Properties

Label 275.2.z.c.174.8
Level $275$
Weight $2$
Character 275.174
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(49,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.z (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 174.8
Character \(\chi\) \(=\) 275.174
Dual form 275.2.z.c.49.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.63006 + 0.854560i) q^{2} +(-0.964848 - 1.32800i) q^{3} +(4.56893 + 3.31953i) q^{4} +(-1.40276 - 4.31724i) q^{6} +(-1.11557 + 1.53545i) q^{7} +(5.92892 + 8.16046i) q^{8} +(0.0944009 - 0.290536i) q^{9} +(0.102720 - 3.31503i) q^{11} -9.27038i q^{12} +(-1.96439 - 0.638270i) q^{13} +(-4.24616 + 3.08501i) q^{14} +(5.12949 + 15.7870i) q^{16} +(-3.44822 + 1.12040i) q^{17} +(0.496561 - 0.683457i) q^{18} +(-1.03575 + 0.752517i) q^{19} +3.11543 q^{21} +(3.10305 - 8.63097i) q^{22} -3.36725i q^{23} +(5.11658 - 15.7472i) q^{24} +(-4.62104 - 3.35738i) q^{26} +(-5.16038 + 1.67671i) q^{27} +(-10.1939 + 3.31221i) q^{28} +(0.910336 + 0.661398i) q^{29} +(1.42251 - 4.37805i) q^{31} +25.7304i q^{32} +(-4.50147 + 3.06209i) q^{33} -10.0265 q^{34} +(1.39575 - 1.01407i) q^{36} +(-1.05926 + 1.45794i) q^{37} +(-3.36716 + 1.09406i) q^{38} +(1.04772 + 3.22455i) q^{39} +(-3.73360 + 2.71262i) q^{41} +(8.19379 + 2.66232i) q^{42} +0.0110430i q^{43} +(11.4737 - 14.8052i) q^{44} +(2.87752 - 8.85610i) q^{46} +(-5.42297 - 7.46408i) q^{47} +(16.0159 - 22.0440i) q^{48} +(1.05001 + 3.23159i) q^{49} +(4.81489 + 3.49822i) q^{51} +(-6.85643 - 9.43707i) q^{52} +(6.22368 + 2.02220i) q^{53} -15.0050 q^{54} -19.1441 q^{56} +(1.99868 + 0.649412i) q^{57} +(1.82904 + 2.51746i) q^{58} +(4.43142 + 3.21961i) q^{59} +(2.27166 + 6.99144i) q^{61} +(7.48261 - 10.2989i) q^{62} +(0.340793 + 0.469061i) q^{63} +(-11.7292 + 36.0987i) q^{64} +(-14.4559 + 4.20672i) q^{66} +7.01002i q^{67} +(-19.4739 - 6.32745i) q^{68} +(-4.47171 + 3.24889i) q^{69} +(-3.68735 - 11.3485i) q^{71} +(2.93060 - 0.952211i) q^{72} +(1.77865 - 2.44810i) q^{73} +(-4.03181 + 2.92928i) q^{74} -7.23028 q^{76} +(4.97548 + 3.85587i) q^{77} +9.37610i q^{78} +(1.89180 - 5.82235i) q^{79} +(6.46422 + 4.69653i) q^{81} +(-12.1377 + 3.94377i) q^{82} +(13.9332 - 4.52716i) q^{83} +(14.2342 + 10.3418i) q^{84} +(-0.00943687 + 0.0290437i) q^{86} -1.84707i q^{87} +(27.6612 - 18.8163i) q^{88} +13.8156 q^{89} +(3.17145 - 2.30419i) q^{91} +(11.1777 - 15.3848i) q^{92} +(-7.18656 + 2.33505i) q^{93} +(-7.88426 - 24.2653i) q^{94} +(34.1699 - 24.8259i) q^{96} +(16.4571 + 5.34722i) q^{97} +9.39658i q^{98} +(-0.953440 - 0.342786i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{4} - 6 q^{6} - 16 q^{9} - 10 q^{11} - 6 q^{14} - 8 q^{16} + 26 q^{19} + 20 q^{21} + 86 q^{24} - 68 q^{26} + 22 q^{29} - 20 q^{31} - 40 q^{34} + 6 q^{36} - 6 q^{39} + 50 q^{41} + 2 q^{44} + 80 q^{46}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.63006 + 0.854560i 1.85974 + 0.604265i 0.994733 + 0.102499i \(0.0326840\pi\)
0.865004 + 0.501766i \(0.167316\pi\)
\(3\) −0.964848 1.32800i −0.557055 0.766721i 0.433893 0.900964i \(-0.357139\pi\)
−0.990948 + 0.134244i \(0.957139\pi\)
\(4\) 4.56893 + 3.31953i 2.28447 + 1.65976i
\(5\) 0 0
\(6\) −1.40276 4.31724i −0.572673 1.76251i
\(7\) −1.11557 + 1.53545i −0.421646 + 0.580346i −0.966010 0.258503i \(-0.916771\pi\)
0.544365 + 0.838849i \(0.316771\pi\)
\(8\) 5.92892 + 8.16046i 2.09619 + 2.88516i
\(9\) 0.0944009 0.290536i 0.0314670 0.0968453i
\(10\) 0 0
\(11\) 0.102720 3.31503i 0.0309712 0.999520i
\(12\) 9.27038i 2.67613i
\(13\) −1.96439 0.638270i −0.544825 0.177024i 0.0236571 0.999720i \(-0.492469\pi\)
−0.568482 + 0.822696i \(0.692469\pi\)
\(14\) −4.24616 + 3.08501i −1.13483 + 0.824504i
\(15\) 0 0
\(16\) 5.12949 + 15.7870i 1.28237 + 3.94674i
\(17\) −3.44822 + 1.12040i −0.836317 + 0.271736i −0.695704 0.718329i \(-0.744907\pi\)
−0.140613 + 0.990065i \(0.544907\pi\)
\(18\) 0.496561 0.683457i 0.117040 0.161092i
\(19\) −1.03575 + 0.752517i −0.237618 + 0.172639i −0.700221 0.713926i \(-0.746915\pi\)
0.462604 + 0.886565i \(0.346915\pi\)
\(20\) 0 0
\(21\) 3.11543 0.679843
\(22\) 3.10305 8.63097i 0.661573 1.84013i
\(23\) 3.36725i 0.702121i −0.936353 0.351061i \(-0.885821\pi\)
0.936353 0.351061i \(-0.114179\pi\)
\(24\) 5.11658 15.7472i 1.04442 3.21438i
\(25\) 0 0
\(26\) −4.62104 3.35738i −0.906261 0.658437i
\(27\) −5.16038 + 1.67671i −0.993116 + 0.322683i
\(28\) −10.1939 + 3.31221i −1.92647 + 0.625949i
\(29\) 0.910336 + 0.661398i 0.169045 + 0.122819i 0.669091 0.743180i \(-0.266684\pi\)
−0.500046 + 0.865999i \(0.666684\pi\)
\(30\) 0 0
\(31\) 1.42251 4.37805i 0.255491 0.786321i −0.738241 0.674537i \(-0.764343\pi\)
0.993732 0.111784i \(-0.0356566\pi\)
\(32\) 25.7304i 4.54853i
\(33\) −4.50147 + 3.06209i −0.783605 + 0.533042i
\(34\) −10.0265 −1.71953
\(35\) 0 0
\(36\) 1.39575 1.01407i 0.232625 0.169012i
\(37\) −1.05926 + 1.45794i −0.174141 + 0.239684i −0.887162 0.461459i \(-0.847326\pi\)
0.713021 + 0.701142i \(0.247326\pi\)
\(38\) −3.36716 + 1.09406i −0.546226 + 0.177480i
\(39\) 1.04772 + 3.22455i 0.167769 + 0.516341i
\(40\) 0 0
\(41\) −3.73360 + 2.71262i −0.583090 + 0.423639i −0.839837 0.542839i \(-0.817349\pi\)
0.256747 + 0.966479i \(0.417349\pi\)
\(42\) 8.19379 + 2.66232i 1.26433 + 0.410805i
\(43\) 0.0110430i 0.00168404i 1.00000 0.000842018i \(0.000268023\pi\)
−1.00000 0.000842018i \(0.999732\pi\)
\(44\) 11.4737 14.8052i 1.72972 2.23197i
\(45\) 0 0
\(46\) 2.87752 8.85610i 0.424267 1.30576i
\(47\) −5.42297 7.46408i −0.791022 1.08875i −0.993980 0.109561i \(-0.965056\pi\)
0.202958 0.979187i \(-0.434944\pi\)
\(48\) 16.0159 22.0440i 2.31169 3.18177i
\(49\) 1.05001 + 3.23159i 0.150001 + 0.461656i
\(50\) 0 0
\(51\) 4.81489 + 3.49822i 0.674220 + 0.489849i
\(52\) −6.85643 9.43707i −0.950816 1.30869i
\(53\) 6.22368 + 2.02220i 0.854888 + 0.277770i 0.703492 0.710703i \(-0.251623\pi\)
0.151396 + 0.988473i \(0.451623\pi\)
\(54\) −15.0050 −2.04192
\(55\) 0 0
\(56\) −19.1441 −2.55824
\(57\) 1.99868 + 0.649412i 0.264732 + 0.0860167i
\(58\) 1.82904 + 2.51746i 0.240165 + 0.330558i
\(59\) 4.43142 + 3.21961i 0.576921 + 0.419158i 0.837613 0.546264i \(-0.183951\pi\)
−0.260692 + 0.965422i \(0.583951\pi\)
\(60\) 0 0
\(61\) 2.27166 + 6.99144i 0.290856 + 0.895162i 0.984582 + 0.174923i \(0.0559678\pi\)
−0.693726 + 0.720239i \(0.744032\pi\)
\(62\) 7.48261 10.2989i 0.950293 1.30797i
\(63\) 0.340793 + 0.469061i 0.0429359 + 0.0590962i
\(64\) −11.7292 + 36.0987i −1.46615 + 4.51234i
\(65\) 0 0
\(66\) −14.4559 + 4.20672i −1.77940 + 0.517812i
\(67\) 7.01002i 0.856410i 0.903682 + 0.428205i \(0.140854\pi\)
−0.903682 + 0.428205i \(0.859146\pi\)
\(68\) −19.4739 6.32745i −2.36155 0.767316i
\(69\) −4.47171 + 3.24889i −0.538331 + 0.391120i
\(70\) 0 0
