Properties

Label 275.3.c.h.76.2
Level $275$
Weight $3$
Character 275.76
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(76,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.76"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 21x^{6} + 130x^{4} + 215x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 76.2
Root \(-2.78271i\) of defining polynomial
Character \(\chi\) \(=\) 275.76
Dual form 275.3.c.h.76.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.78271i q^{2} +5.54645 q^{3} -3.74350 q^{4} -15.4342i q^{6} +4.48239i q^{7} -0.713764i q^{8} +21.7632 q^{9} +(2.46337 - 10.7206i) q^{11} -20.7632 q^{12} +15.7063i q^{13} +12.4732 q^{14} -16.9602 q^{16} -25.4820i q^{17} -60.5607i q^{18} +8.44528i q^{19} +24.8614i q^{21} +(-29.8324 - 6.85487i) q^{22} -19.8870 q^{23} -3.95886i q^{24} +43.7063 q^{26} +70.7903 q^{27} -16.7798i q^{28} +21.4524i q^{29} +24.9579 q^{31} +44.3404i q^{32} +(13.6630 - 59.4615i) q^{33} -70.9092 q^{34} -81.4704 q^{36} -30.4659 q^{37} +23.5008 q^{38} +87.1145i q^{39} -10.5577i q^{41} +69.1821 q^{42} +68.3676i q^{43} +(-9.22164 + 40.1327i) q^{44} +55.3397i q^{46} -25.0636 q^{47} -94.0690 q^{48} +28.9082 q^{49} -141.335i q^{51} -58.7967i q^{52} -93.9329 q^{53} -196.989i q^{54} +3.19936 q^{56} +46.8414i q^{57} +59.6960 q^{58} -27.3730 q^{59} +81.1075i q^{61} -69.4507i q^{62} +97.5509i q^{63} +55.5457 q^{64} +(-165.464 - 38.0202i) q^{66} -49.5118 q^{67} +95.3920i q^{68} -110.302 q^{69} +44.0132 q^{71} -15.5338i q^{72} -29.1783i q^{73} +84.7779i q^{74} -31.6149i q^{76} +(48.0540 + 11.0418i) q^{77} +242.415 q^{78} -51.3920i q^{79} +196.767 q^{81} -29.3792 q^{82} +47.2115i q^{83} -93.0685i q^{84} +190.248 q^{86} +118.985i q^{87} +(-7.65199 - 1.75827i) q^{88} +147.455 q^{89} -70.4019 q^{91} +74.4468 q^{92} +138.428 q^{93} +69.7449i q^{94} +245.932i q^{96} +87.8176 q^{97} -80.4433i q^{98} +(53.6108 - 233.315i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 10 q^{4} + 32 q^{9} - q^{11} - 24 q^{12} + 18 q^{14} - 14 q^{16} - 35 q^{22} + 4 q^{23} + 68 q^{26} + 142 q^{27} - 42 q^{31} - 31 q^{33} - 142 q^{34} - 84 q^{36} - 104 q^{37} + 190 q^{38}+ \cdots + 368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.78271i 1.39136i −0.718353 0.695679i \(-0.755104\pi\)
0.718353 0.695679i \(-0.244896\pi\)
\(3\) 5.54645 1.84882 0.924409 0.381402i \(-0.124559\pi\)
0.924409 + 0.381402i \(0.124559\pi\)
\(4\) −3.74350 −0.935875
\(5\) 0 0
\(6\) 15.4342i 2.57237i
\(7\) 4.48239i 0.640341i 0.947360 + 0.320170i \(0.103740\pi\)
−0.947360 + 0.320170i \(0.896260\pi\)
\(8\) 0.713764i 0.0892205i
\(9\) 21.7632 2.41813
\(10\) 0 0
\(11\) 2.46337 10.7206i 0.223943 0.974602i
\(12\) −20.7632 −1.73026
\(13\) 15.7063i 1.20818i 0.796916 + 0.604090i \(0.206463\pi\)
−0.796916 + 0.604090i \(0.793537\pi\)
\(14\) 12.4732 0.890943
\(15\) 0 0
\(16\) −16.9602 −1.06001
\(17\) 25.4820i 1.49894i −0.662037 0.749471i \(-0.730308\pi\)
0.662037 0.749471i \(-0.269692\pi\)
\(18\) 60.5607i 3.36448i
\(19\) 8.44528i 0.444488i 0.974991 + 0.222244i \(0.0713382\pi\)
−0.974991 + 0.222244i \(0.928662\pi\)
\(20\) 0 0
\(21\) 24.8614i 1.18387i
\(22\) −29.8324 6.85487i −1.35602 0.311585i
\(23\) −19.8870 −0.864650 −0.432325 0.901718i \(-0.642307\pi\)
−0.432325 + 0.901718i \(0.642307\pi\)
\(24\) 3.95886i 0.164952i
\(25\) 0 0
\(26\) 43.7063 1.68101
\(27\) 70.7903 2.62186
\(28\) 16.7798i 0.599279i
\(29\) 21.4524i 0.739739i 0.929084 + 0.369870i \(0.120598\pi\)
−0.929084 + 0.369870i \(0.879402\pi\)
\(30\) 0 0
\(31\) 24.9579 0.805093 0.402547 0.915400i \(-0.368125\pi\)
0.402547 + 0.915400i \(0.368125\pi\)
\(32\) 44.3404i 1.38564i
\(33\) 13.6630 59.4615i 0.414030 1.80186i
\(34\) −70.9092 −2.08556
\(35\) 0 0
\(36\) −81.4704 −2.26307
\(37\) −30.4659 −0.823403 −0.411701 0.911319i \(-0.635065\pi\)
−0.411701 + 0.911319i \(0.635065\pi\)
\(38\) 23.5008 0.618442
\(39\) 87.1145i 2.23371i
\(40\) 0 0
\(41\) 10.5577i 0.257506i −0.991677 0.128753i \(-0.958903\pi\)
0.991677 0.128753i \(-0.0410974\pi\)
\(42\) 69.1821 1.64719
\(43\) 68.3676i 1.58994i 0.606645 + 0.794972i \(0.292515\pi\)
−0.606645 + 0.794972i \(0.707485\pi\)
\(44\) −9.22164 + 40.1327i −0.209583 + 0.912106i
\(45\) 0 0
\(46\) 55.3397i 1.20304i
\(47\) −25.0636 −0.533269 −0.266634 0.963798i \(-0.585912\pi\)
−0.266634 + 0.963798i \(0.585912\pi\)
\(48\) −94.0690 −1.95977
\(49\) 28.9082 0.589964
\(50\) 0 0
\(51\) 141.335i 2.77127i
\(52\) 58.7967i 1.13071i
\(53\) −93.9329 −1.77232 −0.886159 0.463381i \(-0.846636\pi\)
−0.886159 + 0.463381i \(0.846636\pi\)
\(54\) 196.989i 3.64795i
\(55\) 0 0
\(56\) 3.19936 0.0571315
\(57\) 46.8414i 0.821778i
\(58\) 59.6960 1.02924
\(59\) −27.3730 −0.463949 −0.231974 0.972722i \(-0.574519\pi\)
−0.231974 + 0.972722i \(0.574519\pi\)
\(60\) 0 0
\(61\) 81.1075i 1.32963i 0.747008 + 0.664815i \(0.231490\pi\)
−0.747008 + 0.664815i \(0.768510\pi\)
\(62\) 69.4507i 1.12017i
\(63\) 97.5509i 1.54843i
\(64\) 55.5457 0.867902
\(65\) 0 0
\(66\) −165.464 38.0202i −2.50703 0.576064i
\(67\) −49.5118 −0.738982 −0.369491 0.929234i \(-0.620468\pi\)
