241076 + 0.970506i \(0.577500\pi\)
\(678\) 1521.88 2.24466
\(679\) 393.633i 0.579724i
\(680\) 0 0
\(681\) 387.907i 0.569614i
\(682\) 171.083 + 744.555i 0.250855 + 1.09172i
\(683\) 1162.56i 1.70213i 0.525058 + 0.851067i \(0.324044\pi\)
−0.525058 + 0.851067i \(0.675956\pi\)
\(684\) 688.040i 1.00591i
\(685\) 0 0
\(686\) 971.765 1.41657
\(687\) 703.787i 1.02444i
\(688\) −1159.53 −1.68536
\(689\) 1475.34i 2.14128i
\(690\) 0 0
\(691\) −400.519 −0.579623 −0.289811 0.957084i \(-0.593593\pi\)
−0.289811 + 0.957084i \(0.593593\pi\)
\(692\) 678.118 0.979940
\(693\) 240.304 + 1045.81i 0.346759 + 1.50910i
\(694\) 848.845 1.22312
\(695\) 0 0
\(696\) 84.9271 0.122022
\(697\) 269.032i 0.385986i
\(698\) 1067.55i 1.52945i
\(699\) 704.831i 1.00834i
\(700\) 0 0
\(701\) 819.099i 1.16847i 0.811584 + 0.584236i \(0.198606\pi\)
−0.811584 + 0.584236i \(0.801394\pi\)
\(702\) 3093.98i 4.40738i
\(703\) −257.293 −0.365993
\(704\) −136.830 595.485i −0.194361 0.845859i
\(705\) 0 0
\(706\) 1589.25i 2.25106i
\(707\) 99.3165i 0.140476i
\(708\) 568.350i 0.802754i
\(709\) −516.432 −0.728395 −0.364198 0.931322i \(-0.618657\pi\)
−0.364198 + 0.931322i \(0.618657\pi\)
\(710\) 0 0
\(711\) 1118.45i 1.57307i
\(712\) 105.248 0.147820
\(713\) 496.336i 0.696124i
\(714\) 1762.90i 2.46904i
\(715\) 0 0
\(716\) −410.538 −0.573377
\(717\) −1342.80 −1.87280
\(718\) 294.873i 0.410686i
\(719\) −382.550 −0.532058 −0.266029 0.963965i \(-0.585712\pi\)
−0.266029 + 0.963965i \(0.585712\pi\)
\(720\) 0 0
\(721\) 289.550i 0.401595i
\(722\) 806.089 1.11647
\(723\) 654.644 0.905455
\(724\) −369.305 −0.510089
\(725\) 0 0
\(726\) −815.201 1680.22i −1.12287 2.31436i
\(727\) 890.685i 1.22515i 0.790412 + 0.612575i \(0.209866\pi\)
−0.790412 + 0.612575i \(0.790134\pi\)
\(728\) 50.2503 0.0690252
\(729\) −748.548 −1.02681
\(730\) 0 0
\(731\) 1742.15 2.38324
\(732\) 1684.05 2.30061
\(733\) 17.9184 0.0244454 0.0122227 0.999925i \(-0.496109\pi\)
0.0122227 + 0.999925i \(0.496109\pi\)
\(734\) 1138.62i 1.55126i
\(735\) 0 0
\(736\) 881.795i 1.19809i
\(737\) −530.797 + 121.966i −0.720214 + 0.165490i
\(738\) 639.384i 0.866374i
\(739\) 765.890i 1.03639i 0.855263 + 0.518194i \(0.173395\pi\)
−0.855263 + 0.518194i \(0.826605\pi\)
\(740\) 0 0
\(741\) −735.706 −0.992856
\(742\) 1171.64i 1.57903i
\(743\) 402.876 0.542229 0.271114 0.962547i \(-0.412608\pi\)
0.271114 + 0.962547i \(0.412608\pi\)
\(744\) 98.8047i 0.132802i
\(745\) 0 0
\(746\) 797.779 1.06941