\(71\) −3.68735 11.3485i −0.437607 1.34682i −0.890391 0.455197i \(-0.849569\pi\)
0.452783 0.891621i \(-0.350431\pi\)
\(72\) 2.93060 0.952211i 0.345375 0.112219i
\(73\) 1.77865 2.44810i 0.208175 0.286529i −0.692143 0.721760i \(-0.743333\pi\)
0.900319 + 0.435231i \(0.143333\pi\)
\(74\) −4.03181 + 2.92928i −0.468688 + 0.340522i
\(75\) 0 0
\(76\) −7.23028 −0.829370
\(77\) 4.97548 + 3.85587i 0.567009 + 0.439418i
\(78\) 9.37610i 1.06163i
\(79\) 1.89180 5.82235i 0.212844 0.655066i −0.786456 0.617646i \(-0.788086\pi\)
0.999300 0.0374192i \(-0.0119137\pi\)
\(80\) 0 0
\(81\) 6.46422 + 4.69653i 0.718247 + 0.521837i
\(82\) −12.1377 + 3.94377i −1.34038 + 0.435517i
\(83\) 13.9332 4.52716i 1.52936 0.496921i 0.580946 0.813942i \(-0.302683\pi\)
0.948418 + 0.317021i \(0.102683\pi\)
\(84\) 14.2342 + 10.3418i 1.55308 + 1.12838i
\(85\) 0 0
\(86\) −0.00943687 + 0.0290437i −0.00101760 + 0.00313186i
\(87\) 1.84707i 0.198027i
\(88\) 27.6612 18.8163i 2.94870 2.00583i
\(89\) 13.8156 1.46445 0.732227 0.681060i \(-0.238481\pi\)
0.732227 + 0.681060i \(0.238481\pi\)
\(90\) 0 0
\(91\) 3.17145 2.30419i 0.332458 0.241545i
\(92\) 11.1777 15.3848i 1.16535 1.60397i
\(93\) −7.18656 + 2.33505i −0.745211 + 0.242134i
\(94\) −7.88426 24.2653i −0.813200 2.50277i
\(95\) 0 0
\(96\) 34.1699 24.8259i 3.48745 2.53378i
\(97\) 16.4571 + 5.34722i 1.67096 + 0.542928i 0.983124 0.182938i \(-0.0585609\pi\)
0.687836 + 0.725866i \(0.258561\pi\)
\(98\) 9.39658i 0.949198i
\(99\) −0.953440 0.342786i −0.0958243 0.0344513i
\(100\) 0 0
\(101\) −4.60266 + 14.1655i −0.457982 + 1.40952i 0.409617 + 0.912258i \(0.365662\pi\)
−0.867599 + 0.497265i \(0.834338\pi\)
\(102\) 9.67404 + 13.3152i 0.957873 + 1.31840i
\(103\) 0.249996 0.344090i 0.0246329 0.0339042i −0.796523 0.604608i \(-0.793330\pi\)
0.821156 + 0.570704i \(0.193330\pi\)
\(104\) −6.43816 19.8146i −0.631313 1.94298i
\(105\) 0 0
\(106\) 14.6406 + 10.6370i 1.42202 + 1.03316i
\(107\) 4.96085 + 6.82802i 0.479583 + 0.660090i 0.978425 0.206603i \(-0.0662410\pi\)
−0.498841 + 0.866693i \(0.666241\pi\)
\(108\) −29.1433 9.46924i −2.80432 0.911178i
\(109\) −0.922589 −0.0883680 −0.0441840 0.999023i \(-0.514069\pi\)
−0.0441840 + 0.999023i \(0.514069\pi\)
\(110\) 0 0
\(111\) 2.95816 0.280776
\(112\) −29.9624 9.73537i −2.83118 0.919906i
\(113\) −1.59417 2.19418i −0.149967 0.206411i 0.727424 0.686189i \(-0.240718\pi\)
−0.877390 + 0.479777i \(0.840718\pi\)
\(114\) 4.70171 + 3.41599i 0.440355 + 0.319937i
\(115\) 0 0
\(116\) 1.96374 + 6.04377i 0.182329 + 0.561150i
\(117\) −0.370881 + 0.510474i −0.0342880 + 0.0471933i
\(118\) 8.90356 + 12.2547i 0.819639 + 1.12814i
\(119\) 2.12642 6.54445i 0.194929 0.599929i
\(120\) 0 0
\(121\) −10.9789 0.681040i −0.998082 0.0619127i
\(122\) 20.3292i 1.84052i
\(123\) 7.20470 + 2.34095i 0.649626 + 0.211076i
\(124\) 21.0324 15.2809i 1.88877 1.37227i
\(125\) 0 0
\(126\) 0.495467 + 1.52489i 0.0441397 + 0.135848i
\(127\) −7.73903 + 2.51456i −0.686728 + 0.223131i −0.631539 0.775345i \(-0.717576\pi\)
−0.0551893 + 0.998476i \(0.517576\pi\)
\(128\) −31.4491 + 43.2860i −2.77973 + 3.82598i
\(129\) 0.0146650 0.0106548i 0.00129118 0.000938101i
\(130\) 0 0
\(131\) 2.69256 0.235250 0.117625 0.993058i \(-0.462472\pi\)
0.117625 + 0.993058i \(0.462472\pi\)
\(132\) −30.7316 0.952252i −2.67484 0.0828829i
\(133\) 2.42983i 0.210693i
\(134\) −5.99048 + 18.4368i −0.517498 + 1.59270i
\(135\) 0 0
\(136\) −29.5872 21.4963i −2.53708 1.84330i
\(137\) 8.07211 2.62279i 0.689647 0.224080i 0.0568330 0.998384i \(-0.481900\pi\)
0.632814 + 0.774304i \(0.281900\pi\)
\(138\) −14.5373 + 4.72344i −1.23749 + 0.402086i
\(139\) −17.8961 13.0023i −1.51793 1.10284i −0.962502 0.271275i \(-0.912555\pi\)
−0.555427 0.831565i \(-0.687445\pi\)
\(140\) 0 0
\(141\) −4.67995 + 14.4034i −0.394123 + 1.21299i
\(142\) 32.9983i 2.76916i
\(143\) −2.31767 + 6.44647i −0.193813 + 0.539081i
\(144\) 5.07091 0.422575
\(145\) 0 0
\(146\) 6.77002 4.91871i 0.560291 0.407075i
\(147\) 3.27845 4.51240i 0.270402 0.372176i
\(148\) −9.67934 + 3.14501i −0.795637 + 0.258518i
\(149\) 4.96839 + 15.2911i 0.407026 + 1.25270i 0.919191 + 0.393811i \(0.128844\pi\)
−0.512165 + 0.858887i \(0.671156\pi\)
\(150\) 0 0
\(151\) −18.7865 + 13.6492i −1.52882 + 1.11075i −0.571933 + 0.820300i \(0.693806\pi\)
−0.956889 + 0.290454i \(0.906194\pi\)
\(152\) −12.2818 3.99059i −0.996183 0.323680i
\(153\) 1.10760i 0.0895441i
\(154\) 9.79076 + 14.3930i 0.788962 + 1.15982i
\(155\) 0 0
\(156\) −5.91700 + 18.2107i −0.473740 + 1.45802i
\(157\) −9.54418 13.1364i −0.761709 1.04840i −0.997070 0.0764941i \(-0.975627\pi\)
0.235361 0.971908i \(-0.424373\pi\)
\(158\) 9.95109 13.6965i 0.791666 1.08964i
\(159\) −3.31943 10.2162i −0.263248 0.810194i
\(160\) 0 0
\(161\) 5.17025 + 3.75641i 0.407473 + 0.296047i
\(162\) 12.9878 + 17.8762i 1.02042 + 1.40449i
\(163\) 11.6599 + 3.78855i 0.913277 + 0.296742i 0.727706 0.685889i \(-0.240586\pi\)
0.185571 + 0.982631i \(0.440586\pi\)
\(164\) −26.0631 −2.03519
\(165\) 0 0
\(166\) 40.5139 3.14449
\(167\) −6.02648 1.95812i −0.466343 0.151524i 0.0664141 0.997792i \(-0.478844\pi\)
−0.532757 + 0.846268i \(0.678844\pi\)
\(168\) 18.4712 + 25.4234i 1.42508 + 1.96146i
\(169\) −7.06577 5.13358i −0.543521 0.394891i
\(170\) 0 0
\(171\) 0.120858 + 0.371961i 0.00924221 + 0.0284446i
\(172\) −0.0366574 + 0.0504546i −0.00279510 + 0.00384712i
\(173\) 1.23853 + 1.70469i 0.0941637 + 0.129605i 0.853499 0.521094i \(-0.174476\pi\)
−0.759336 + 0.650699i \(0.774476\pi\)
\(174\) 1.57844 4.85792i 0.119661 0.368278i
\(175\) 0 0
\(176\) 52.8612 15.3828i 3.98456 1.15952i
\(177\) 8.99135i 0.675831i
\(178\) 36.3360 + 11.8063i 2.72350 + 0.884919i
\(179\) −7.90157 + 5.74083i −0.590591 + 0.429090i −0.842527 0.538654i \(-0.818933\pi\)
0.251936 + 0.967744i \(0.418933\pi\)
\(180\) 0 0
\(181\) −5.97245 18.3813i −0.443928 1.36627i −0.883655 0.468139i \(-0.844924\pi\)
0.439726 0.898132i \(-0.355076\pi\)
\(182\) 10.3102 3.34999i 0.764242 0.248317i
\(183\) 7.09282 9.76243i 0.524317 0.721660i
\(184\) 27.4784 19.9642i 2.02573 1.47178i
\(185\) 0 0
\(186\) −20.8965 −1.53221
\(187\) 3.35995 + 11.5461i 0.245704 + 0.844331i
\(188\) 52.1046i 3.80012i
\(189\) 3.18226 9.79400i 0.231476 0.712409i
\(190\) 0 0
\(191\) −11.7719 8.55279i −0.851785 0.618858i 0.0738525 0.997269i \(-0.476471\pi\)
−0.925638 + 0.378411i \(0.876471\pi\)
\(192\) 59.2559 19.2534i 4.27643 1.38950i
\(193\) −21.1376 + 6.86801i −1.52151 + 0.494370i −0.946206 0.323566i \(-0.895118\pi\)
−0.575309 + 0.817936i \(0.695118\pi\)
\(194\) 38.7136 + 28.1271i 2.77947 + 2.01941i
\(195\) 0 0
\(196\) −5.92993 + 18.2504i −0.423566 + 1.30360i
\(197\) 9.00781i 0.641780i −0.947116 0.320890i \(-0.896018\pi\)
0.947116 0.320890i \(-0.103982\pi\)
\(198\) −2.21468 1.71632i −0.157390 0.121974i