−0.369491 + 0.929234i \(0.620468\pi\)
\(68\) 95.3920i 1.40282i
\(69\) −110.302 −1.59858
\(70\) 0 0
\(71\) 44.0132 0.619904 0.309952 0.950752i \(-0.399687\pi\)
0.309952 + 0.950752i \(0.399687\pi\)
\(72\) 15.5338i 0.215747i
\(73\) 29.1783i 0.399703i −0.979826 0.199851i \(-0.935954\pi\)
0.979826 0.199851i \(-0.0640459\pi\)
\(74\) 84.7779i 1.14565i
\(75\) 0 0
\(76\) 31.6149i 0.415986i
\(77\) 48.0540 + 11.0418i 0.624078 + 0.143400i
\(78\) 242.415 3.10788
\(79\) 51.3920i 0.650532i −0.945623 0.325266i \(-0.894546\pi\)
0.945623 0.325266i \(-0.105454\pi\)
\(80\) 0 0
\(81\) 196.767 2.42922
\(82\) −29.3792 −0.358283
\(83\) 47.2115i 0.568814i 0.958704 + 0.284407i \(0.0917967\pi\)
−0.958704 + 0.284407i \(0.908203\pi\)
\(84\) 93.0685i 1.10796i
\(85\) 0 0
\(86\) 190.248 2.21218
\(87\) 118.985i 1.36764i
\(88\) −7.65199 1.75827i −0.0869545 0.0199803i
\(89\) 147.455 1.65679 0.828397 0.560141i \(-0.189253\pi\)
0.828397 + 0.560141i \(0.189253\pi\)
\(90\) 0 0
\(91\) −70.4019 −0.773647
\(92\) 74.4468 0.809205
\(93\) 138.428 1.48847
\(94\) 69.7449i 0.741967i
\(95\) 0 0
\(96\) 245.932i 2.56179i
\(97\) 87.8176 0.905337 0.452668 0.891679i \(-0.350472\pi\)
0.452668 + 0.891679i \(0.350472\pi\)
\(98\) 80.4433i 0.820850i
\(99\) 53.6108 233.315i 0.541523 2.35671i
\(100\) 0 0
\(101\) 22.1571i 0.219377i 0.993966 + 0.109688i \(0.0349853\pi\)
−0.993966 + 0.109688i \(0.965015\pi\)
\(102\) −393.295 −3.85583
\(103\) 64.5972 0.627158 0.313579 0.949562i \(-0.398472\pi\)
0.313579 + 0.949562i \(0.398472\pi\)
\(104\) 11.2106 0.107794
\(105\) 0 0
\(106\) 261.388i 2.46593i
\(107\) 39.4535i 0.368725i 0.982858 + 0.184362i \(0.0590220\pi\)
−0.982858 + 0.184362i \(0.940978\pi\)
\(108\) −265.003 −2.45374
\(109\) 12.6081i 0.115671i 0.998326 + 0.0578355i \(0.0184199\pi\)
−0.998326 + 0.0578355i \(0.981580\pi\)
\(110\) 0 0
\(111\) −168.978 −1.52232
\(112\) 76.0222i 0.678770i
\(113\) −98.6045 −0.872606 −0.436303 0.899800i \(-0.643712\pi\)
−0.436303 + 0.899800i \(0.643712\pi\)
\(114\) 130.346 1.14339
\(115\) 0 0
\(116\) 80.3072i 0.692304i
\(117\) 341.820i 2.92154i
\(118\) 76.1712i 0.645519i
\(119\) 114.220 0.959834
\(120\) 0 0
\(121\) −108.864 52.8178i −0.899699 0.436511i
\(122\) 225.699 1.84999
\(123\) 58.5580i 0.476081i
\(124\) −93.4299 −0.753467
\(125\) 0 0
\(126\) 271.456 2.15441
\(127\) 155.235i 1.22233i −0.791505 0.611163i \(-0.790702\pi\)
0.791505 0.611163i \(-0.209298\pi\)
\(128\) 22.7935i 0.178074i
\(129\) 379.198i 2.93952i
\(130\) 0 0
\(131\) 103.068i 0.786778i −0.919372 0.393389i \(-0.871302\pi\)
0.919372 0.393389i \(-0.128698\pi\)
\(132\) −51.1474 + 222.594i −0.387480 + 1.68632i
\(133\) −37.8550 −0.284624
\(134\) 137.777i 1.02819i
\(135\) 0 0
\(136\) −18.1881 −0.133736
\(137\) 46.4667 0.339173 0.169587 0.985515i \(-0.445757\pi\)
0.169587 + 0.985515i \(0.445757\pi\)
\(138\) 306.939i 2.22420i
\(139\) 113.716i 0.818102i −0.912512 0.409051i \(-0.865860\pi\)
0.912512 0.409051i \(-0.134140\pi\)
\(140\) 0 0
\(141\) −139.014 −0.985917
\(142\) 122.476i 0.862508i
\(143\) 168.382 + 38.6906i 1.17750 + 0.270564i
\(144\) −369.108 −2.56325
\(145\) 0 0
\(146\) −81.1949 −0.556129
\(147\) 160.338 1.09074
\(148\) 114.049 0.770602
\(149\) 160.233i 1.07539i −0.843139 0.537695i \(-0.819295\pi\)
0.843139 0.537695i \(-0.180705\pi\)
\(150\) 0 0
\(151\) 166.134i 1.10023i −0.835090 0.550113i \(-0.814585\pi\)
0.835090 0.550113i \(-0.185415\pi\)
\(152\) 6.02793 0.0396575
\(153\) 554.569i 3.62463i
\(154\) 30.7262 133.721i 0.199521 0.868315i
\(155\) 0 0
\(156\) 326.113i 2.09047i
\(157\) 61.2202 0.389937 0.194969 0.980809i \(-0.437539\pi\)
0.194969 + 0.980809i \(0.437539\pi\)
\(158\) −143.009 −0.905123
\(159\) −520.994 −3.27669
\(160\) 0 0
\(161\) 89.1410i 0.553671i
\(162\) 547.545i 3.37991i
\(163\) −134.800 −0.826995 −0.413498 0.910505i \(-0.635693\pi\)
−0.413498 + 0.910505i \(0.635693\pi\)
\(164\) 39.5229i 0.240993i
\(165\) 0 0
\(166\) 131.376 0.791423
\(167\) 241.427i 1.44567i −0.691021 0.722835i \(-0.742839\pi\)
0.691021 0.722835i \(-0.257161\pi\)
\(168\) 17.7451 0.105626
\(169\) −77.6893 −0.459700
\(170\) 0 0
\(171\) 183.796i 1.07483i
\(172\) 255.934i 1.48799i
\(173\) 181.146i 1.04708i 0.852000 + 0.523542i \(0.175390\pi\)
−0.852000 + 0.523542i \(0.824610\pi\)
\(174\) 331.101 1.90288
\(175\) 0 0
\(176\) −41.7793 + 181.824i −0.237383 + 1.03309i
\(177\) −151.823 −0.857757
\(178\) 410.324i 2.30519i
\(179\) 109.667 0.612664 0.306332 0.951925i \(-0.400898\pi\)
0.306332 + 0.951925i \(0.400898\pi\)
\(180\) 0 0
\(181\) −98.6522 −0.545040 −0.272520 0.962150i \(-0.587857\pi\)
−0.272520 + 0.962150i \(0.587857\pi\)
\(182\) 195.908i 1.07642i
\(183\) 449.859i 2.45825i
\(184\) 14.1946i 0.0771445i
\(185\) 0 0
\(186\) 385.205i 2.07099i
\(187\) −273.183 62.7717i −1.46087 0.335678i
\(188\) 93.8257 0.499073
\(189\) 317.309i 1.67889i
\(190\) 0 0
\(191\) −72.5260 −0.379717 −0.189859 0.981811i \(-0.560803\pi\)
−0.189859 + 0.981811i \(0.560803\pi\)
\(192\) 308.082 1.60459
\(193\) 132.224i 0.685098i −0.939500 0.342549i \(-0.888710\pi\)
0.939500 0.342549i \(-0.111290\pi\)