\(747\) −1027.47 −1.37547
\(748\) 234.986 + 1022.66i 0.314152 + 1.36719i
\(749\) 176.846 0.236109
\(750\) 0 0
\(751\) −884.758 −1.17811 −0.589053 0.808094i \(-0.700499\pi\)
−0.589053 + 0.808094i \(0.700499\pi\)
\(752\) 425.084i 0.565272i
\(753\) 680.812i 0.904133i
\(754\) 937.606i 1.24351i
\(755\) 0 0
\(756\) 1187.85i 1.57123i
\(757\) 752.068i 0.993485i 0.867898 + 0.496742i \(0.165471\pi\)
−0.867898 + 0.496742i \(0.834529\pi\)
\(758\) 1103.80 1.45620
\(759\) 271.715 + 1182.51i 0.357991 + 1.55798i
\(760\) 0 0
\(761\) 876.298i 1.15151i −0.817623 0.575754i \(-0.804708\pi\)
0.817623 0.575754i \(-0.195292\pi\)
\(762\) 2395.93i 3.14427i
\(763\) 56.5145i 0.0740689i
\(764\) −271.501 −0.355368
\(765\) 0 0
\(766\) 1178.08i 1.53796i
\(767\) 429.930 0.560534
\(768\) 1584.13i 2.06267i
\(769\) 794.557i 1.03323i −0.856217 0.516617i \(-0.827191\pi\)
0.856217 0.516617i \(-0.172809\pi\)
\(770\) 0 0
\(771\) −2442.90 −3.16849
\(772\) −494.980 −0.641166
\(773\) 911.736i 1.17948i −0.807594 0.589738i \(-0.799231\pi\)
0.807594 0.589738i \(-0.200769\pi\)
\(774\) −4140.39 −5.34934
\(775\) 0 0
\(776\) 62.6810i 0.0807745i
\(777\) 757.423 0.974805
\(778\) 1262.30 1.62249
\(779\) −89.1631 −0.114458
\(780\) 0 0
\(781\) 108.421 + 471.849i 0.138823 + 0.604160i
\(782\) 1410.17i 1.80328i
\(783\) 1518.62 1.93949
\(784\) 490.289 0.625369
\(785\) 0 0
\(786\) −1590.77 −2.02388
\(787\) −1566.53 −1.99050 −0.995252 0.0973313i \(-0.968969\pi\)
−0.995252 + 0.0973313i \(0.968969\pi\)
\(788\) −1107.82 −1.40586
\(789\) 1090.73i 1.38242i
\(790\) 0 0
\(791\) 441.983i 0.558765i
\(792\) 38.2654 + 166.532i 0.0483149 + 0.210267i
\(793\) 1273.90i 1.60643i
\(794\) 1490.81i 1.87760i
\(795\) 0 0
\(796\) −290.970 −0.365540
\(797\) 488.561i 0.613001i 0.951871 + 0.306500i \(0.0991580\pi\)
−0.951871 + 0.306500i \(0.900842\pi\)
\(798\) 584.262 0.732158
\(799\) 638.672i 0.799339i
\(800\) 0 0
\(801\) 3209.08 4.00634
\(802\) −1701.07 −2.12103
\(803\) −71.8771 312.810i −0.0895107 0.389551i
\(804\) −1028.02 −1.27863
\(805\) 0 0
\(806\) 1090.82 1.35337
\(807\) 776.970i 0.962788i
\(808\) 15.8149i 0.0195729i
\(809\) 177.955i 0.219969i 0.993933 + 0.109984i \(0.0350801\pi\)
−0.993933 + 0.109984i \(0.964920\pi\)
\(810\) 0 0
\(811\) 148.090i 0.182602i 0.995823 + 0.0913009i \(0.0291025\pi\)
−0.995823 + 0.0913009i \(0.970897\pi\)
\(812\) 359.968i 0.443310i
\(813\) −679.225 −0.835455
\(814\) −908.872 + 208.840i −1.11655 + 0.256560i