\(199\) −0.459925 −0.0326032 −0.0163016 0.999867i \(-0.505189\pi\)
−0.0163016 + 0.999867i \(0.505189\pi\)
\(200\) 0 0
\(201\) 9.30929 6.76360i 0.656627 0.477067i
\(202\) −24.2106 + 33.3230i −1.70345 + 2.34460i
\(203\) −2.03109 + 0.659941i −0.142554 + 0.0463187i
\(204\) 10.3865 + 31.9663i 0.727199 + 2.23809i
\(205\) 0 0
\(206\) 0.951553 0.691343i 0.0662978 0.0481682i
\(207\) −0.978309 0.317872i −0.0679972 0.0220936i
\(208\) 34.2858i 2.37729i
\(209\) 2.38823 + 3.51085i 0.165197 + 0.242850i
\(210\) 0 0
\(211\) 0.242564 0.746536i 0.0166988 0.0513936i −0.942360 0.334601i \(-0.891398\pi\)
0.959059 + 0.283207i \(0.0913985\pi\)
\(212\) 21.7229 + 29.8989i 1.49193 + 2.05347i
\(213\) −11.5130 + 15.8463i −0.788861 + 1.08577i
\(214\) 7.21240 + 22.1975i 0.493029 + 1.51739i
\(215\) 0 0
\(216\) −44.2782 32.1700i −3.01275 2.18889i
\(217\) 5.13536 + 7.06822i 0.348611 + 0.479822i
\(218\) −2.42647 0.788407i −0.164341 0.0533977i
\(219\) −4.96721 −0.335653
\(220\) 0 0
\(221\) 7.48878 0.503750
\(222\) 7.78016 + 2.52793i 0.522170 + 0.169663i
\(223\) −7.84950 10.8039i −0.525641 0.723483i 0.460817 0.887495i \(-0.347556\pi\)
−0.986458 + 0.164012i \(0.947556\pi\)
\(224\) −39.5077 28.7041i −2.63972 1.91787i
\(225\) 0 0
\(226\) −2.31770 7.13316i −0.154171 0.474491i
\(227\) 10.1561 13.9787i 0.674087 0.927801i −0.325757 0.945453i \(-0.605619\pi\)
0.999844 + 0.0176523i \(0.00561919\pi\)
\(228\) 6.97612 + 9.60180i 0.462005 + 0.635895i
\(229\) −3.64367 + 11.2141i −0.240780 + 0.741045i 0.755522 + 0.655124i \(0.227384\pi\)
−0.996302 + 0.0859217i \(0.972616\pi\)
\(230\) 0 0
\(231\) 0.320017 10.3278i 0.0210556 0.679517i
\(232\) 11.3501i 0.745173i
\(233\) −2.40272 0.780690i −0.157407 0.0511447i 0.229254 0.973367i \(-0.426372\pi\)
−0.386661 + 0.922222i \(0.626372\pi\)
\(234\) −1.41167 + 1.02564i −0.0922838 + 0.0670481i
\(235\) 0 0
\(236\) 9.55927 + 29.4204i 0.622255 + 1.91510i
\(237\) −9.55737 + 3.10538i −0.620818 + 0.201716i
\(238\) 11.1853 15.3952i 0.725032 0.997922i
\(239\) 20.0190 14.5446i 1.29492 0.940815i 0.295028 0.955489i \(-0.404671\pi\)
0.999892 + 0.0146739i \(0.00467102\pi\)
\(240\) 0 0
\(241\) 18.8935 1.21704 0.608520 0.793539i \(-0.291764\pi\)
0.608520 + 0.793539i \(0.291764\pi\)
\(242\) −28.2932 11.1733i −1.81876 0.718247i
\(243\) 3.16193i 0.202838i
\(244\) −12.8292 + 39.4843i −0.821306 + 2.52772i
\(245\) 0 0
\(246\) 16.9484 + 12.3137i 1.08059 + 0.785093i
\(247\) 2.51493 0.817151i 0.160021 0.0519941i
\(248\) 44.1609 14.3487i 2.80422 0.911146i
\(249\) −19.4555 14.1352i −1.23294 0.895783i
\(250\) 0 0
\(251\) 1.11446 3.42996i 0.0703443 0.216497i −0.909704 0.415258i \(-0.863691\pi\)
0.980048 + 0.198760i \(0.0636915\pi\)
\(252\) 3.27438i 0.206267i
\(253\) −11.1626 0.345884i −0.701784 0.0217455i
\(254\) −22.5030 −1.41196
\(255\) 0 0
\(256\) −58.2889 + 42.3493i −3.64305 + 2.64683i
\(257\) 7.72911 10.6382i 0.482129 0.663593i −0.496784 0.867874i \(-0.665486\pi\)
0.978912 + 0.204281i \(0.0654857\pi\)
\(258\) 0.0476752 0.0154906i 0.00296813 0.000964402i
\(259\) −1.05692 3.25287i −0.0656739 0.202123i
\(260\) 0 0
\(261\) 0.278096 0.202049i 0.0172137 0.0125065i
\(262\) 7.08162 + 2.30096i 0.437504 + 0.142154i
\(263\) 6.24673i 0.385190i −0.981278 0.192595i \(-0.938310\pi\)
0.981278 0.192595i \(-0.0616904\pi\)
\(264\) −51.6769 18.5792i −3.18050 1.14347i
\(265\) 0 0
\(266\) 2.07644 6.39061i 0.127314 0.391834i
\(267\) −13.3300 18.3472i −0.815782 1.12283i
\(268\) −23.2699 + 32.0283i −1.42144 + 1.95644i
\(269\) 6.92064 + 21.2995i 0.421959 + 1.29866i 0.905876 + 0.423542i \(0.139213\pi\)
−0.483918 + 0.875114i \(0.660787\pi\)
\(270\) 0 0
\(271\) 7.00497 + 5.08941i 0.425521 + 0.309159i 0.779856 0.625959i \(-0.215292\pi\)
−0.354334 + 0.935119i \(0.615292\pi\)
\(272\) −35.3752 48.6899i −2.14494 2.95226i
\(273\) −6.11994 1.98849i −0.370395 0.120349i
\(274\) 23.4715 1.41797
\(275\) 0 0
\(276\) −31.2157 −1.87897
\(277\) −2.47505 0.804194i −0.148712 0.0483193i 0.233715 0.972305i \(-0.424912\pi\)
−0.382427 + 0.923986i \(0.624912\pi\)
\(278\) −35.9567 49.4902i −2.15654 2.96822i
\(279\) −1.13769 0.826583i −0.0681120 0.0494862i
\(280\) 0 0
\(281\) −6.39755 19.6896i −0.381646 1.17459i −0.938884 0.344233i \(-0.888139\pi\)
0.557238 0.830353i \(-0.311861\pi\)
\(282\) −24.6171 + 33.8826i −1.46593 + 2.01768i
\(283\) 6.35430 + 8.74594i 0.377724 + 0.519892i 0.954980 0.296671i \(-0.0958765\pi\)
−0.577256 + 0.816563i \(0.695877\pi\)
\(284\) 20.8243 64.0907i 1.23570 3.80308i
\(285\) 0 0
\(286\) −11.6045 + 14.9740i −0.686189 + 0.885434i
\(287\) 8.75886i 0.517019i
\(288\) 7.47560 + 2.42897i 0.440504 + 0.143128i
\(289\) −3.11834 + 2.26561i −0.183432 + 0.133271i
\(290\) 0 0
\(291\) −8.77745 27.0142i −0.514543 1.58360i
\(292\) 16.2531 5.28095i 0.951140 0.309044i
\(293\) −0.307457 + 0.423178i −0.0179618 + 0.0247223i −0.817903 0.575355i \(-0.804864\pi\)
0.799942 + 0.600078i \(0.204864\pi\)
\(294\) 12.4787 9.06627i 0.727770 0.528756i
\(295\) 0 0
\(296\) −18.1777 −1.05656
\(297\) 5.02828 + 17.2791i 0.291770 + 1.00263i
\(298\) 44.4624i 2.57564i
\(299\) −2.14922 + 6.61461i −0.124292 + 0.382533i
\(300\) 0 0
\(301\) −0.0169559 0.0123192i −0.000977323 0.000710067i
\(302\) −61.0737 + 19.8440i −3.51440 + 1.14190i
\(303\) 23.2527 7.55525i 1.33583 0.434038i
\(304\) −17.1928 12.4913i −0.986076 0.716426i
\(305\) 0 0
\(306\) −0.946510 + 2.91306i −0.0541083 + 0.166528i
\(307\) 20.0401i 1.14375i 0.820342 + 0.571873i \(0.193783\pi\)
−0.820342 + 0.571873i \(0.806217\pi\)
\(308\) 9.93297 + 34.1335i 0.565983 + 1.94493i
\(309\) −0.698160 −0.0397169
\(310\) 0 0
\(311\) 12.3892 9.00127i 0.702527 0.510415i −0.178227 0.983989i \(-0.557036\pi\)
0.880754 + 0.473574i \(0.157036\pi\)
\(312\) −20.1019 + 27.6679i −1.13805 + 1.56639i
\(313\) −27.0333 + 8.78365i −1.52801 + 0.496481i −0.948039 0.318154i \(-0.896937\pi\)
−0.579974 + 0.814635i \(0.696937\pi\)
\(314\) −13.8759 42.7058i −0.783065 2.41003i
\(315\) 0 0
\(316\) 27.9709 20.3221i 1.57349 1.14321i
\(317\) −17.9251 5.82421i −1.00677 0.327120i −0.241204 0.970474i \(-0.577542\pi\)
−0.765569 + 0.643354i \(0.777542\pi\)
\(318\) 29.7058i 1.66582i
\(319\) 2.28607 2.94986i 0.127995 0.165160i
\(320\) 0 0
\(321\) 4.28114 13.1760i 0.238950 0.735413i
\(322\) 10.3880 + 14.2979i 0.578902 + 0.796790i
\(323\) 2.72838 3.75530i 0.151811 0.208950i
\(324\) 13.9443 + 42.9163i 0.774686 + 2.38424i
\(325\) 0 0
\(326\) 27.4289 + 19.9282i 1.51914 + 1.10372i
\(327\) 0.890158 + 1.22520i 0.0492258 + 0.0677535i
\(328\) −44.2724 14.3850i −2.44453 0.794277i
\(329\) 17.5104 0.965381
\(330\) 0 0
\(331\) −12.0888 −0.664461 −0.332230 0.943198i \(-0.607801\pi\)
−0.332230 + 0.943198i \(0.607801\pi\)
\(332\) 78.6878 + 25.5672i 4.31855 + 1.40318i
\(333\) 0.323589 + 0.445383i 0.0177326 + 0.0244068i