\(194\) 244.371i 1.25965i
\(195\) 0 0
\(196\) −108.218 −0.552132
\(197\) 295.931i 1.50219i 0.660194 + 0.751095i \(0.270474\pi\)
−0.660194 + 0.751095i \(0.729526\pi\)
\(198\) −649.248 149.184i −3.27903 0.753452i
\(199\) 77.7266 0.390586 0.195293 0.980745i \(-0.437434\pi\)
0.195293 + 0.980745i \(0.437434\pi\)
\(200\) 0 0
\(201\) −274.615 −1.36624
\(202\) 61.6568 0.305232
\(203\) −96.1581 −0.473685
\(204\) 529.087i 2.59356i
\(205\) 0 0
\(206\) 179.756i 0.872600i
\(207\) −432.803 −2.09084
\(208\) 266.383i 1.28069i
\(209\) 90.5387 + 20.8039i 0.433199 + 0.0995401i
\(210\) 0 0
\(211\) 162.936i 0.772209i 0.922455 + 0.386104i \(0.126180\pi\)
−0.922455 + 0.386104i \(0.873820\pi\)
\(212\) 351.638 1.65867
\(213\) 244.117 1.14609
\(214\) 109.788 0.513028
\(215\) 0 0
\(216\) 50.5275i 0.233924i
\(217\) 111.871i 0.515534i
\(218\) 35.0848 0.160940
\(219\) 161.836i 0.738978i
\(220\) 0 0
\(221\) 400.229 1.81099
\(222\) 470.217i 2.11809i
\(223\) −27.3536 −0.122662 −0.0613310 0.998117i \(-0.519535\pi\)
−0.0613310 + 0.998117i \(0.519535\pi\)
\(224\) −198.751 −0.887279
\(225\) 0 0
\(226\) 274.388i 1.21411i
\(227\) 69.9378i 0.308096i 0.988063 + 0.154048i \(0.0492310\pi\)
−0.988063 + 0.154048i \(0.950769\pi\)
\(228\) 175.351i 0.769082i
\(229\) −126.890 −0.554103 −0.277052 0.960855i \(-0.589357\pi\)
−0.277052 + 0.960855i \(0.589357\pi\)
\(230\) 0 0
\(231\) 266.529 + 61.2428i 1.15381 + 0.265120i
\(232\) 15.3120 0.0659999
\(233\) 127.078i 0.545398i −0.962099 0.272699i \(-0.912084\pi\)
0.962099 0.272699i \(-0.0879164\pi\)
\(234\) 951.187 4.06490
\(235\) 0 0
\(236\) 102.471 0.434198
\(237\) 285.044i 1.20272i
\(238\) 317.842i 1.33547i
\(239\) 242.100i 1.01297i 0.862249 + 0.506485i \(0.169055\pi\)
−0.862249 + 0.506485i \(0.830945\pi\)
\(240\) 0 0
\(241\) 118.029i 0.489748i 0.969555 + 0.244874i \(0.0787466\pi\)
−0.969555 + 0.244874i \(0.921253\pi\)
\(242\) −146.977 + 302.936i −0.607343 + 1.25180i
\(243\) 454.245 1.86932
\(244\) 303.626i 1.24437i
\(245\) 0 0
\(246\) −162.950 −0.662399
\(247\) −132.644 −0.537022
\(248\) 17.8140i 0.0718308i
\(249\) 261.857i 1.05163i
\(250\) 0 0
\(251\) −122.747 −0.489033 −0.244516 0.969645i \(-0.578629\pi\)
−0.244516 + 0.969645i \(0.578629\pi\)
\(252\) 365.182i 1.44913i
\(253\) −48.9890 + 213.201i −0.193632 + 0.842690i
\(254\) −431.976 −1.70069
\(255\) 0 0
\(256\) 285.611 1.11567
\(257\) −440.444 −1.71379 −0.856895 0.515491i \(-0.827609\pi\)
−0.856895 + 0.515491i \(0.827609\pi\)
\(258\) 1055.20 4.08992
\(259\) 136.560i 0.527258i
\(260\) 0 0
\(261\) 466.873i 1.78878i
\(262\) −286.809 −1.09469
\(263\) 196.653i 0.747729i 0.927483 + 0.373865i \(0.121968\pi\)
−0.927483 + 0.373865i \(0.878032\pi\)
\(264\) −42.4414 9.75215i −0.160763 0.0369399i
\(265\) 0 0
\(266\) 105.340i 0.396014i
\(267\) 817.851 3.06311
\(268\) 185.347 0.691595
\(269\) 140.084 0.520759 0.260379 0.965506i \(-0.416152\pi\)
0.260379 + 0.965506i \(0.416152\pi\)
\(270\) 0 0
\(271\) 122.461i 0.451886i −0.974141 0.225943i \(-0.927454\pi\)
0.974141 0.225943i \(-0.0725463\pi\)
\(272\) 432.180i 1.58890i
\(273\) −390.481 −1.43033
\(274\) 129.304i 0.471911i
\(275\) 0 0
\(276\) 412.916 1.49607
\(277\) 431.002i 1.55596i −0.628287 0.777981i \(-0.716244\pi\)
0.628287 0.777981i \(-0.283756\pi\)
\(278\) −316.440 −1.13827
\(279\) 543.162 1.94682
\(280\) 0 0
\(281\) 401.798i 1.42989i −0.699182 0.714943i \(-0.746452\pi\)
0.699182 0.714943i \(-0.253548\pi\)
\(282\) 386.837i 1.37176i
\(283\) 22.4597i 0.0793628i −0.999212 0.0396814i \(-0.987366\pi\)
0.999212 0.0396814i \(-0.0126343\pi\)
\(284\) −164.763 −0.580153
\(285\) 0 0
\(286\) 107.665 468.559i 0.376451 1.63832i
\(287\) 47.3239 0.164892
\(288\) 964.986i 3.35065i
\(289\) −360.333 −1.24683
\(290\) 0 0
\(291\) 487.077 1.67380
\(292\) 109.229i 0.374072i
\(293\) 455.602i 1.55496i −0.628911 0.777478i \(-0.716499\pi\)
0.628911 0.777478i \(-0.283501\pi\)
\(294\) 446.175i 1.51760i
\(295\) 0 0
\(296\) 21.7454i 0.0734643i
\(297\) 174.383 758.916i 0.587148 2.55527i
\(298\) −445.883 −1.49625
\(299\) 312.351i 1.04465i
\(300\) 0 0
\(301\) −306.450 −1.01811
\(302\) −462.304 −1.53081
\(303\) 122.893i 0.405588i
\(304\) 143.234i 0.471163i
\(305\) 0 0
\(306\) −1543.21 −5.04316
\(307\) 312.438i 1.01771i 0.860851 + 0.508857i \(0.169932\pi\)
−0.860851 + 0.508857i \(0.830068\pi\)
\(308\) −179.890 41.3350i −0.584059 0.134204i
\(309\) 358.286 1.15950
\(310\) 0 0
\(311\) −256.878 −0.825975 −0.412987 0.910737i \(-0.635515\pi\)
−0.412987 + 0.910737i \(0.635515\pi\)
\(312\) 62.1792 0.199292
\(313\) −29.6563 −0.0947485 −0.0473742 0.998877i \(-0.515085\pi\)
−0.0473742 + 0.998877i \(0.515085\pi\)
\(314\) 170.358i 0.542542i
\(315\) 0 0
\(316\) 192.386i 0.608817i
\(317\) −99.6748 −0.314431 −0.157216 0.987564i \(-0.550252\pi\)
−0.157216 + 0.987564i \(0.550252\pi\)
\(318\) 1449.78i 4.55905i
\(319\) 229.984 + 52.8454i 0.720952 + 0.165659i
\(320\) 0 0
\(321\) 218.827i 0.681705i
\(322\) −248.054 −0.770354
\(323\) 215.203 0.666262
\(324\) −736.596 −2.27344
\(325\) 0 0
\(326\) 375.111i 1.15065i
\(327\) 69.9305i 0.213855i