\(815\) 0 0
\(816\) 2397.07i 2.93758i
\(817\) 577.384i 0.706712i
\(818\) 2083.40i 2.54695i
\(819\) 1532.17 1.87078
\(820\) 0 0
\(821\) 95.9583i 0.116880i 0.998291 + 0.0584399i \(0.0186126\pi\)
−0.998291 + 0.0584399i \(0.981387\pi\)
\(822\) 717.177 0.872478
\(823\) 780.102i 0.947876i 0.880558 + 0.473938i \(0.157168\pi\)
−0.880558 + 0.473938i \(0.842832\pi\)
\(824\) 46.1072i 0.0559553i
\(825\) 0 0
\(826\) −341.429 −0.413352
\(827\) 51.5115 0.0622872 0.0311436 0.999515i \(-0.490085\pi\)
0.0311436 + 0.999515i \(0.490085\pi\)
\(828\) 1620.20i 1.95676i
\(829\) 1102.12 1.32945 0.664726 0.747087i \(-0.268548\pi\)
0.664726 + 0.747087i \(0.268548\pi\)
\(830\) 0 0
\(831\) 2390.53i 2.87669i
\(832\) −872.421 −1.04858
\(833\) −736.640 −0.884321
\(834\) 1755.12 2.10446
\(835\) 0 0
\(836\) −338.932 + 77.8793i −0.405421 + 0.0931571i
\(837\) 1766.78i 2.11084i
\(838\) −4.56271 −0.00544476
\(839\) −727.457 −0.867052 −0.433526 0.901141i \(-0.642731\pi\)
−0.433526 + 0.901141i \(0.642731\pi\)
\(840\) 0 0
\(841\) 380.793 0.452786
\(842\) 1633.50 1.94002
\(843\) −2228.56 −2.64360
\(844\) 609.951i 0.722691i
\(845\) 0 0
\(846\) 1517.87i 1.79417i
\(847\) 487.969 236.750i 0.576114 0.279516i
\(848\) 1593.12i 1.87868i
\(849\) 124.571i 0.146727i
\(850\) 0 0
\(851\) 605.874 0.711955
\(852\) 913.852i 1.07260i
\(853\) −942.330 −1.10472 −0.552362 0.833604i \(-0.686274\pi\)
−0.552362 + 0.833604i \(0.686274\pi\)
\(854\) 1011.67i 1.18463i
\(855\) 0 0
\(856\) 28.1605 0.0328978
\(857\) −584.440 −0.681960 −0.340980 0.940070i \(-0.610759\pi\)
−0.340980 + 0.940070i \(0.610759\pi\)
\(858\) −2598.84 + 597.158i −3.02895 + 0.695989i
\(859\) −209.717 −0.244141 −0.122070 0.992521i \(-0.538953\pi\)
−0.122070 + 0.992521i \(0.538953\pi\)
\(860\) 0 0
\(861\) 262.480 0.304854
\(862\) 1974.87i 2.29103i
\(863\) 1655.39i 1.91818i −0.283101 0.959090i \(-0.591363\pi\)
0.283101 0.959090i \(-0.408637\pi\)
\(864\) 3138.87i 3.63295i
\(865\) 0 0
\(866\) 2287.01i 2.64089i
\(867\) 1998.57i 2.30516i
\(868\) −418.789 −0.482476
\(869\) 550.955 126.598i 0.634010 0.145682i
\(870\) 0 0
\(871\) 777.649i 0.892824i
\(872\) 8.99923i 0.0103202i
\(873\) 1911.19i 2.18922i
\(874\) 467.359 0.534736
\(875\) 0 0
\(876\) 605.834i 0.691591i
\(877\) −265.595 −0.302845 −0.151422 0.988469i \(-0.548385\pi\)
−0.151422 + 0.988469i \(0.548385\pi\)
\(878\) 1453.22i 1.65515i
\(879\) 2526.98i 2.87483i
\(880\) 0 0
\(881\) 187.558 0.212892 0.106446 0.994319i \(-0.466053\pi\)