\(334\) −14.1767 10.3000i −0.775715 0.563590i
\(335\) 0 0
\(336\) 15.9806 + 49.1832i 0.871812 + 2.68316i
\(337\) 13.7159 18.8783i 0.747151 1.02837i −0.251024 0.967981i \(-0.580767\pi\)
0.998175 0.0603846i \(-0.0192327\pi\)
\(338\) −14.1965 19.5398i −0.772186 1.06282i
\(339\) −1.37574 + 4.23411i −0.0747202 + 0.229965i
\(340\) 0 0
\(341\) −14.3673 5.16540i −0.778031 0.279722i
\(342\) 1.08156i 0.0584842i
\(343\) −18.7685 6.09826i −1.01340 0.329275i
\(344\) −0.0901157 + 0.0654729i −0.00485871 + 0.00353006i
\(345\) 0 0
\(346\) 1.80065 + 5.54185i 0.0968038 + 0.297931i
\(347\) 19.6295 6.37801i 1.05377 0.342389i 0.269621 0.962967i \(-0.413102\pi\)
0.784145 + 0.620577i \(0.213102\pi\)
\(348\) 6.13141 8.43916i 0.328678 0.452387i
\(349\) −20.6326 + 14.9904i −1.10444 + 0.802419i −0.981778 0.190030i \(-0.939141\pi\)
−0.122657 + 0.992449i \(0.539141\pi\)
\(350\) 0 0
\(351\) 11.2072 0.598197
\(352\) 85.2971 + 2.64302i 4.54635 + 0.140874i
\(353\) 3.41010i 0.181501i −0.995874 0.0907506i \(-0.971073\pi\)
0.995874 0.0907506i \(-0.0289266\pi\)
\(354\) 7.68365 23.6478i 0.408381 1.25687i
\(355\) 0 0
\(356\) 63.1227 + 45.8614i 3.34550 + 2.43065i
\(357\) −10.7427 + 3.49052i −0.568564 + 0.184738i
\(358\) −25.6875 + 8.34638i −1.35763 + 0.441120i
\(359\) 3.86662 + 2.80926i 0.204072 + 0.148267i 0.685128 0.728423i \(-0.259746\pi\)
−0.481055 + 0.876690i \(0.659746\pi\)
\(360\) 0 0
\(361\) −5.36482 + 16.5112i −0.282359 + 0.869012i
\(362\) 53.4478i 2.80916i
\(363\) 9.68854 + 15.2371i 0.508517 + 0.799738i
\(364\) 22.1390 1.16040
\(365\) 0 0
\(366\) 26.9972 19.6146i 1.41116 1.02527i
\(367\) −7.71953 + 10.6250i −0.402956 + 0.554622i −0.961483 0.274865i \(-0.911367\pi\)
0.558526 + 0.829487i \(0.311367\pi\)
\(368\) 53.1587 17.2723i 2.77109 0.900381i
\(369\) 0.435658 + 1.34082i 0.0226794 + 0.0698001i
\(370\) 0 0
\(371\) −10.0479 + 7.30025i −0.521663 + 0.379010i
\(372\) −40.5862 13.1872i −2.10429 0.683727i
\(373\) 24.9476i 1.29174i −0.763448 0.645869i \(-0.776495\pi\)
0.763448 0.645869i \(-0.223505\pi\)
\(374\) −1.02992 + 33.2382i −0.0532559 + 1.71870i
\(375\) 0 0
\(376\) 28.7580 88.5079i 1.48308 4.56445i
\(377\) −1.36611 1.88029i −0.0703582 0.0968397i
\(378\) 16.7391 23.0394i 0.860968 1.18502i
\(379\) 0.630173 + 1.93947i 0.0323698 + 0.0996240i 0.965936 0.258781i \(-0.0833207\pi\)
−0.933566 + 0.358405i \(0.883321\pi\)
\(380\) 0 0
\(381\) 10.8063 + 7.85125i 0.553625 + 0.402232i
\(382\) −23.6520 32.5542i −1.21014 1.66562i
\(383\) 30.6224 + 9.94983i 1.56473 + 0.508413i 0.958067 0.286544i \(-0.0925066\pi\)
0.606666 + 0.794957i \(0.292507\pi\)
\(384\) 87.8273 4.48192
\(385\) 0 0
\(386\) −61.4623 −3.12835
\(387\) 0.00320838 + 0.00104247i 0.000163091 + 5.29915e-5i
\(388\) 57.4410 + 79.0607i 2.91612 + 4.01370i
\(389\) 2.25775 + 1.64035i 0.114473 + 0.0831692i 0.643549 0.765405i \(-0.277461\pi\)
−0.529076 + 0.848574i \(0.677461\pi\)
\(390\) 0 0
\(391\) 3.77266 + 11.6110i 0.190791 + 0.587196i
\(392\) −20.1458 + 27.7284i −1.01752 + 1.40049i
\(393\) −2.59791 3.57572i −0.131047 0.180371i
\(394\) 7.69772 23.6911i 0.387805 1.19354i
\(395\) 0 0
\(396\) −3.21832 4.73113i −0.161727 0.237748i
\(397\) 26.6387i 1.33696i −0.743730 0.668480i \(-0.766945\pi\)
0.743730 0.668480i \(-0.233055\pi\)
\(398\) −1.20963 0.393033i −0.0606333 0.0197010i
\(399\) −3.22681 + 2.34442i −0.161543 + 0.117368i
\(400\) 0 0
\(401\) −5.62283 17.3053i −0.280791 0.864186i −0.987629 0.156810i \(-0.949879\pi\)
0.706838 0.707376i \(-0.250121\pi\)
\(402\) 30.2639 9.83335i 1.50943 0.490443i
\(403\) −5.58876 + 7.69226i −0.278396 + 0.383179i
\(404\) −68.0521 + 49.4427i −3.38572 + 2.45987i
\(405\) 0 0
\(406\) −5.90585 −0.293103
\(407\) 4.72431 + 3.66123i 0.234176 + 0.181480i
\(408\) 60.0324i 2.97205i
\(409\) −2.34693 + 7.22312i −0.116048 + 0.357160i −0.992164 0.124940i \(-0.960126\pi\)
0.876116 + 0.482101i \(0.160126\pi\)
\(410\) 0 0
\(411\) −11.2714 8.18916i −0.555978 0.403942i
\(412\) 2.28443 0.742258i 0.112546 0.0365684i
\(413\) −9.88711 + 3.21252i −0.486513 + 0.158078i
\(414\) −2.30137 1.67205i −0.113106 0.0821766i
\(415\) 0 0
\(416\) 16.4229 50.5446i 0.805201 2.47815i
\(417\) 36.3113i 1.77817i
\(418\) 3.28096 + 11.2746i 0.160477 + 0.551461i
\(419\) −29.8323 −1.45740 −0.728701 0.684832i \(-0.759875\pi\)
−0.728701 + 0.684832i \(0.759875\pi\)
\(420\) 0 0
\(421\) −20.4942 + 14.8899i −0.998828 + 0.725691i −0.961837 0.273624i \(-0.911778\pi\)
−0.0369918 + 0.999316i \(0.511778\pi\)
\(422\) 1.27592 1.75615i 0.0621108 0.0854881i
\(423\) −2.68052 + 0.870953i −0.130331 + 0.0423472i
\(424\) 20.3977 + 62.7775i 0.990598 + 3.04875i
\(425\) 0 0
\(426\) −43.8217 + 31.8383i −2.12317 + 1.54257i
\(427\) −13.2692 4.31143i −0.642142 0.208645i
\(428\) 47.6644i 2.30395i
\(429\) 10.7971 3.14200i 0.521289 0.151697i
\(430\) 0 0
\(431\) −6.34030 + 19.5134i −0.305401 + 0.939929i 0.674126 + 0.738617i \(0.264521\pi\)
−0.979527 + 0.201312i \(0.935479\pi\)
\(432\) −52.9403 72.8660i −2.54709 3.50577i
\(433\) 8.08542 11.1286i 0.388560 0.534807i −0.569267 0.822153i \(-0.692773\pi\)
0.957827 + 0.287346i \(0.0927728\pi\)
\(434\) 7.46612 + 22.9784i 0.358385 + 1.10300i
\(435\) 0 0
\(436\) −4.21525 3.06256i −0.201874 0.146670i
\(437\) 2.53392 + 3.48764i 0.121214 + 0.166836i
\(438\) −13.0641 4.24478i −0.624226 0.202823i
\(439\) 24.1841 1.15425 0.577123 0.816657i \(-0.304175\pi\)
0.577123 + 0.816657i \(0.304175\pi\)
\(440\) 0 0
\(441\) 1.03801 0.0494293
\(442\) 19.6960 + 6.39961i 0.936842 + 0.304398i
\(443\) −0.997848 1.37342i −0.0474092 0.0652532i 0.784654 0.619934i \(-0.212840\pi\)
−0.832063 + 0.554680i \(0.812840\pi\)
\(444\) 13.5157 + 9.81970i 0.641425 + 0.466022i
\(445\) 0 0
\(446\) −11.4121 35.1228i −0.540379 1.66311i
\(447\) 15.5129 21.3516i 0.733733 1.00990i
\(448\) −42.3430 58.2802i −2.00052 2.75348i
\(449\) −0.804184 + 2.47502i −0.0379518 + 0.116804i −0.968238 0.250032i \(-0.919559\pi\)
0.930286 + 0.366836i \(0.119559\pi\)
\(450\) 0 0
\(451\) 8.60890 + 12.6556i 0.405377 + 0.595931i
\(452\) 15.3170i 0.720449i
\(453\) 36.2522 + 11.7790i 1.70328 + 0.553428i
\(454\) 38.6570 28.0859i 1.81426 1.31814i
\(455\) 0 0
\(456\) 6.55054 + 20.1605i 0.306757 + 0.944102i
\(457\) −13.2778 + 4.31421i −0.621108 + 0.201810i −0.602632 0.798019i \(-0.705881\pi\)
−0.0184756 + 0.999829i \(0.505881\pi\)
\(458\) −19.1662 + 26.3800i −0.895576 + 1.23265i
\(459\) 15.9156 11.5633i 0.742875 0.539730i
\(460\) 0 0
\(461\) 26.5365 1.23593 0.617963 0.786207i \(-0.287958\pi\)
0.617963 + 0.786207i \(0.287958\pi\)
\(462\) 9.66736 26.8892i 0.449766 1.25100i
\(463\) 23.6363i 1.09847i −0.835667 0.549237i \(-0.814919\pi\)
0.835667 0.549237i \(-0.185081\pi\)
\(464\) −5.77190 + 17.7641i −0.267954 + 0.824676i
\(465\) 0 0