\(328\) −7.53573 −0.0229748
\(329\) 112.345i 0.341474i
\(330\) 0 0
\(331\) 138.630 0.418820 0.209410 0.977828i \(-0.432846\pi\)
0.209410 + 0.977828i \(0.432846\pi\)
\(332\) 176.736i 0.532339i
\(333\) −663.034 −1.99109
\(334\) −671.822 −2.01144
\(335\) 0 0
\(336\) 421.654i 1.25492i
\(337\) 504.040i 1.49567i −0.663886 0.747834i \(-0.731094\pi\)
0.663886 0.747834i \(-0.268906\pi\)
\(338\) 216.187i 0.639607i
\(339\) −546.905 −1.61329
\(340\) 0 0
\(341\) 61.4806 267.564i 0.180295 0.784646i
\(342\) 511.452 1.49547
\(343\) 349.215i 1.01812i
\(344\) 48.7983 0.141856
\(345\) 0 0
\(346\) 504.076 1.45687
\(347\) 305.042i 0.879083i −0.898222 0.439542i \(-0.855141\pi\)
0.898222 0.439542i \(-0.144859\pi\)
\(348\) 445.420i 1.27994i
\(349\) 383.638i 1.09925i −0.835412 0.549625i \(-0.814771\pi\)
0.835412 0.549625i \(-0.185229\pi\)
\(350\) 0 0
\(351\) 1111.86i 3.16768i
\(352\) 475.356 + 109.227i 1.35044 + 0.310304i
\(353\) 571.115 1.61789 0.808945 0.587884i \(-0.200039\pi\)
0.808945 + 0.587884i \(0.200039\pi\)
\(354\) 422.480i 1.19345i
\(355\) 0 0
\(356\) −551.997 −1.55055
\(357\) 633.517 1.77456
\(358\) 305.172i 0.852434i
\(359\) 105.966i 0.295169i 0.989049 + 0.147585i \(0.0471499\pi\)
−0.989049 + 0.147585i \(0.952850\pi\)
\(360\) 0 0
\(361\) 289.677 0.802430
\(362\) 274.521i 0.758345i
\(363\) −603.807 292.952i −1.66338 0.807029i
\(364\) 263.550 0.724037
\(365\) 0 0
\(366\) 1251.83 3.42030
\(367\) 409.176 1.11492 0.557461 0.830203i \(-0.311776\pi\)
0.557461 + 0.830203i \(0.311776\pi\)
\(368\) 337.287 0.916540
\(369\) 229.770i 0.622682i
\(370\) 0 0
\(371\) 421.043i 1.13489i
\(372\) −518.205 −1.39302
\(373\) 286.691i 0.768608i 0.923207 + 0.384304i \(0.125559\pi\)
−0.923207 + 0.384304i \(0.874441\pi\)
\(374\) −174.676 + 760.191i −0.467048 + 2.03260i
\(375\) 0 0
\(376\) 17.8895i 0.0475785i
\(377\) −336.939 −0.893738
\(378\) 882.981 2.33593
\(379\) −396.663 −1.04660 −0.523302 0.852147i \(-0.675300\pi\)
−0.523302 + 0.852147i \(0.675300\pi\)
\(380\) 0 0
\(381\) 861.006i 2.25986i
\(382\) 201.819i 0.528322i
\(383\) 423.356 1.10537 0.552684 0.833391i \(-0.313604\pi\)
0.552684 + 0.833391i \(0.313604\pi\)
\(384\) 126.423i 0.329227i
\(385\) 0 0
\(386\) −367.941 −0.953216
\(387\) 1487.90i 3.84469i
\(388\) −328.745 −0.847282
\(389\) −453.620 −1.16612 −0.583059 0.812430i \(-0.698145\pi\)
−0.583059 + 0.812430i \(0.698145\pi\)
\(390\) 0 0
\(391\) 506.760i 1.29606i
\(392\) 20.6336i 0.0526368i
\(393\) 571.662i 1.45461i
\(394\) 823.493 2.09008
\(395\) 0 0
\(396\) −200.692 + 873.414i −0.506798 + 2.20559i
\(397\) 535.740 1.34947 0.674735 0.738060i \(-0.264258\pi\)
0.674735 + 0.738060i \(0.264258\pi\)
\(398\) 216.291i 0.543445i
\(399\) −209.961 −0.526218
\(400\) 0 0
\(401\) −611.297 −1.52443 −0.762216 0.647323i \(-0.775889\pi\)
−0.762216 + 0.647323i \(0.775889\pi\)
\(402\) 764.175i 1.90093i
\(403\) 391.997i 0.972698i
\(404\) 82.9450i 0.205309i
\(405\) 0 0
\(406\) 267.581i 0.659066i
\(407\) −75.0489 + 326.613i −0.184395 + 0.802490i
\(408\) −100.880 −0.247254
\(409\) 748.695i 1.83055i −0.402831 0.915275i \(-0.631974\pi\)
0.402831 0.915275i \(-0.368026\pi\)
\(410\) 0 0
\(411\) 257.725 0.627069
\(412\) −241.820 −0.586941
\(413\) 122.696i 0.297085i
\(414\) 1204.37i 2.90910i
\(415\) 0 0
\(416\) −696.425 −1.67410
\(417\) 630.721i 1.51252i
\(418\) 57.8913 251.943i 0.138496 0.602735i
\(419\) 1.63966 0.00391327 0.00195663 0.999998i \(-0.499377\pi\)
0.00195663 + 0.999998i \(0.499377\pi\)
\(420\) 0 0
\(421\) 587.016 1.39434 0.697169 0.716907i \(-0.254443\pi\)
0.697169 + 0.716907i \(0.254443\pi\)
\(422\) 453.404 1.07442
\(423\) −545.464 −1.28951
\(424\) 67.0459i 0.158127i
\(425\) 0 0
\(426\) 679.308i 1.59462i
\(427\) −363.555 −0.851417
\(428\) 147.694i 0.345080i
\(429\) 933.922 + 214.596i 2.17697 + 0.500223i
\(430\) 0 0
\(431\) 709.692i 1.64662i 0.567595 + 0.823308i \(0.307874\pi\)
−0.567595 + 0.823308i \(0.692126\pi\)
\(432\) −1200.62 −2.77921
\(433\) −821.863 −1.89807 −0.949034 0.315175i \(-0.897937\pi\)
−0.949034 + 0.315175i \(0.897937\pi\)
\(434\) 311.305 0.717292
\(435\) 0 0
\(436\) 47.1986i 0.108254i
\(437\) 167.951i 0.384327i
\(438\) −450.344 −1.02818
\(439\) 522.233i 1.18960i 0.803875 + 0.594798i \(0.202768\pi\)
−0.803875 + 0.594798i \(0.797232\pi\)
\(440\) 0 0
\(441\) 629.134 1.42661
\(442\) 1113.72i 2.51974i
\(443\) −377.862 −0.852963 −0.426481 0.904496i \(-0.640247\pi\)
−0.426481 + 0.904496i \(0.640247\pi\)
\(444\) 632.568 1.42470
\(445\) 0 0
\(446\) 76.1173i 0.170667i
\(447\) 888.726i 1.98820i
\(448\) 248.977i 0.555753i
\(449\) 565.531 1.25953 0.629767 0.776784i \(-0.283150\pi\)
0.629767 + 0.776784i \(0.283150\pi\)
\(450\) 0 0
\(451\) −113.186 26.0077i −0.250966 0.0576667i
\(452\) 369.126 0.816650
\(453\) 921.455i 2.03412i
\(454\) 194.617 0.428672
\(455\) 0 0
\(456\) 33.4337 0.0733194
\(457\) 311.699i 0.682054i 0.940054 + 0.341027i \(0.110775\pi\)
−0.940054 + 0.341027i \(0.889225\pi\)
\(458\) 353.098i 0.770955i
\(459\) 1803.88i 3.93002i
\(460\) 0 0
\(461\) 125.484i 0.272200i −0.990695 0.136100i \(-0.956543\pi\)