0.106446 + 0.994319i \(0.466053\pi\)
\(882\) 1750.70 1.98492
\(883\) 36.3595i 0.0411773i 0.999788 + 0.0205886i \(0.00655403\pi\)
−0.999788 + 0.0205886i \(0.993446\pi\)
\(884\) 1498.26 1.69486
\(885\) 0 0
\(886\) 1051.48i 1.18678i
\(887\) −666.369 −0.751261 −0.375631 0.926769i \(-0.622574\pi\)
−0.375631 + 0.926769i \(0.622574\pi\)
\(888\) 120.610 0.135822
\(889\) −695.825 −0.782705
\(890\) 0 0
\(891\) 484.710 + 2109.46i 0.544006 + 2.36752i
\(892\) 102.398i 0.114796i
\(893\) −211.669 −0.237032
\(894\) 2473.07 2.76630
\(895\) 0 0
\(896\) −102.169 −0.114028
\(897\) 1732.44 1.93137
\(898\) −1573.71 −1.75246
\(899\) 535.408i 0.595559i
\(900\) 0 0
\(901\) 2393.60i 2.65660i
\(902\) −314.963 + 72.3719i −0.349183 + 0.0802349i
\(903\) 1699.71i 1.88229i
\(904\) 70.3803i 0.0778543i
\(905\) 0 0
\(906\) −2564.15 −2.83018
\(907\) 667.718i 0.736182i −0.929790 0.368091i \(-0.880011\pi\)
0.929790 0.368091i \(-0.119989\pi\)
\(908\) −261.812 −0.288339
\(909\) 482.208i 0.530481i
\(910\) 0 0
\(911\) 218.396 0.239732 0.119866 0.992790i \(-0.461754\pi\)
0.119866 + 0.992790i \(0.461754\pi\)
\(912\) 794.439 0.871095
\(913\) 116.300 + 506.137i 0.127382 + 0.554367i
\(914\) −867.368 −0.948981
\(915\) 0 0
\(916\) 475.011 0.518571
\(917\) 461.990i 0.503806i
\(918\) 5019.68i 5.46806i
\(919\) 197.616i 0.215034i 0.994203 + 0.107517i \(0.0342900\pi\)
−0.994203 + 0.107517i \(0.965710\pi\)
\(920\) 0 0
\(921\) 1732.93i 1.88157i
\(922\) 349.187i 0.378728i
\(923\) 691.286 0.748956
\(924\) 997.752 229.263i 1.07982 0.248120i
\(925\) 0 0
\(926\) 1331.87i 1.43830i
\(927\) 1405.84i 1.51655i
\(928\) 951.209i 1.02501i
\(929\) −298.522 −0.321337 −0.160669 0.987008i \(-0.551365\pi\)
−0.160669 + 0.987008i \(0.551365\pi\)
\(930\) 0 0
\(931\) 244.138i 0.262232i
\(932\) −475.716 −0.510425
\(933\) 1424.76i 1.52708i
\(934\) 1175.47i 1.25854i
\(935\) 0 0
\(936\) 243.978 0.260661
\(937\) −708.598 −0.756241 −0.378120 0.925756i \(-0.623429\pi\)
−0.378120 + 0.925756i \(0.623429\pi\)
\(938\) 617.571i 0.658391i
\(939\) 164.487 0.175173
\(940\) 0 0
\(941\) 286.193i 0.304137i 0.988370 + 0.152069i \(0.0485934\pi\)
−0.988370 + 0.152069i \(0.951407\pi\)
\(942\) 944.884 1.00306
\(943\) 209.961 0.222652
\(944\) −464.251 −0.491792
\(945\) 0 0
\(946\) 468.651 + 2039.57i 0.495403 + 2.15600i
\(947\) 1220.02i 1.28829i −0.764901 0.644147i \(-0.777212\pi\)
0.764901 0.644147i \(-0.222788\pi\)
\(948\) 1067.06 1.12559