\(466\) −5.65215 4.10653i −0.261831 0.190231i
\(467\) −9.62866 + 3.12854i −0.445561 + 0.144772i −0.523200 0.852210i \(-0.675262\pi\)
0.0776386 + 0.996982i \(0.475262\pi\)
\(468\) −3.38906 + 1.10117i −0.156659 + 0.0509017i
\(469\) −10.7635 7.82016i −0.497014 0.361102i
\(470\) 0 0
\(471\) −8.23650 + 25.3493i −0.379518 + 1.16804i
\(472\) 55.2512i 2.54314i
\(473\) 0.0366078 + 0.00113433i 0.00168323 + 5.21566e-5i
\(474\) −27.7902 −1.27645
\(475\) 0 0
\(476\) 31.4400 22.8425i 1.44105 1.04698i
\(477\) 1.17504 1.61731i 0.0538015 0.0740513i
\(478\) 65.0805 21.1459i 2.97671 0.967192i
\(479\) −0.210601 0.648162i −0.00962259 0.0296153i 0.946130 0.323787i \(-0.104956\pi\)
−0.955753 + 0.294172i \(0.904956\pi\)
\(480\) 0 0
\(481\) 3.01135 2.18788i 0.137306 0.0997586i
\(482\) 49.6912 + 16.1457i 2.26337 + 0.735414i
\(483\) 10.4905i 0.477332i
\(484\) −47.9011 39.5564i −2.17732 1.79802i
\(485\) 0 0
\(486\) −2.70206 + 8.31608i −0.122568 + 0.377225i
\(487\) 6.24493 + 8.59541i 0.282985 + 0.389495i 0.926720 0.375754i \(-0.122616\pi\)
−0.643735 + 0.765249i \(0.722616\pi\)
\(488\) −43.5849 + 59.9895i −1.97300 + 2.71560i
\(489\) −6.21889 19.1398i −0.281228 0.865530i
\(490\) 0 0
\(491\) 9.34180 + 6.78722i 0.421590 + 0.306303i 0.778277 0.627921i \(-0.216094\pi\)
−0.356687 + 0.934224i \(0.616094\pi\)
\(492\) 25.1470 + 34.6118i 1.13371 + 1.56042i
\(493\) −3.88007 1.26071i −0.174750 0.0567796i
\(494\) 7.31274 0.329016
\(495\) 0 0
\(496\) 76.4128 3.43104
\(497\) 21.5385 + 6.99829i 0.966135 + 0.313916i
\(498\) −39.0897 53.8024i −1.75165 2.41094i
\(499\) −7.47146 5.42833i −0.334469 0.243006i 0.407856 0.913046i \(-0.366277\pi\)
−0.742324 + 0.670041i \(0.766277\pi\)
\(500\) 0 0
\(501\) 3.21425 + 9.89246i 0.143602 + 0.441962i
\(502\) 5.86222 8.06865i 0.261644 0.360122i
\(503\) 11.3426 + 15.6117i 0.505740 + 0.696092i 0.983194 0.182565i \(-0.0584401\pi\)
−0.477453 + 0.878657i \(0.658440\pi\)
\(504\) −1.80722 + 5.56205i −0.0805000 + 0.247754i
\(505\) 0 0
\(506\) −29.0627 10.4488i −1.29199 0.464505i
\(507\) 14.3365i 0.636704i
\(508\) −43.7063 14.2010i −1.93915 0.630069i
\(509\) 2.62203 1.90502i 0.116219 0.0844384i −0.528157 0.849147i \(-0.677117\pi\)
0.644377 + 0.764708i \(0.277117\pi\)
\(510\) 0 0
\(511\) 1.77473 + 5.46206i 0.0785095 + 0.241627i
\(512\) −87.7221 + 28.5026i −3.87681 + 1.25965i
\(513\) 4.08312 5.61993i 0.180274 0.248126i
\(514\) 29.4190 21.3742i 1.29762 0.942775i
\(515\) 0 0
\(516\) 0.102372 0.00450669
\(517\) −25.3007 + 17.2106i −1.11272 + 0.756922i
\(518\) 9.45846i 0.415581i
\(519\) 1.06883 3.28953i 0.0469166 0.144395i
\(520\) 0 0
\(521\) 9.45689 + 6.87083i 0.414314 + 0.301017i 0.775346 0.631537i \(-0.217576\pi\)
−0.361032 + 0.932553i \(0.617576\pi\)
\(522\) 0.904075 0.293752i 0.0395703 0.0128572i
\(523\) 10.4551 3.39708i 0.457171 0.148544i −0.0713730 0.997450i \(-0.522738\pi\)
0.528544 + 0.848906i \(0.322738\pi\)
\(524\) 12.3021 + 8.93803i 0.537422 + 0.390460i
\(525\) 0 0
\(526\) 5.33821 16.4293i 0.232757 0.716352i
\(527\) 16.6903i 0.727039i
\(528\) −71.4313 55.3575i −3.10865 2.40913i
\(529\) 11.6616 0.507026
\(530\) 0 0
\(531\) 1.35374 0.983552i 0.0587474 0.0426825i
\(532\) 8.06588 11.1017i 0.349700 0.481321i
\(533\) 9.06563 2.94560i 0.392676 0.127588i
\(534\) −19.3800 59.6455i −0.838654 2.58111i
\(535\) 0 0
\(536\) −57.2050 + 41.5618i −2.47088 + 1.79520i
\(537\) 15.2476 + 4.95425i 0.657984 + 0.213792i
\(538\) 61.9333i 2.67013i
\(539\) 10.8207 3.14886i 0.466080 0.135631i
\(540\) 0 0
\(541\) −6.93398 + 21.3406i −0.298115 + 0.917504i 0.684042 + 0.729442i \(0.260220\pi\)
−0.982157 + 0.188061i \(0.939780\pi\)
\(542\) 14.0743 + 19.3716i 0.604544 + 0.832083i
\(543\) −18.6478 + 25.6666i −0.800256 + 1.10146i
\(544\) −28.8282 88.7241i −1.23600 3.80401i
\(545\) 0 0
\(546\) −14.3965 10.4597i −0.616115 0.447634i
\(547\) 15.7458 + 21.6722i 0.673242 + 0.926638i 0.999828 0.0185290i \(-0.00589830\pi\)
−0.326586 + 0.945167i \(0.605898\pi\)
\(548\) 45.5874 + 14.8122i 1.94740 + 0.632747i
\(549\) 2.24571 0.0958446
\(550\) 0 0
\(551\) −1.44060 −0.0613714
\(552\) −53.0248 17.2288i −2.25689 0.733307i
\(553\) 6.82950 + 9.40000i 0.290420 + 0.399729i
\(554\) −5.82232 4.23016i −0.247367 0.179722i
\(555\) 0 0
\(556\) −38.6048 118.813i −1.63721 5.03880i
\(557\) −3.63214 + 4.99921i −0.153899 + 0.211824i −0.879004 0.476815i \(-0.841791\pi\)
0.725105 + 0.688638i \(0.241791\pi\)
\(558\) −2.28584 3.14620i −0.0967675 0.133189i
\(559\) 0.00704839 0.0216927i 0.000298115 0.000917504i
\(560\) 0 0
\(561\) 12.0913 15.6022i 0.510496 0.658725i
\(562\) 57.2521i 2.41503i
\(563\) −28.0133 9.10209i −1.18062 0.383607i −0.348024 0.937486i \(-0.613147\pi\)
−0.832598 + 0.553878i \(0.813147\pi\)
\(564\) −69.1948 + 50.2730i −2.91363 + 2.11687i
\(565\) 0 0
\(566\) 9.23828 + 28.4325i 0.388314 + 1.19511i
\(567\) −14.4226 + 4.68618i −0.605691 + 0.196801i
\(568\) 70.7469 97.3747i 2.96847 4.08575i
\(569\) 31.0867 22.5858i 1.30322 0.946845i 0.303239 0.952915i \(-0.401932\pi\)
0.999982 + 0.00606937i \(0.00193195\pi\)
\(570\) 0 0
\(571\) 23.3745 0.978193 0.489096 0.872230i \(-0.337327\pi\)
0.489096 + 0.872230i \(0.337327\pi\)
\(572\) −31.9885 + 21.7599i −1.33751 + 0.909828i
\(573\) 23.8852i 0.997819i
\(574\) 7.48497 23.0364i 0.312417 0.961520i
\(575\) 0 0
\(576\) 9.38073 + 6.81550i 0.390864 + 0.283979i
\(577\) 17.7618 5.77115i 0.739432 0.240256i 0.0850044 0.996381i \(-0.472910\pi\)
0.654428 + 0.756124i \(0.272910\pi\)
\(578\) −10.1375 + 3.29388i −0.421666 + 0.137007i
\(579\) 29.5152 + 21.4441i 1.22661 + 0.891185i
\(580\) 0 0
\(581\) −8.59220 + 26.4441i −0.356464 + 1.09708i
\(582\) 78.5499i 3.25600i
\(583\) 7.34294 20.4240i 0.304114 0.845875i
\(584\) 30.5231 1.26306
\(585\) 0 0
\(586\) −1.17026 + 0.850245i −0.0483431 + 0.0351233i
\(587\) −10.9774 + 15.1091i −0.453087 + 0.623621i −0.973057 0.230563i \(-0.925943\pi\)
0.519970 + 0.854184i \(0.325943\pi\)
\(588\) 29.9581 9.73396i 1.23545 0.401422i
\(589\) 1.82119 + 5.60504i 0.0750407 + 0.230951i
\(590\) 0 0
\(591\) −11.9624 + 8.69117i −0.492066 + 0.357507i
\(592\) −28.4499 9.24392i −1.16928 0.379923i
\(593\) 10.2335i 0.420240i −0.977676 0.210120i \(-0.932615\pi\)
0.977676 0.210120i \(-0.0673854\pi\)
\(594\) −1.54131 + 49.7421i −0.0632408 + 2.04094i
\(595\) 0 0
\(596\) −28.0590 + 86.3569i −1.14934 + 3.53731i
\(597\) 0.443757 + 0.610779i 0.0181618 + 0.0249975i
\(598\) −11.3052 + 15.5602i −0.462303 + 0.636305i
\(599\) −6.79277 20.9060i −0.277545 0.854196i −0.988535 0.150994i \(-0.951753\pi\)
0.710990 0.703203i \(-0.248247\pi\)
\(600\) 0 0
\(601\) −15.0923 10.9652i −0.615627 0.447279i 0.235764 0.971810i \(-0.424241\pi\)
−0.851391 + 0.524531i \(0.824241\pi\)
\(602\) −0.0340677 0.0468901i −0.00138850 0.00191110i
\(603\) 2.03666 + 0.661752i 0.0829393 + 0.0269486i