0.990695 0.136100i \(-0.0434569\pi\)
\(462\) 170.421 741.675i 0.368877 1.60536i
\(463\) 478.622 1.03374 0.516871 0.856063i \(-0.327097\pi\)
0.516871 + 0.856063i \(0.327097\pi\)
\(464\) 363.838i 0.784133i
\(465\) 0 0
\(466\) −353.621 −0.758844
\(467\) −422.419 −0.904538 −0.452269 0.891882i \(-0.649385\pi\)
−0.452269 + 0.891882i \(0.649385\pi\)
\(468\) 1279.60i 2.73419i
\(469\) 221.931i 0.473200i
\(470\) 0 0
\(471\) 339.555 0.720923
\(472\) 19.5378i 0.0413937i
\(473\) 732.944 + 168.415i 1.54956 + 0.356057i
\(474\) −793.195 −1.67341
\(475\) 0 0
\(476\) −427.584 −0.898285
\(477\) −2044.28 −4.28569
\(478\) 673.695 1.40940
\(479\) 158.064i 0.329987i 0.986295 + 0.164993i \(0.0527603\pi\)
−0.986295 + 0.164993i \(0.947240\pi\)
\(480\) 0 0
\(481\) 478.508i 0.994819i
\(482\) 328.442 0.681414
\(483\) 494.417i 1.02364i
\(484\) 407.531 + 197.724i 0.842006 + 0.408520i
\(485\) 0 0
\(486\) 1264.03i 2.60089i
\(487\) 840.800 1.72649 0.863245 0.504786i \(-0.168429\pi\)
0.863245 + 0.504786i \(0.168429\pi\)
\(488\) 57.8916 0.118630
\(489\) −747.663 −1.52896
\(490\) 0 0
\(491\) 327.239i 0.666476i 0.942843 + 0.333238i \(0.108141\pi\)
−0.942843 + 0.333238i \(0.891859\pi\)
\(492\) 219.212i 0.445553i
\(493\) 546.651 1.10883
\(494\) 369.112i 0.747190i
\(495\) 0 0
\(496\) −423.291 −0.853409
\(497\) 197.284i 0.396950i
\(498\) 728.673 1.46320
\(499\) 551.123 1.10445 0.552227 0.833693i \(-0.313778\pi\)
0.552227 + 0.833693i \(0.313778\pi\)
\(500\) 0 0
\(501\) 1339.06i 2.67278i
\(502\) 341.571i 0.680420i
\(503\) 399.050i 0.793340i −0.917961 0.396670i \(-0.870166\pi\)
0.917961 0.396670i \(-0.129834\pi\)
\(504\) 69.6283 0.138151
\(505\) 0 0
\(506\) 593.276 + 136.322i 1.17248 + 0.269412i
\(507\) −430.900 −0.849901
\(508\) 581.124i 1.14394i
\(509\) −18.2410 −0.0358370 −0.0179185 0.999839i \(-0.505704\pi\)
−0.0179185 + 0.999839i \(0.505704\pi\)
\(510\) 0 0
\(511\) 130.788 0.255946
\(512\) 703.599i 1.37422i
\(513\) 597.844i 1.16539i
\(514\) 1225.63i 2.38449i
\(515\) 0 0
\(516\) 1419.53i 2.75102i
\(517\) −61.7411 + 268.698i −0.119422 + 0.519725i
\(518\) −380.007 −0.733605
\(519\) 1004.72i 1.93587i
\(520\) 0 0
\(521\) 673.198 1.29213 0.646064 0.763284i \(-0.276414\pi\)
0.646064 + 0.763284i \(0.276414\pi\)
\(522\) 1299.17 2.48884
\(523\) 102.262i 0.195529i 0.995210 + 0.0977645i \(0.0311692\pi\)
−0.995210 + 0.0977645i \(0.968831\pi\)
\(524\) 385.835i 0.736326i
\(525\) 0 0
\(526\) 547.229 1.04036
\(527\) 635.977i 1.20679i
\(528\) −231.727 + 1008.48i −0.438877 + 1.91000i
\(529\) −133.509 −0.252380
\(530\) 0 0
\(531\) −595.723 −1.12189
\(532\) 141.710 0.266373
\(533\) 165.824 0.311114
\(534\) 2275.84i 4.26188i
\(535\) 0 0
\(536\) 35.3397i 0.0659323i
\(537\) 608.262 1.13270
\(538\) 389.814i 0.724561i
\(539\) 71.2117 309.914i 0.132118 0.574980i
\(540\) 0 0
\(541\) 822.873i 1.52102i −0.649324 0.760512i \(-0.724948\pi\)
0.649324 0.760512i \(-0.275052\pi\)
\(542\) −340.774 −0.628735
\(543\) −547.170 −1.00768
\(544\) 1129.88 2.07699
\(545\) 0 0
\(546\) 1086.60i 1.99010i
\(547\) 641.446i 1.17266i 0.810071 + 0.586331i \(0.199428\pi\)
−0.810071 + 0.586331i \(0.800572\pi\)
\(548\) −173.948 −0.317424
\(549\) 1765.15i 3.21522i
\(550\) 0 0
\(551\) −181.172 −0.328805
\(552\) 78.7296i 0.142626i
\(553\) 230.359 0.416562
\(554\) −1199.35 −2.16490
\(555\) 0 0
\(556\) 425.696i 0.765641i
\(557\) 523.719i 0.940250i −0.882600 0.470125i \(-0.844209\pi\)
0.882600 0.470125i \(-0.155791\pi\)
\(558\) 1511.47i 2.70872i
\(559\) −1073.81 −1.92094
\(560\) 0 0
\(561\) −1515.20 348.161i −2.70089 0.620607i
\(562\) −1118.09 −1.98948
\(563\) 1008.31i 1.79095i −0.445111 0.895475i \(-0.646836\pi\)
0.445111 0.895475i \(-0.353164\pi\)
\(564\) 520.400 0.922695
\(565\) 0 0
\(566\) −62.4988 −0.110422
\(567\) 881.984i 1.55553i
\(568\) 31.4150i 0.0553081i
\(569\) 369.577i 0.649521i 0.945796 + 0.324760i \(0.105284\pi\)
−0.945796 + 0.324760i \(0.894716\pi\)
\(570\) 0 0
\(571\) 456.385i 0.799273i 0.916674 + 0.399636i \(0.130864\pi\)
−0.916674 + 0.399636i \(0.869136\pi\)
\(572\) −630.338 144.838i −1.10199 0.253214i
\(573\) −402.262 −0.702028
\(574\) 131.689i 0.229423i
\(575\) 0 0
\(576\) 1208.85 2.09870
\(577\) 886.043 1.53560 0.767802 0.640687i \(-0.221351\pi\)
0.767802 + 0.640687i \(0.221351\pi\)
\(578\) 1002.70i 1.73478i
\(579\) 733.373i 1.26662i
\(580\) 0 0
\(581\) −211.620 −0.364235
\(582\) 1355.40i 2.32886i
\(583\) −231.392 + 1007.02i −0.396898 + 1.72731i
\(584\) −20.8264 −0.0356617
\(585\) 0 0
\(586\) −1267.81 −2.16350
\(587\) 497.919 0.848243 0.424121 0.905605i \(-0.360583\pi\)
0.424121 + 0.905605i \(0.360583\pi\)
\(588\) −600.226 −1.02079
\(589\) 210.776i 0.357855i
\(590\) 0 0
\(591\) 1641.37i 2.77728i
\(592\) 516.708 0.872817
\(593\) 60.1067i 0.101360i 0.998715 + 0.0506802i \(0.0161389\pi\)
−0.998715 + 0.0506802i \(0.983861\pi\)
\(594\) −2111.85 485.258i −3.55530 0.816933i
\(595\) 0 0
\(596\) 599.833i 1.00643i
\(597\) 431.107 0.722122
\(598\) −869.185 −1.45349
\(599\) 935.800 1.56227 0.781135 0.624362i \(-0.214641\pi\)
0.781135 + 0.624362i \(0.214641\pi\)