\(949\) −458.284 −0.482913
\(950\) 0 0
\(951\) −552.842 −0.581327
\(952\) 81.5263 0.0856368
\(953\) −1539.71 −1.61564 −0.807821 0.589428i \(-0.799353\pi\)
−0.807821 + 0.589428i \(0.799353\pi\)
\(954\) 5688.64i 5.96293i
\(955\) 0 0
\(956\) 906.301i 0.948013i
\(957\) −293.104 1275.59i −0.306274 1.33291i
\(958\) 439.846i 0.459130i
\(959\) 208.282i 0.217186i
\(960\) 0 0
\(961\) −338.104 −0.351825
\(962\) 1331.55i 1.38415i
\(963\) 858.633 0.891623
\(964\) 441.843i 0.458343i
\(965\) 0 0
\(966\) −1375.82 −1.42424
\(967\) −1504.21 −1.55555 −0.777773 0.628546i \(-0.783651\pi\)
−0.777773 + 0.628546i \(0.783651\pi\)
\(968\) 77.7029 37.6994i 0.0802716 0.0389457i
\(969\) −1193.61 −1.23180
\(970\) 0 0
\(971\) −676.492 −0.696696 −0.348348 0.937365i \(-0.613257\pi\)
−0.348348 + 0.937365i \(0.613257\pi\)
\(972\) 1700.47i 1.74945i
\(973\) 509.720i 0.523864i
\(974\) 2339.71i 2.40216i
\(975\) 0 0
\(976\) 1375.60i 1.40943i
\(977\) 588.072i 0.601916i −0.953637 0.300958i \(-0.902694\pi\)
0.953637 0.300958i \(-0.0973064\pi\)
\(978\) 2080.53 2.12734
\(979\) −363.236 1580.81i −0.371028 1.61472i
\(980\) 0 0
\(981\) 274.393i 0.279707i
\(982\) 910.614i 0.927306i
\(983\) 824.978i 0.839245i −0.907699 0.419622i \(-0.862162\pi\)
0.907699 0.419622i \(-0.137838\pi\)
\(984\) 41.7966 0.0424762
\(985\) 0 0
\(986\) 1521.17i 1.54277i
\(987\) 623.116 0.631323
\(988\) 496.555i 0.502586i
\(989\) 1359.62i 1.37475i
\(990\) 0 0
\(991\) −1747.44 −1.76331 −0.881653 0.471899i \(-0.843569\pi\)
−0.881653 + 0.471899i \(0.843569\pi\)
\(992\) −1106.64 −1.11557
\(993\) 768.902i 0.774323i
\(994\) −548.985 −0.552299
\(995\) 0 0
\(996\) 980.261i 0.984198i
\(997\) −1069.45 −1.07267 −0.536333 0.844007i \(-0.680191\pi\)
−0.536333 + 0.844007i \(0.680191\pi\)
\(998\) −1533.62 −1.53669
\(999\) 2156.69 2.15885
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.d.b.274.14 16
5.2 odd 4 275.3.c.h.76.7 yes 8
5.3 odd 4 275.3.c.g.76.2 8
5.4 even 2 inner 275.3.d.b.274.3 16
11.10 odd 2 inner 275.3.d.b.274.4 16
55.32 even 4 275.3.c.h.76.2 yes 8
55.43 even 4 275.3.c.g.76.7 yes 8
55.54 odd 2 inner 275.3.d.b.274.13 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.c.g.76.2 8 5.3 odd 4
275.3.c.g.76.7 yes 8 55.43 even 4
275.3.c.h.76.2 yes 8 55.32 even 4
275.3.c.h.76.7 yes 8 5.2 odd 4
275.3.d.b.274.3 16 5.4 even 2 inner
275.3.d.b.274.4 16 11.10 odd 2 inner
275.3.d.b.274.13 16 55.54 odd 2 inner
275.3.d.b.274.14 16 1.1 even 1 trivial