\(604\) −131.143 −5.33613
\(605\) 0 0
\(606\) 67.6124 2.74657
\(607\) −3.15306 1.02449i −0.127979 0.0415829i 0.244327 0.969693i \(-0.421433\pi\)
−0.372306 + 0.928110i \(0.621433\pi\)
\(608\) −19.3626 26.6503i −0.785256 1.08081i
\(609\) 2.83609 + 2.06054i 0.114924 + 0.0834973i
\(610\) 0 0
\(611\) 5.88875 + 18.1237i 0.238233 + 0.733207i
\(612\) −3.67670 + 5.06055i −0.148622 + 0.204560i
\(613\) 13.1489 + 18.0980i 0.531081 + 0.730970i 0.987295 0.158900i \(-0.0507948\pi\)
−0.456214 + 0.889870i \(0.650795\pi\)
\(614\) −17.1254 + 52.7066i −0.691126 + 2.12707i
\(615\) 0 0
\(616\) −1.96648 + 63.4634i −0.0792318 + 2.55701i
\(617\) 11.3963i 0.458798i 0.973332 + 0.229399i \(0.0736761\pi\)
−0.973332 + 0.229399i \(0.926324\pi\)
\(618\) −1.83621 0.596620i −0.0738631 0.0239996i
\(619\) −16.5704 + 12.0391i −0.666019 + 0.483891i −0.868690 0.495356i \(-0.835038\pi\)
0.202671 + 0.979247i \(0.435038\pi\)
\(620\) 0 0
\(621\) 5.64591 + 17.3763i 0.226563 + 0.697288i
\(622\) 40.2765 13.0866i 1.61494 0.524726i
\(623\) −15.4123 + 21.2132i −0.617481 + 0.849890i
\(624\) −45.5315 + 33.0806i −1.82272 + 1.32428i
\(625\) 0 0
\(626\) −78.6055 −3.14171
\(627\) 2.35813 6.55900i 0.0941745 0.261941i
\(628\) 91.7017i 3.65930i
\(629\) 2.01908 6.21409i 0.0805060 0.247772i
\(630\) 0 0
\(631\) −14.1408 10.2739i −0.562937 0.408998i 0.269596 0.962974i \(-0.413110\pi\)
−0.832533 + 0.553976i \(0.813110\pi\)
\(632\) 58.7294 19.0823i 2.33613 0.759054i
\(633\) −1.22544 + 0.398168i −0.0487067 + 0.0158258i
\(634\) −42.1670 30.6361i −1.67467 1.21672i
\(635\) 0 0
\(636\) 18.7465 57.6959i 0.743348 2.28779i
\(637\) 7.01830i 0.278075i
\(638\) 8.53333 5.80473i 0.337838 0.229812i
\(639\) −3.64523 −0.144203
\(640\) 0 0
\(641\) −4.17247 + 3.03148i −0.164803 + 0.119736i −0.667130 0.744942i \(-0.732477\pi\)
0.502327 + 0.864678i \(0.332477\pi\)
\(642\) 22.5194 30.9953i 0.888769 1.22328i
\(643\) −17.9324 + 5.82659i −0.707185 + 0.229778i −0.640458 0.767993i \(-0.721256\pi\)
−0.0667267 + 0.997771i \(0.521256\pi\)
\(644\) 11.1531 + 34.3256i 0.439492 + 1.35262i
\(645\) 0 0
\(646\) 10.3849 7.54511i 0.408590 0.296858i
\(647\) −23.3851 7.59827i −0.919362 0.298719i −0.189157 0.981947i \(-0.560575\pi\)
−0.730205 + 0.683228i \(0.760575\pi\)
\(648\) 80.5964i 3.16612i
\(649\) 11.1283 14.3596i 0.436825 0.563663i
\(650\) 0 0
\(651\) 4.43175 13.6395i 0.173694 0.534575i
\(652\) 40.6974 + 56.0151i 1.59383 + 2.19372i
\(653\) 24.2736 33.4097i 0.949898 1.30742i −0.00167469 0.999999i \(-0.500533\pi\)
0.951573 0.307424i \(-0.0994669\pi\)
\(654\) 1.29417 + 3.98304i 0.0506060 + 0.155749i
\(655\) 0 0
\(656\) −61.9754 45.0277i −2.41973 1.75804i
\(657\) −0.543356 0.747865i −0.0211983 0.0291770i
\(658\) 46.0536 + 14.9637i 1.79536 + 0.583346i
\(659\) 4.73658 0.184511 0.0922555 0.995735i \(-0.470592\pi\)
0.0922555 + 0.995735i \(0.470592\pi\)
\(660\) 0 0
\(661\) 10.7556 0.418344 0.209172 0.977879i \(-0.432923\pi\)
0.209172 + 0.977879i \(0.432923\pi\)
\(662\) −31.7943 10.3306i −1.23572 0.401511i
\(663\) −7.22553 9.94509i −0.280616 0.386235i
\(664\) 119.552 + 86.8599i 4.63953 + 3.37082i
\(665\) 0 0
\(666\) 0.470455 + 1.44791i 0.0182298 + 0.0561054i
\(667\) 2.22710 3.06533i 0.0862335 0.118690i
\(668\) −21.0346 28.9516i −0.813852 1.12017i
\(669\) −6.77401 + 20.8482i −0.261898 + 0.806040i
\(670\) 0 0
\(671\) 23.4102 6.81246i 0.903741 0.262992i
\(672\) 80.1613i 3.09229i
\(673\) 35.8921 + 11.6621i 1.38354 + 0.449539i 0.903831 0.427889i \(-0.140743\pi\)
0.479708 + 0.877428i \(0.340743\pi\)
\(674\) 52.2063 37.9301i 2.01091 1.46101i
\(675\) 0 0
\(676\) −15.2420 46.9100i −0.586230 1.80423i
\(677\) −22.1331 + 7.19149i −0.850646 + 0.276392i −0.701716 0.712456i \(-0.747583\pi\)
−0.148929 + 0.988848i \(0.547583\pi\)
\(678\) −7.23659 + 9.96032i −0.277920 + 0.382524i
\(679\) −26.5694 + 19.3038i −1.01964 + 0.740811i
\(680\) 0 0
\(681\) −28.3629 −1.08687
\(682\) −33.3727 25.8630i −1.27791 0.990346i
\(683\) 12.6153i 0.482712i 0.970437 + 0.241356i \(0.0775922\pi\)
−0.970437 + 0.241356i \(0.922408\pi\)
\(684\) −0.682545 + 2.10066i −0.0260977 + 0.0803206i
\(685\) 0 0
\(686\) −44.1511 32.0776i −1.68570 1.22473i
\(687\) 18.4078 5.98107i 0.702303 0.228192i
\(688\) −0.174335 + 0.0566448i −0.00664645 + 0.00215956i
\(689\) −10.9350 7.94478i −0.416592 0.302672i
\(690\) 0 0
\(691\) 2.26469 6.97000i 0.0861529 0.265151i −0.898694 0.438576i \(-0.855483\pi\)
0.984847 + 0.173424i \(0.0554831\pi\)
\(692\) 11.9000i 0.452368i
\(693\) 1.58996 1.08156i 0.0603976 0.0410850i
\(694\) 57.0772 2.16662
\(695\) 0 0
\(696\) 15.0730 10.9512i 0.571340 0.415103i
\(697\) 9.83506 13.5368i 0.372530 0.512743i
\(698\) −67.0752 + 21.7940i −2.53883 + 0.824917i
\(699\) 1.28150 + 3.94405i 0.0484708 + 0.149178i
\(700\) 0 0
\(701\) 29.7236 21.5954i 1.12264 0.815649i 0.138036 0.990427i \(-0.455921\pi\)
0.984608 + 0.174778i \(0.0559209\pi\)
\(702\) 29.4757 + 9.57724i 1.11249 + 0.361470i
\(703\) 2.30717i 0.0870166i
\(704\) 118.464 + 42.5907i 4.46476 + 1.60520i
\(705\) 0 0
\(706\) 2.91413 8.96878i 0.109675 0.337545i
\(707\) −16.6159 22.8698i −0.624904 0.860107i
\(708\) 29.8470 41.0809i 1.12172 1.54391i
\(709\) 8.01840 + 24.6781i 0.301137 + 0.926806i 0.981090 + 0.193550i \(0.0620002\pi\)
−0.679953 + 0.733256i \(0.738000\pi\)
\(710\) 0 0
\(711\) −1.51302 1.09927i −0.0567425 0.0412258i
\(712\) 81.9118 + 112.742i 3.06978 + 4.22518i
\(713\) −14.7420 4.78997i −0.552093 0.179386i
\(714\) −31.2369 −1.16901
\(715\) 0 0
\(716\) −55.1586 −2.06137
\(717\) −38.6305 12.5518i −1.44268 0.468756i
\(718\) 7.76877 + 10.6928i 0.289928 + 0.399052i
\(719\) −2.19677 1.59605i −0.0819259 0.0595226i 0.546068 0.837741i \(-0.316124\pi\)
−0.627994 + 0.778218i \(0.716124\pi\)
\(720\) 0 0
\(721\) 0.249445 + 0.767714i 0.00928983 + 0.0285912i
\(722\) −28.2197 + 38.8410i −1.05023 + 1.44551i
\(723\) −18.2294 25.0906i −0.677958 0.933129i
\(724\) 33.7295 103.809i 1.25355 3.85802i
\(725\) 0 0
\(726\) 12.4605 + 48.3539i 0.462453 + 1.79458i
\(727\) 18.6564i 0.691926i 0.938248 + 0.345963i \(0.112448\pi\)
−0.938248 + 0.345963i \(0.887552\pi\)
\(728\) 37.6066 + 12.2191i 1.39379 + 0.452871i
\(729\) 23.5917 17.1404i 0.873767 0.634829i
\(730\) 0 0
\(731\) −0.0123725 0.0380786i −0.000457613 0.00140839i
\(732\) 64.8133 21.0591i 2.39557 0.778367i
\(733\) 19.7188 27.1407i 0.728332 1.00246i −0.270874 0.962615i \(-0.587313\pi\)
0.999206 0.0398480i \(-0.0126874\pi\)
\(734\) −29.3826 + 21.3477i −1.08453 + 0.787958i
\(735\) 0 0
\(736\) 86.6408 3.19362
\(737\) 23.2384 + 0.720068i 0.855999 + 0.0265240i
\(738\) 3.89873i 0.143514i
\(739\) −13.7840 + 42.4228i −0.507053 + 1.56055i 0.290238 + 0.956955i \(0.406266\pi\)
−0.797291 + 0.603595i \(0.793734\pi\)
\(740\) 0 0