\(600\) 0 0
\(601\) 925.265i 1.53954i 0.638320 + 0.769771i \(0.279630\pi\)
−0.638320 + 0.769771i \(0.720370\pi\)
\(602\) 852.763i 1.41655i
\(603\) −1077.53 −1.78695
\(604\) 621.923i 1.02967i
\(605\) 0 0
\(606\) 341.976 0.564318
\(607\) 790.264i 1.30192i −0.759113 0.650959i \(-0.774367\pi\)
0.759113 0.650959i \(-0.225633\pi\)
\(608\) −374.467 −0.615899
\(609\) −533.337 −0.875758
\(610\) 0 0
\(611\) 393.658i 0.644285i
\(612\) 2076.03i 3.39221i
\(613\) 390.665i 0.637300i −0.947872 0.318650i \(-0.896770\pi\)
0.947872 0.318650i \(-0.103230\pi\)
\(614\) 869.427 1.41600
\(615\) 0 0
\(616\) 7.88123 34.2992i 0.0127942 0.0556805i
\(617\) −283.723 −0.459843 −0.229922 0.973209i \(-0.573847\pi\)
−0.229922 + 0.973209i \(0.573847\pi\)
\(618\) 997.007i 1.61328i
\(619\) −774.717 −1.25156 −0.625781 0.779999i \(-0.715220\pi\)
−0.625781 + 0.779999i \(0.715220\pi\)
\(620\) 0 0
\(621\) −1407.80 −2.26699
\(622\) 714.818i 1.14923i
\(623\) 660.949i 1.06091i
\(624\) 1477.48i 2.36776i
\(625\) 0 0
\(626\) 82.5250i 0.131829i
\(627\) 502.169 + 115.388i 0.800907 + 0.184032i
\(628\) −229.178 −0.364933
\(629\) 776.332i 1.23423i
\(630\) 0 0
\(631\) 392.301 0.621712 0.310856 0.950457i \(-0.399384\pi\)
0.310856 + 0.950457i \(0.399384\pi\)
\(632\) −36.6818 −0.0580408
\(633\) 903.717i 1.42767i
\(634\) 277.366i 0.437487i
\(635\) 0 0
\(636\) 1950.34 3.06658
\(637\) 454.042i 0.712782i
\(638\) 147.054 639.979i 0.230492 1.00310i
\(639\) 957.865 1.49901
\(640\) 0 0
\(641\) −685.356 −1.06920 −0.534599 0.845106i \(-0.679537\pi\)
−0.534599 + 0.845106i \(0.679537\pi\)
\(642\) 608.934 0.948495
\(643\) 747.072 1.16185 0.580927 0.813956i \(-0.302690\pi\)
0.580927 + 0.813956i \(0.302690\pi\)
\(644\) 333.699i 0.518167i
\(645\) 0 0
\(646\) 598.848i 0.927009i
\(647\) −190.791 −0.294885 −0.147443 0.989071i \(-0.547104\pi\)
−0.147443 + 0.989071i \(0.547104\pi\)
\(648\) 140.445i 0.216736i
\(649\) −67.4299 + 293.456i −0.103898 + 0.452166i
\(650\) 0 0
\(651\) 620.487i 0.953129i
\(652\) 504.625 0.773964
\(653\) 142.136 0.217666 0.108833 0.994060i \(-0.465289\pi\)
0.108833 + 0.994060i \(0.465289\pi\)
\(654\) 194.596 0.297548
\(655\) 0 0
\(656\) 179.061i 0.272959i
\(657\) 635.012i 0.966533i
\(658\) −312.624 −0.475112
\(659\) 528.247i 0.801589i 0.916168 + 0.400794i \(0.131266\pi\)
−0.916168 + 0.400794i \(0.868734\pi\)
\(660\) 0 0
\(661\) 2.43838 0.00368892 0.00184446 0.999998i \(-0.499413\pi\)
0.00184446 + 0.999998i \(0.499413\pi\)
\(662\) 385.766i 0.582729i
\(663\) 2219.85 3.34820
\(664\) 33.6979 0.0507498
\(665\) 0 0
\(666\) 1845.03i 2.77032i
\(667\) 426.624i 0.639616i
\(668\) 903.781i 1.35297i
\(669\) −151.716 −0.226780
\(670\) 0 0
\(671\) 869.523 + 199.798i 1.29586 + 0.297762i
\(672\) −1102.36 −1.64042
\(673\) 684.594i 1.01723i 0.860995 + 0.508614i \(0.169842\pi\)
−0.860995 + 0.508614i \(0.830158\pi\)
\(674\) −1402.60 −2.08101
\(675\) 0 0
\(676\) 290.830 0.430222
\(677\) 326.416i 0.482151i 0.970506 + 0.241076i \(0.0775002\pi\)
−0.970506 + 0.241076i \(0.922500\pi\)
\(678\) 1521.88i 2.24466i
\(679\) 393.633i 0.579724i
\(680\) 0 0
\(681\) 387.907i 0.569614i
\(682\) −744.555 171.083i −1.09172 0.250855i
\(683\) 1162.56 1.70213 0.851067 0.525058i \(-0.175956\pi\)
0.851067 + 0.525058i \(0.175956\pi\)
\(684\) 688.040i 1.00591i
\(685\) 0 0
\(686\) 971.765 1.41657
\(687\) −703.787 −1.02444
\(688\) 1159.53i 1.68536i
\(689\) 1475.34i 2.14128i
\(690\) 0 0
\(691\) −400.519 −0.579623 −0.289811 0.957084i \(-0.593593\pi\)
−0.289811 + 0.957084i \(0.593593\pi\)
\(692\) 678.118i 0.979940i
\(693\) 1045.81 + 240.304i 1.50910 + 0.346759i
\(694\) −848.845 −1.22312
\(695\) 0 0
\(696\) 84.9271 0.122022
\(697\) −269.032 −0.385986
\(698\) −1067.55 −1.52945
\(699\) 704.831i 1.00834i
\(700\) 0 0
\(701\) 819.099i 1.16847i −0.811584 0.584236i \(-0.801394\pi\)
0.811584 0.584236i \(-0.198606\pi\)
\(702\) 3093.98 4.40738
\(703\) 257.293i 0.365993i
\(704\) 136.830 595.485i 0.194361 0.845859i
\(705\) 0 0
\(706\) 1589.25i 2.25106i
\(707\) −99.3165 −0.140476
\(708\) 568.350 0.802754
\(709\) 516.432 0.728395 0.364198 0.931322i \(-0.381343\pi\)
0.364198 + 0.931322i \(0.381343\pi\)
\(710\) 0 0
\(711\) 1118.45i 1.57307i
\(712\) 105.248i 0.147820i
\(713\) −496.336 −0.696124
\(714\) 1762.90i 2.46904i
\(715\) 0 0
\(716\) −410.538 −0.573377
\(717\) 1342.80i 1.87280i
\(718\) 294.873 0.410686
\(719\) 382.550 0.532058 0.266029 0.963965i \(-0.414288\pi\)
0.266029 + 0.963965i \(0.414288\pi\)
\(720\) 0 0
\(721\) 289.550i 0.401595i
\(722\) 806.089i 1.11647i
\(723\) 654.644i 0.905455i
\(724\) 369.305 0.510089
\(725\) 0 0
\(726\) −815.201 + 1680.22i −1.12287 + 2.31436i
\(727\) −890.685 −1.22515 −0.612575 0.790412i \(-0.709866\pi\)
−0.612575 + 0.790412i \(0.709866\pi\)
\(728\) 50.2503i 0.0690252i
\(729\) 748.548 1.02681
\(730\) 0 0
\(731\) 1742.15 2.38324
\(732\) 1684.05i 2.30061i
\(733\) 17.9184i 0.0244454i 0.999925 + 0.0122227i \(0.00389070\pi\)
−0.999925 + 0.0122227i \(0.996109\pi\)
\(734\) 1138.62i 1.55126i
\(735\) 0 0
\(736\) 881.795i 1.19809i
\(737\) −121.966 + 530.797i −0.165490 + 0.720214i