\(741\) −3.51170 2.55140i −0.129006 0.0937280i
\(742\) −32.6652 + 10.6136i −1.19918 + 0.389637i
\(743\) −12.8523 + 4.17597i −0.471506 + 0.153202i −0.535125 0.844773i \(-0.679736\pi\)
0.0636194 + 0.997974i \(0.479736\pi\)
\(744\) −61.6636 44.8013i −2.26070 1.64249i
\(745\) 0 0
\(746\) 21.3192 65.6139i 0.780553 2.40229i
\(747\) 4.47546i 0.163748i
\(748\) −22.9761 + 63.9066i −0.840088 + 2.33666i
\(749\) −16.0183 −0.585295
\(750\) 0 0
\(751\) 20.4965 14.8915i 0.747926 0.543400i −0.147257 0.989098i \(-0.547045\pi\)
0.895183 + 0.445698i \(0.147045\pi\)
\(752\) 90.0180 123.899i 3.28262 4.51814i
\(753\) −5.63028 + 1.82939i −0.205179 + 0.0666666i
\(754\) −1.98614 6.11270i −0.0723308 0.222611i
\(755\) 0 0
\(756\) 47.0510 34.1845i 1.71123 1.24328i
\(757\) −16.8676 5.48060i −0.613062 0.199196i −0.0140044 0.999902i \(-0.504458\pi\)
−0.599057 + 0.800706i \(0.704458\pi\)
\(758\) 5.63946i 0.204834i
\(759\) 10.3108 + 15.1576i 0.374260 + 0.550186i
\(760\) 0 0
\(761\) 7.43998 22.8979i 0.269699 0.830048i −0.720875 0.693066i \(-0.756260\pi\)
0.990573 0.136982i \(-0.0437404\pi\)
\(762\) 21.7120 + 29.8840i 0.786541 + 1.08258i
\(763\) 1.02921 1.41659i 0.0372600 0.0512840i
\(764\) −25.3939 78.1543i −0.918718 2.82752i
\(765\) 0 0
\(766\) 72.0362 + 52.3374i 2.60278 + 1.89103i
\(767\) −6.65006 9.15303i −0.240120 0.330497i
\(768\) 112.480 + 36.5469i 4.05876 + 1.31877i
\(769\) −25.1389 −0.906532 −0.453266 0.891375i \(-0.649741\pi\)
−0.453266 + 0.891375i \(0.649741\pi\)
\(770\) 0 0
\(771\) −21.5849 −0.777363
\(772\) −119.375 38.7872i −4.29639 1.39598i
\(773\) 27.2173 + 37.4614i 0.978937 + 1.34739i 0.937400 + 0.348255i \(0.113226\pi\)
0.0415374 + 0.999137i \(0.486774\pi\)
\(774\) 0.00754739 + 0.00548350i 0.000271285 + 0.000197100i
\(775\) 0 0
\(776\) 53.9368 + 166.000i 1.93622 + 5.95907i
\(777\) −3.30004 + 4.54211i −0.118388 + 0.162947i
\(778\) 4.53625 + 6.24362i 0.162633 + 0.223845i
\(779\) 1.82579 5.61919i 0.0654155 0.201328i
\(780\) 0 0
\(781\) −37.9994 + 11.0580i −1.35972 + 0.395685i
\(782\) 33.7618i 1.20732i
\(783\) −5.80666 1.88670i −0.207513 0.0674251i
\(784\) −45.6309 + 33.1528i −1.62968 + 1.18403i
\(785\) 0 0
\(786\) −3.77701 11.6245i −0.134722 0.414630i
\(787\) −18.0319 + 5.85893i −0.642769 + 0.208848i −0.612223 0.790685i \(-0.709724\pi\)
−0.0305456 + 0.999533i \(0.509724\pi\)
\(788\) 29.9017 41.1561i 1.06520 1.46613i
\(789\) −8.29565 + 6.02714i −0.295333 + 0.214572i
\(790\) 0 0
\(791\) 5.14747 0.183023
\(792\) −2.85558 9.81286i −0.101469 0.348685i
\(793\) 15.1839i 0.539195i
\(794\) 22.7644 70.0616i 0.807878 2.48639i
\(795\) 0 0
\(796\) −2.10137 1.52673i −0.0744809 0.0541136i
\(797\) 11.2888 3.66796i 0.399871 0.129926i −0.102176 0.994766i \(-0.532581\pi\)
0.502047 + 0.864841i \(0.332581\pi\)
\(798\) −10.4902 + 3.40846i −0.371348 + 0.120658i
\(799\) 27.0623 + 19.6619i 0.957396 + 0.695589i
\(800\) 0 0
\(801\) 1.30421 4.01394i 0.0460819 0.141826i
\(802\) 50.3191i 1.77683i
\(803\) −7.93284 6.14776i −0.279944 0.216950i
\(804\) 64.9855 2.29186
\(805\) 0 0
\(806\) −21.2723 + 15.4552i −0.749285 + 0.544387i
\(807\) 21.6084 29.7414i 0.760652 1.04695i
\(808\) −142.886 + 46.4265i −5.02671 + 1.63328i
\(809\) 2.17500 + 6.69397i 0.0764690 + 0.235347i 0.981983 0.188969i \(-0.0605145\pi\)
−0.905514 + 0.424316i \(0.860514\pi\)
\(810\) 0 0
\(811\) 28.5326 20.7302i 1.00192 0.727935i 0.0394182 0.999223i \(-0.487450\pi\)
0.962498 + 0.271288i \(0.0874496\pi\)
\(812\) −11.4706 3.72702i −0.402539 0.130793i
\(813\) 14.2131i 0.498475i
\(814\) 9.29651 + 13.6665i 0.325843 + 0.479010i
\(815\) 0 0
\(816\) −30.5283 + 93.9566i −1.06871 + 3.28914i
\(817\) −0.00831002 0.0114378i −0.000290731 0.000400157i
\(818\) −12.3452 + 16.9917i −0.431639 + 0.594100i
\(819\) −0.370064 1.13894i −0.0129311 0.0397977i
\(820\) 0 0
\(821\) −41.5952 30.2207i −1.45168 1.05471i −0.985435 0.170053i \(-0.945606\pi\)
−0.466246 0.884655i \(-0.654394\pi\)
\(822\) −22.6464 31.1701i −0.789885 1.08718i
\(823\) −36.7186 11.9306i −1.27993 0.415875i −0.411376 0.911466i \(-0.634952\pi\)
−0.868556 + 0.495591i \(0.834952\pi\)
\(824\) 4.29015 0.149454
\(825\) 0 0
\(826\) −28.7490 −1.00031
\(827\) −16.7851 5.45382i −0.583677 0.189648i 0.00227034 0.999997i \(-0.499277\pi\)
−0.585947 + 0.810349i \(0.699277\pi\)
\(828\) −3.41464 4.69986i −0.118667 0.163331i
\(829\) −20.5573 14.9357i −0.713984 0.518740i 0.170472 0.985362i \(-0.445471\pi\)
−0.884457 + 0.466623i \(0.845471\pi\)
\(830\) 0 0
\(831\) 1.32008 + 4.06279i 0.0457931 + 0.140937i
\(832\) 46.0814 63.4257i 1.59759 2.19889i
\(833\) −7.24131 9.96681i −0.250897 0.345330i
\(834\) −31.0301 + 95.5010i −1.07449 + 3.30693i
\(835\) 0 0
\(836\) −0.742693 + 23.9686i −0.0256866 + 0.828972i
\(837\) 24.9776i 0.863351i
\(838\) −78.4608 25.4935i −2.71038 0.880657i
\(839\) −44.0635 + 32.0140i −1.52124 + 1.10525i −0.560372 + 0.828241i \(0.689342\pi\)
−0.960868 + 0.277005i \(0.910658\pi\)
\(840\) 0 0
\(841\) −8.57023 26.3764i −0.295525 0.909533i
\(842\) −66.6255 + 21.6480i −2.29607 + 0.746038i
\(843\) −19.9752 + 27.4934i −0.687981 + 0.946924i
\(844\) 3.58640 2.60567i 0.123449 0.0896910i
\(845\) 0 0
\(846\) −7.79421 −0.267971
\(847\) 13.2934 16.0978i 0.456768 0.553127i
\(848\) 108.626i 3.73022i
\(849\) 5.48367 16.8770i 0.188199 0.579217i
\(850\) 0 0
\(851\) 4.90926 + 3.56678i 0.168287 + 0.122268i
\(852\) −105.205 + 34.1831i −3.60425 + 1.17109i
\(853\) −1.61978 + 0.526298i −0.0554601 + 0.0180201i −0.336616 0.941642i \(-0.609282\pi\)
0.281156 + 0.959662i \(0.409282\pi\)
\(854\) −31.2145 22.6787i −1.06814 0.776048i
\(855\) 0 0
\(856\) −26.3073 + 80.9656i −0.899166 + 2.76735i
\(857\) 34.5112i 1.17888i 0.807812 + 0.589440i \(0.200652\pi\)
−0.807812 + 0.589440i \(0.799348\pi\)
\(858\) 31.0821 + 0.963112i 1.06113 + 0.0328801i
\(859\) 41.1808 1.40507 0.702535 0.711650i \(-0.252052\pi\)
0.702535 + 0.711650i \(0.252052\pi\)
\(860\) 0 0
\(861\) −11.6318 + 8.45097i −0.396409 + 0.288008i
\(862\) −33.3508 + 45.9034i −1.13593 + 1.56348i
\(863\) −17.3860 + 5.64904i −0.591825 + 0.192296i −0.589591 0.807702i \(-0.700711\pi\)
−0.00223395 + 0.999998i \(0.500711\pi\)
\(864\) −43.1424 132.779i −1.46773 4.51722i
\(865\) 0 0
\(866\) 30.7752 22.3595i 1.04579 0.759808i
\(867\) 6.01744 + 1.95519i 0.204363 + 0.0664016i
\(868\) 49.3412i 1.67475i
\(869\) −19.1070 6.86944i −0.648159 0.233030i
\(870\) 0 0
\(871\) 4.47428 13.7704i 0.151605 0.466593i
\(872\) −5.46996 7.52875i −0.185236 0.254956i
\(873\) 3.10712 4.27658i 0.105160 0.144740i
\(874\) 3.68397 + 11.3381i 0.124612 + 0.383517i
\(875\) 0 0
\(876\) −22.6948 16.4888i −0.766788 0.557104i
\(877\) −24.3907 33.5709i −0.823614 1.13361i −0.989078 0.147392i \(-0.952912\pi\)
0.165464 0.986216i \(-0.447088\pi\)
\(878\) 63.6059 + 20.6668i 2.14659 + 0.697471i