\(738\) −639.384 −0.866374
\(739\) 765.890i 1.03639i 0.855263 + 0.518194i \(0.173395\pi\)
−0.855263 + 0.518194i \(0.826605\pi\)
\(740\) 0 0
\(741\) −735.706 −0.992856
\(742\) −1171.64 −1.57903
\(743\) 402.876i 0.542229i 0.962547 + 0.271114i \(0.0873922\pi\)
−0.962547 + 0.271114i \(0.912608\pi\)
\(744\) 98.8047i 0.132802i
\(745\) 0 0
\(746\) 797.779 1.06941
\(747\) 1027.47i 1.37547i
\(748\) 1022.66 + 234.986i 1.36719 + 0.314152i
\(749\) −176.846 −0.236109
\(750\) 0 0
\(751\) −884.758 −1.17811 −0.589053 0.808094i \(-0.700499\pi\)
−0.589053 + 0.808094i \(0.700499\pi\)
\(752\) 425.084 0.565272
\(753\) −680.812 −0.904133
\(754\) 937.606i 1.24351i
\(755\) 0 0
\(756\) 1187.85i 1.57123i
\(757\) −752.068 −0.993485 −0.496742 0.867898i \(-0.665471\pi\)
−0.496742 + 0.867898i \(0.665471\pi\)
\(758\) 1103.80i 1.45620i
\(759\) −271.715 + 1182.51i −0.357991 + 1.55798i
\(760\) 0 0
\(761\) 876.298i 1.15151i 0.817623 + 0.575754i \(0.195292\pi\)
−0.817623 + 0.575754i \(0.804708\pi\)
\(762\) −2395.93 −3.14427
\(763\) −56.5145 −0.0740689
\(764\) 271.501 0.355368
\(765\) 0 0
\(766\) 1178.08i 1.53796i
\(767\) 429.930i 0.560534i
\(768\) 1584.13 2.06267
\(769\) 794.557i 1.03323i −0.856217 0.516617i \(-0.827191\pi\)
0.856217 0.516617i \(-0.172809\pi\)
\(770\) 0 0
\(771\) −2442.90 −3.16849
\(772\) 494.980i 0.641166i
\(773\) −911.736 −1.17948 −0.589738 0.807594i \(-0.700769\pi\)
−0.589738 + 0.807594i \(0.700769\pi\)
\(774\) 4140.39 5.34934
\(775\) 0 0
\(776\) 62.6810i 0.0807745i
\(777\) 757.423i 0.974805i
\(778\) 1262.30i 1.62249i
\(779\) 89.1631 0.114458
\(780\) 0 0
\(781\) 108.421 471.849i 0.138823 0.604160i
\(782\) 1410.17 1.80328
\(783\) 1518.62i 1.93949i
\(784\) −490.289 −0.625369
\(785\) 0 0
\(786\) −1590.77 −2.02388
\(787\) 1566.53i 1.99050i 0.0973313 + 0.995252i \(0.468969\pi\)
−0.0973313 + 0.995252i \(0.531031\pi\)
\(788\) 1107.82i 1.40586i
\(789\) 1090.73i 1.38242i
\(790\) 0 0
\(791\) 441.983i 0.558765i
\(792\) −166.532 38.2654i −0.210267 0.0483149i
\(793\) −1273.90 −1.60643
\(794\) 1490.81i 1.87760i
\(795\) 0 0
\(796\) −290.970 −0.365540
\(797\) −488.561 −0.613001 −0.306500 0.951871i \(-0.599158\pi\)
−0.306500 + 0.951871i \(0.599158\pi\)
\(798\) 584.262i 0.732158i
\(799\) 638.672i 0.799339i
\(800\) 0 0
\(801\) 3209.08 4.00634
\(802\) 1701.07i 2.12103i
\(803\) −312.810 71.8771i −0.389551 0.0895107i
\(804\) 1028.02 1.27863
\(805\) 0 0
\(806\) 1090.82 1.35337
\(807\) 776.970 0.962788
\(808\) 15.8149 0.0195729
\(809\) 177.955i 0.219969i 0.993933 + 0.109984i \(0.0350801\pi\)
−0.993933 + 0.109984i \(0.964920\pi\)
\(810\) 0 0
\(811\) 148.090i 0.182602i −0.995823 0.0913009i \(-0.970897\pi\)
0.995823 0.0913009i \(-0.0291025\pi\)
\(812\) 359.968 0.443310
\(813\) 679.225i 0.835455i
\(814\) 908.872 + 208.840i 1.11655 + 0.256560i
\(815\) 0 0
\(816\) 2397.07i 2.93758i
\(817\) −577.384 −0.706712
\(818\) −2083.40 −2.54695
\(819\) −1532.17 −1.87078
\(820\) 0 0
\(821\) 95.9583i 0.116880i −0.998291 0.0584399i \(-0.981387\pi\)
0.998291 0.0584399i \(-0.0186126\pi\)
\(822\) 717.177i 0.872478i
\(823\) 780.102 0.947876 0.473938 0.880558i \(-0.342832\pi\)
0.473938 + 0.880558i \(0.342832\pi\)
\(824\) 46.1072i 0.0559553i
\(825\) 0 0
\(826\) −341.429 −0.413352
\(827\) 51.5115i 0.0622872i −0.999515 0.0311436i \(-0.990085\pi\)
0.999515 0.0311436i \(-0.00991492\pi\)
\(828\) 1620.20 1.95676
\(829\) −1102.12 −1.32945 −0.664726 0.747087i \(-0.731452\pi\)
−0.664726 + 0.747087i \(0.731452\pi\)
\(830\) 0 0
\(831\) 2390.53i 2.87669i
\(832\) 872.421i 1.04858i
\(833\) 736.640i 0.884321i
\(834\) −1755.12 −2.10446
\(835\) 0 0
\(836\) −338.932 77.8793i −0.405421 0.0931571i
\(837\) 1766.78 2.11084
\(838\) 4.56271i 0.00544476i
\(839\) 727.457 0.867052 0.433526 0.901141i \(-0.357269\pi\)
0.433526 + 0.901141i \(0.357269\pi\)
\(840\) 0 0
\(841\) 380.793 0.452786
\(842\) 1633.50i 1.94002i
\(843\) 2228.56i 2.64360i
\(844\) 609.951i 0.722691i
\(845\) 0 0
\(846\) 1517.87i 1.79417i
\(847\) 236.750 487.969i 0.279516 0.576114i
\(848\) 1593.12 1.87868
\(849\) 124.571i 0.146727i
\(850\) 0 0
\(851\) 605.874 0.711955
\(852\) −913.852 −1.07260
\(853\) 942.330i 1.10472i −0.833604 0.552362i \(-0.813726\pi\)
0.833604 0.552362i \(-0.186274\pi\)
\(854\) 1011.67i 1.18463i
\(855\) 0 0
\(856\) 28.1605 0.0328978
\(857\) 584.440i 0.681960i 0.940070 + 0.340980i \(0.110759\pi\)
−0.940070 + 0.340980i \(0.889241\pi\)
\(858\) 597.158 2598.84i 0.695989 3.02895i
\(859\) 209.717 0.244141 0.122070 0.992521i \(-0.461047\pi\)
0.122070 + 0.992521i \(0.461047\pi\)
\(860\) 0 0
\(861\) 262.480 0.304854
\(862\) 1974.87 2.29103
\(863\) −1655.39 −1.91818 −0.959090 0.283101i \(-0.908637\pi\)
−0.959090 + 0.283101i \(0.908637\pi\)
\(864\) 3138.87i 3.63295i
\(865\) 0 0
\(866\) 2287.01i 2.64089i
\(867\) −1998.57 −2.30516
\(868\) 418.789i 0.482476i
\(869\) −550.955 126.598i −0.634010 0.145682i
\(870\) 0 0
\(871\) 777.649i 0.892824i
\(872\) 8.99923 0.0103202
\(873\) 1911.19 2.18922
\(874\) −467.359 −0.534736
\(875\) 0 0
\(876\) 605.834i 0.691591i
\(877\) 265.595i 0.302845i 0.988469 + 0.151422i \(0.0483853\pi\)
−0.988469 + 0.151422i \(0.951615\pi\)
\(878\) 1453.22 1.65515
\(879\) 2526.98i 2.87483i
\(880\) 0 0
\(881\) 187.558 0.212892 0.106446 0.994319i \(-0.466053\pi\)
0.106446 + 0.994319i \(0.466053\pi\)
\(882\) 1750.70i 1.98492i
\(883\) 36.3595 0.0411773 0.0205886 0.999788i \(-0.493446\pi\)
0.0205886 + 0.999788i \(0.493446\pi\)
\(884\) −1498.26 −1.69486
\(885\) 0 0
\(886\) 1051.48i 1.18678i
\(887\) 666.369i 0.751261i 0.926769 + 0.375631i \(0.122574\pi\)
−0.926769 + 0.375631i \(0.877426\pi\)
\(888\) 120.610i 0.135822i
\(889\) 695.825 0.782705
\(890\) 0 0
\(891\) 484.710 2109.46i 0.544006 2.36752i
\(892\) 102.398 0.114796
\(893\) 211.669i 0.237032i
\(894\) −2473.07 −2.76630
\(895\) 0 0
\(896\) −102.169 −0.114028
\(897\) 1732.44i 1.93137i
\(898\) 1573.71i 1.75246i
\(899\) 535.408i 0.595559i
\(900\) 0 0
\(901\) 2393.60i 2.65660i
\(902\) −72.3719 + 314.963i −0.0802349 + 0.349183i
\(903\) −1699.71 −1.88229
\(904\) 70.3803i 0.0778543i
\(905\) 0 0
\(906\) −2564.15 −2.83018
\(907\) 667.718 0.736182 0.368091 0.929790i \(-0.380011\pi\)
0.368091 + 0.929790i \(0.380011\pi\)
\(908\) 261.812i 0.288339i
\(909\) 482.208i 0.530481i
\(910\) 0 0
\(911\) 218.396 0.239732 0.119866 0.992790i \(-0.461754\pi\)
0.119866 + 0.992790i \(0.461754\pi\)
\(912\) 794.439i 0.871095i
\(913\) 506.137 + 116.300i 0.554367 + 0.127382i
\(914\) 867.368 0.948981
\(915\) 0 0
\(916\) 475.011 0.518571
\(917\) 461.990 0.503806
\(918\) −5019.68 −5.46806
\(919\) 197.616i 0.215034i 0.994203 + 0.107517i \(0.0342900\pi\)
−0.994203 + 0.107517i \(0.965710\pi\)
\(920\) 0 0
\(921\) 1732.93i 1.88157i
\(922\) −349.187 −0.378728
\(923\) 691.286i 0.748956i
\(924\) −997.752 229.263i −1.07982 0.248120i
\(925\) 0 0
\(926\) 1331.87i 1.43830i
\(927\) 1405.84 1.51655
\(928\) −951.209 −1.02501
\(929\) 298.522 0.321337 0.160669 0.987008i \(-0.448635\pi\)
0.160669 + 0.987008i \(0.448635\pi\)
\(930\) 0 0
\(931\) 244.138i 0.262232i
\(932\) 475.716i 0.510425i
\(933\) −1424.76 −1.52708
\(934\) 1175.47i 1.25854i
\(935\) 0 0
\(936\) 243.978 0.260661
\(937\) 708.598i 0.756241i 0.925756 + 0.378120i \(0.123429\pi\)
−0.925756 + 0.378120i \(0.876571\pi\)
\(938\) −617.571 −0.658391
\(939\) −164.487 −0.175173
\(940\) 0 0
\(941\) 286.193i 0.304137i −0.988370 0.152069i \(-0.951407\pi\)
0.988370 0.152069i \(-0.0485934\pi\)
\(942\) 944.884i 1.00306i
\(943\) 209.961i 0.222652i
\(944\) 464.251 0.491792
\(945\) 0 0
\(946\) 468.651 2039.57i 0.495403 2.15600i
\(947\) 1220.02 1.28829 0.644147 0.764901i \(-0.277212\pi\)
0.644147 + 0.764901i \(0.277212\pi\)
\(948\) 1067.06i 1.12559i
\(949\) 458.284 0.482913
\(950\) 0 0
\(951\) −552.842 −0.581327
\(952\) 81.5263i 0.0856368i
\(953\) 1539.71i 1.61564i −0.589428 0.807821i \(-0.700647\pi\)
0.589428 0.807821i \(-0.299353\pi\)
\(954\) 5688.64i 5.96293i
\(955\) 0 0
\(956\) 906.301i 0.948013i
\(957\) 1275.59 + 293.104i 1.33291 + 0.306274i
\(958\) 439.846 0.459130
\(959\) 208.282i 0.217186i
\(960\) 0 0
\(961\) −338.104 −0.351825
\(962\) −1331.55 −1.38415
\(963\) 858.633i 0.891623i
\(964\) 441.843i 0.458343i
\(965\) 0 0
\(966\) −1375.82 −1.42424
\(967\) 1504.21i 1.55555i 0.628546 + 0.777773i \(0.283651\pi\)
−0.628546 + 0.777773i \(0.716349\pi\)
\(968\) −37.6994 + 77.7029i −0.0389457 + 0.0802716i
\(969\) 1193.61 1.23180
\(970\) 0 0
\(971\) −676.492 −0.696696 −0.348348 0.937365i \(-0.613257\pi\)
−0.348348 + 0.937365i \(0.613257\pi\)
\(972\) −1700.47 −1.74945
\(973\) 509.720 0.523864
\(974\) 2339.71i 2.40216i
\(975\) 0 0
\(976\) 1375.60i 1.40943i
\(977\) 588.072 0.601916 0.300958 0.953637i \(-0.402694\pi\)
0.300958 + 0.953637i \(0.402694\pi\)
\(978\) 2080.53i 2.12734i
\(979\) 363.236 1580.81i 0.371028 1.61472i
\(980\) 0 0
\(981\) 274.393i 0.279707i
\(982\) 910.614 0.927306
\(983\) −824.978 −0.839245 −0.419622 0.907699i \(-0.637838\pi\)
−0.419622 + 0.907699i \(0.637838\pi\)
\(984\) −41.7966 −0.0424762
\(985\) 0 0
\(986\) 1521.17i 1.54277i
\(987\) 623.116i 0.631323i
\(988\) 496.555 0.502586
\(989\) 1359.62i 1.37475i
\(990\) 0 0
\(991\) −1747.44 −1.76331 −0.881653 0.471899i \(-0.843569\pi\)
−0.881653 + 0.471899i \(0.843569\pi\)
\(992\) 1106.64i 1.11557i
\(993\) 768.902 0.774323
\(994\) 548.985 0.552299
\(995\) 0 0
\(996\) 980.261i 0.984198i
\(997\) 1069.45i 1.07267i 0.844007 + 0.536333i \(0.180191\pi\)
−0.844007 + 0.536333i \(0.819809\pi\)
\(998\) 1533.62i 1.53669i
\(999\) −2156.69 −2.15885
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.c.h.76.2 yes 8
5.2 odd 4 275.3.d.b.274.13 16
5.3 odd 4 275.3.d.b.274.4 16
5.4 even 2 275.3.c.g.76.7 yes 8
11.10 odd 2 inner 275.3.c.h.76.7 yes 8
55.32 even 4 275.3.d.b.274.3 16
55.43 even 4 275.3.d.b.274.14 16
55.54 odd 2 275.3.c.g.76.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.c.g.76.2 8 55.54 odd 2
275.3.c.g.76.7 yes 8 5.4 even 2
275.3.c.h.76.2 yes 8 1.1 even 1 trivial
275.3.c.h.76.7 yes 8 11.10 odd 2 inner
275.3.d.b.274.3 16 55.32 even 4
275.3.d.b.274.4 16 5.3 odd 4
275.3.d.b.274.13 16 5.2 odd 4
275.3.d.b.274.14 16 55.43 even 4