\(879\) 0.858629 0.0289608
\(880\) 0 0
\(881\) 49.7389 1.67575 0.837873 0.545866i \(-0.183799\pi\)
0.837873 + 0.545866i \(0.183799\pi\)
\(882\) 2.73005 + 0.887046i 0.0919254 + 0.0298684i
\(883\) −11.1785 15.3859i −0.376186 0.517776i 0.578383 0.815765i \(-0.303684\pi\)
−0.954569 + 0.297990i \(0.903684\pi\)
\(884\) 34.2157 + 24.8592i 1.15080 + 0.836105i
\(885\) 0 0
\(886\) −1.45074 4.46491i −0.0487384 0.150001i
\(887\) 1.98443 2.73133i 0.0666305 0.0917090i −0.774401 0.632695i \(-0.781949\pi\)
0.841032 + 0.540986i \(0.181949\pi\)
\(888\) 17.5387 + 24.1400i 0.588561 + 0.810085i
\(889\) 4.77244 14.6881i 0.160063 0.492622i
\(890\) 0 0
\(891\) 16.2332 20.9467i 0.543831 0.701740i
\(892\) 75.4189i 2.52521i
\(893\) 11.2337 + 3.65005i 0.375921 + 0.122144i
\(894\) 59.0461 42.8995i 1.97480 1.43477i
\(895\) 0 0
\(896\) −31.3798 96.5771i −1.04833 3.22641i
\(897\) 10.8579 3.52794i 0.362534 0.117794i
\(898\) −4.23011 + 5.82225i −0.141161 + 0.194291i
\(899\) 4.19060 3.04465i 0.139764 0.101545i
\(900\) 0 0
\(901\) −23.7263 −0.790437
\(902\) 11.8270 + 40.6420i 0.393795 + 1.35323i
\(903\) 0.0344036i 0.00114488i
\(904\) 8.45385 26.0183i 0.281171 0.865355i
\(905\) 0 0
\(906\) 85.2797 + 61.9593i 2.83323 + 2.05846i
\(907\) 31.9372 10.3770i 1.06046 0.344563i 0.273692 0.961817i \(-0.411755\pi\)
0.786764 + 0.617254i \(0.211755\pi\)
\(908\) 92.8055 30.1543i 3.07986 1.00071i
\(909\) 3.68110 + 2.67448i 0.122094 + 0.0887068i
\(910\) 0 0
\(911\) 14.7638 45.4384i 0.489147 1.50544i −0.336736 0.941599i \(-0.609323\pi\)
0.825883 0.563841i \(-0.190677\pi\)
\(912\) 34.8843i 1.15513i
\(913\) −13.5765 46.6540i −0.449316 1.54402i
\(914\) −38.6081 −1.27704
\(915\) 0 0
\(916\) −53.8730 + 39.1410i −1.78001 + 1.29326i
\(917\) −3.00374 + 4.13430i −0.0991923 + 0.136527i
\(918\) 51.7405 16.8115i 1.70769 0.554863i
\(919\) −3.79764 11.6879i −0.125273 0.385550i 0.868678 0.495377i \(-0.164970\pi\)
−0.993951 + 0.109827i \(0.964970\pi\)
\(920\) 0 0
\(921\) 26.6132 19.3356i 0.876934 0.637130i
\(922\) 69.7926 + 22.6770i 2.29850 + 0.746827i
\(923\) 24.6464i 0.811246i
\(924\) 35.7454 46.1246i 1.17594 1.51739i
\(925\) 0 0
\(926\) 20.1987 62.1651i 0.663769 2.04287i
\(927\) −0.0763708 0.105115i −0.00250835 0.00345244i
\(928\) −17.0180 + 23.4233i −0.558644 + 0.768908i
\(929\) −16.3005 50.1679i −0.534804 1.64596i −0.744073 0.668098i \(-0.767109\pi\)
0.209269 0.977858i \(-0.432891\pi\)
\(930\) 0 0
\(931\) −3.51937 2.55697i −0.115343 0.0838014i
\(932\) −8.38633 11.5428i −0.274703 0.378097i
\(933\) −23.9074 7.76797i −0.782692 0.254312i
\(934\) −27.9975 −0.916107
\(935\) 0 0
\(936\) −6.36462 −0.208034
\(937\) 38.5181 + 12.5153i 1.25833 + 0.408857i 0.860900 0.508775i \(-0.169901\pi\)
0.397432 + 0.917632i \(0.369901\pi\)
\(938\) −21.6260 29.7656i −0.706114 0.971882i
\(939\) 37.7477 + 27.4253i 1.23185 + 0.894991i
\(940\) 0 0
\(941\) 2.10825 + 6.48852i 0.0687269 + 0.211520i 0.979521 0.201341i \(-0.0645298\pi\)
−0.910794 + 0.412860i \(0.864530\pi\)
\(942\) −43.3250 + 59.6318i −1.41161 + 1.94291i
\(943\) 9.13407 + 12.5720i 0.297446 + 0.409400i
\(944\) −28.0969 + 86.4735i −0.914478 + 2.81447i
\(945\) 0 0
\(946\) 0.0953115 + 0.0342669i 0.00309884 + 0.00111411i
\(947\) 31.5841i 1.02634i 0.858286 + 0.513172i \(0.171530\pi\)
−0.858286 + 0.513172i \(0.828470\pi\)
\(948\) −53.9754 17.5377i −1.75304 0.569597i
\(949\) −5.05652 + 3.67378i −0.164142 + 0.119256i
\(950\) 0 0
\(951\) 9.56043 + 29.4240i 0.310018 + 0.954138i
\(952\) 66.0132 21.4490i 2.13950 0.695165i
\(953\) 12.7347 17.5279i 0.412519 0.567784i −0.551312 0.834299i \(-0.685872\pi\)
0.963831 + 0.266516i \(0.0858724\pi\)
\(954\) 4.47252 3.24948i 0.144803 0.105206i
\(955\) 0 0
\(956\) 139.747 4.51973
\(957\) −6.12311 0.189731i −0.197932 0.00613314i
\(958\) 1.88468i 0.0608912i
\(959\) −4.97785 + 15.3202i −0.160743 + 0.494716i
\(960\) 0 0
\(961\) 7.93576 + 5.76566i 0.255992 + 0.185989i
\(962\) 9.78973 3.18088i 0.315634 0.102556i
\(963\) 2.45209 0.796734i 0.0790176 0.0256744i
\(964\) 86.3233 + 62.7175i 2.78029 + 2.02000i
\(965\) 0 0
\(966\) 8.96472 27.5906i 0.288435 0.887712i
\(967\) 9.03757i 0.290629i −0.989386 0.145314i \(-0.953581\pi\)
0.989386 0.145314i \(-0.0464193\pi\)
\(968\) −59.5354 93.6307i −1.91354 3.00940i
\(969\) −7.61950 −0.244774
\(970\) 0 0
\(971\) −27.7379 + 20.1528i −0.890151 + 0.646733i −0.935917 0.352220i \(-0.885427\pi\)
0.0457664 + 0.998952i \(0.485427\pi\)
\(972\) −10.4961 + 14.4467i −0.336663 + 0.463377i
\(973\) 39.9288 12.9736i 1.28006 0.415916i
\(974\) 9.07928 + 27.9431i 0.290919 + 0.895356i
\(975\) 0 0
\(976\) −98.7211 + 71.7251i −3.15998 + 2.29586i
\(977\) 16.3381 + 5.30858i 0.522703 + 0.169837i 0.558472 0.829523i \(-0.311388\pi\)
−0.0357684 + 0.999360i \(0.511388\pi\)
\(978\) 55.6532i 1.77959i
\(979\) 1.41914 45.7993i 0.0453559 1.46375i
\(980\) 0 0
\(981\) −0.0870932 + 0.268045i −0.00278067 + 0.00855802i
\(982\) 18.7695 + 25.8340i 0.598958 + 0.824395i
\(983\) 2.26844 3.12224i 0.0723519 0.0995839i −0.771307 0.636463i \(-0.780397\pi\)
0.843659 + 0.536879i \(0.180397\pi\)
\(984\) 23.6129 + 72.6730i 0.752751 + 2.31673i
\(985\) 0 0
\(986\) −9.12748 6.63150i −0.290678 0.211190i
\(987\) −16.8949 23.2538i −0.537771 0.740178i
\(988\) 14.2031 + 4.61487i 0.451861 + 0.146819i
\(989\) 0.0371845 0.00118240
\(990\) 0 0
\(991\) −31.5631 −1.00263 −0.501317 0.865264i \(-0.667151\pi\)
−0.501317 + 0.865264i \(0.667151\pi\)
\(992\) 112.649 + 36.6019i 3.57661 + 1.16211i
\(993\) 11.6639 + 16.0539i 0.370141 + 0.509456i
\(994\) 50.6673 + 36.8119i 1.60707 + 1.16760i
\(995\) 0 0
\(996\) −41.9685 129.166i −1.32982 4.09277i
\(997\) −5.44564 + 7.49529i −0.172465 + 0.237378i −0.886496 0.462736i \(-0.846868\pi\)
0.714031 + 0.700114i \(0.246868\pi\)
\(998\) −15.0116 20.6617i −0.475184 0.654034i
\(999\) 3.02162 9.29959i 0.0955999 0.294226i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.z.c.174.8 32
5.2 odd 4 275.2.h.c.251.1 yes 16
5.3 odd 4 275.2.h.e.251.4 yes 16
5.4 even 2 inner 275.2.z.c.174.1 32
11.5 even 5 inner 275.2.z.c.49.1 32
55.7 even 20 3025.2.a.bm.1.8 8
55.18 even 20 3025.2.a.bj.1.1 8
55.27 odd 20 275.2.h.c.126.1 16
55.37 odd 20 3025.2.a.bi.1.1 8
55.38 odd 20 275.2.h.e.126.4 yes 16
55.48 odd 20 3025.2.a.bn.1.8 8
55.49 even 10 inner 275.2.z.c.49.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.h.c.126.1 16 55.27 odd 20
275.2.h.c.251.1 yes 16 5.2 odd 4
275.2.h.e.126.4 yes 16 55.38 odd 20
275.2.h.e.251.4 yes 16 5.3 odd 4
275.2.z.c.49.1 32 11.5 even 5 inner
275.2.z.c.49.8 32 55.49 even 10 inner
275.2.z.c.174.1 32 5.4 even 2 inner
275.2.z.c.174.8 32 1.1 even 1 trivial
3025.2.a.bi.1.1 8 55.37 odd 20
3025.2.a.bj.1.1 8 55.18 even 20
3025.2.a.bm.1.8 8 55.7 even 20
3025.2.a.bn.1.8 8 55.48 odd 20